Accepted Paper: A novel impact identification algorithm based on a linear approximation with maximum entropy

Paper Accepted for Publication in Smart Materials and Structures

N. Sanchez, V. Meruane, A. Ortiz-Bernardin, “A novel impact identification algorithm based on a linear approximation with maximum entropy.”

ABSTRACT

This article presents a novel impact identification algorithm that uses a linear approximation handled by a statistical inference model based on the maximum-entropy principle, termed linear approximation with maximum entropy (LME). Unlike other regression algorithms as Artificial Neural Networks (ANN) and Support Vector Machines (SVM), the proposed algorithm requires only parameter to be selected and the impact is identified after solving a convex optimization problem that has a unique solution. In addition, with LME data is processed in a period of time that is comparable to the one of other algorithms. The performance of the proposed methodology is validated by considering an experimental aluminum plate. Time varying strain data is measured using four piezoceramic sensors bonded to the plate. To demonstrate the potential of the proposed approach over existing ones, results obtained via LME are compared with those of ANN and Least Square Support Vector Machines (LSSVM). The results demonstrate that with a low number of sensors it is possible to accurately locate and quantify impacts on a structure and that LME outperforms other impact identification algorithms.

Keywords: Impact identification, structural health monitoring, damage assessment, maximum entropy, linear approximation.