Veamy

An extensible object-oriented C++ library
for the virtual element method

Veamy Primer
Version 1.1

Rev. ©
September, 2017

Veamy Primer Veamy v1.1

Copyright and License

Veamy 1.1, Copyright © 2017
by Catalina Alvarez, Nancy Hitschfeld-Kahler, Alejandro Ortiz-Bernardin
http://camlab.cl/research/software/veamy/

Department of Computer Science

Department of Mechanical Engineering
Facultad de Ciencias Fisicas y Matematicas
Universidad de Chile

Av. Beauchef 851, Santiago 8370456, Chile

PL

Free Software

Your use or distribution of Veamy or any derivative code implies that you agree to
this License.

This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

Veamy Primer Veamy v1.1

TABLE OF CONTENTS

1 Features Of Veamyttt ittt ittt tenaeenneeenneeennenennesnns 3
2 1Y o U o of = o' T 1= e 3
3 Up and running with Veamyciiiiiiiiiiiitiinitiineeenneerenesennansnnnsns 3
4 Using a PolyMesher mesh and boundary conditions in Veamyovo.n. 8
5 Using a generic mesh file ...ttt ittt ttnnetenneennannnnnns 12
6 Additional eXamples ...ttt ettt i ittt 12

6.1 Perforated Cook s membraneco.oeieiiiiiiiiiiieieeneeneenennoenennenns 12

6.2 A Oy eXamMPle .ottt e e et ettt ettt e 13
7 Geometry definition and mesh generationottt 15
8 Essential and natural boundary conditionsc.ciiiiiiiiiiiiiiiiiiie.n. 18
9 Material definition ...ttt i i i ittt ittt 21
10 Setting precision on output operationscciiuiiiiiiiiiiii ittt 21

11 Veamy’s WebSIite ..ttt i it ittt ettt ettt 21

Veamy Primer Veamy v1.1

1 Features of Veamy

e TIncludes its own mesher based on the computation of the constrained Voronoi
diagram. The meshes can be created in arbitrary two-dimensional domains, with
or without holes, with procedurally generated points’.

e Meshes can also be read from OFF-style text files.

e Allows easy input of boundary conditions by constraining domain segments and
nodes.

e The results of the computation can be either written into a file or used di-
rectly.

e PolyMesher meshes and boundary conditions can be read straightforwardly in
Veamy to solve 2D linear elastostatic problems.

2 Source code

The source code is available to be downloaded from Veamy’s web page:

http://camlab.cl/research/software/veamy/

Download the code before proceeding with the rest of this primer.

3 Up and running with Veamy

Veamy has been tested on Unix-like machines only. First of all, make sure that CMake
is available in your machine. If it is not, install it before proceeding with the
rest of this primer. To install CMake on Ubuntu machines, on a terminal type and exe-
cute:

sudo apt-get install cmake

Unpack the code to a folder of your choice. Fig. 1 shows the content of Veamy that
was unpacked to “/home/Software/”

! However, the constrained Voronoi mesher is part of a separate project and Veamy only
makes use of this mesher. The full documentation of this mesher is available from its
own repository: https://github.com/capalvarez/Delynoi

Veamy Primer Veamy v1.1

Veamy-master

< > favome Softwere Veamy-master

© Recent

= 1. - B a -

b polymesher test veamy CMakeLists.txt README.md
[Desktop

7 -
i

=
i

= Mo

@ Trash
5

Fig. 1: Veamy source code.

Go inside “test” folder of Veamy’s root directory (see Fig. 2). This test folder is
where the main C++ setup file implementing a problem of interest must be placed. In
this example, a “cantilever beam subjected to a parabolic end load” will be solved in
Veamy. This problem is part of the numerical examples provided in:

A. Ortiz-Bernardin, C. Alvarez, N. Hitschfeld-Kahler, A. Russo, R. Silva, E. Olate-
Sanzana. Veamy: an extensible object-oriented C++ library for the virtual element
method. arXiv:1708.03438 [cs.MS]

You may consult the details of the geometry and boundary conditions therein as in
this primer we only refer to the final main C++ setup file to run the example.

The implementation of the cantilever beam subjected to a parabolic end load is pro-
vided in the main C++ setup file named “ParabolicMain.cpp” (see Fig. 2).

mesh examples test_files CMakeListstxt DisplacementPatch EquilbriumpatchTe example.cpp ParabolicMaincpp PolyMesherMain, tests.cpp testveamer.cop
q

@ Pictures
| Videos
@ Trash
& Network

@ 86 Volume

PENDEDDD ON

Fig. 2: Veamy’s test folder. The main C++ setup file implementing a problem of inter-
est must be placed in this folder. Several main setup C++ files are shown. In this
part of the primer, the C++ file “ParabolicMain.cpp” will be used.

Veamy Primer Veamy v1.1

Open “ParabolicMain.cpp” file. If you are interested, browse the code in this file to
realize how a problem implementation is setup in Veamy. To run this problem is im-
portant to update the folder where the output files will be stored. In order to spec-
ify the output folder, check the instructions that are provided as comments in
“ParabolicMain.cpp” (see Fig. 3). Modify accordingly, save and close the setup file.

ParabolicMain.cpp (~/Software/Veamy-master/test) - gedit = @ o 1940
open v R

:pow(D,3)/12;
'y/(s~£har«r) ((6*L - 3%x)*x + (2+vBar)*std::pow(y,2) - 3*std::pow(D,2)/2*(1+vBar))
double u¥(double x, double y){

double Ebar = 197/(1 - std::pow(0.3,2));
double vBar = 0.3/(1);

(D,3)/12
return P/(S'Ebar“l) uwear»sm :poW(y,2)*(L-x) + (3*L-x)*std::pow(x,2));
}

int main(){

DPD o6 e

"+%+ Starting Veamy ***" << std
"--> Test: Cantilever bean subjected to a parabolic end load <--" << std::endl
" << std:zendl;

// DEFINING PATH FOR THE OUTPUT FILES:
/1 If the path for the output files is not given, they are written to /Home directory by default.
/1 Otherwise, include the path. For instance, for /Home/user/Docunents/Veamy/output.txt , the path
11 must be "Documents/Veany/output. txt"

1] CATLION: (e pathlaiisé eiisés <\theg becaise 1t (S{BLERdHT Jol(eystentor beciese (¢ Wa)crated
7] by Veamy's configuration files. For instance, Veamy creates the folder "/test” inside "/build", so
1] ane.can save thelautpit Files tn "/bu\ld/test/” Fotder, bot not to */bulldtest/nycuston_folder",
won't be create: eany's_con

vector<Point> rectangledxs_points = {Point(6, -2), Point(s, -2), Point(s, 2), Point(e, 2)};

std::cout << "done” << std::endl

std::cout << "+ Generating polygonal mesh
Bl ta i axmiiptne wtascedboL At (Piis e s b b aisiterebin Y., Fincioossconsiastly, 2% 32
std: :vector<Point> seeds = rectangledxs.getseedPoints();

TriangledeshGenerator neshGenerator = TriangleMeshGenerator (seeds, rectangledxs);

Polygonaliesh nesh - neshGenerator . gethesh();

std::cout << "done” << st ;

std::cout << "+ Printing mesh to a file 3
mesh.printInFile(neshFileName);
std:icout << "done” << std::endl;
std::cout << "+ Defining Dirichlet and Neumann boundary conditions ... "
EssentialConstraints essential;
Function* uXConstraint = new Function(ux);
Function* uYConstraint = new Function(uY);
Pointsegnent leftside(Point(e,-2), Polnt(0,2));
SegmentConstraint const1 (leftside, mesh.getPoints(), Constraint::Direction::Horizontal, uXConstraint);
essential.addConstraint(const1, mesh.getPoints());
Segnentconstraint constz (leftside, mesh.getPoints(), Constraint::Direction::Vertical, uYconstraint);
CH v Tabwidth:s tns3,col1 v NS

Fig. 3: Main C++ setup file for the cantilever beam subjected to a parabolic end
load.

Now, the test folder contains a file named “CMakelists.txt”. This file is important
because it controls which main C++ setup file will be processed in Veamy. The file
inside “test” folder is shown in Fig. 4.

B o 190 %

@Home Software Veamy-master test

Recent.

mesh examples CMakeLists.txt i quilibri Te i tests.cpp testveamer.cpp
Desktop TestMain.cpp stMain.cpp op

Home.

(=)

Documents
Downloads

Music

) & D & ¢«

Trash

9

Network

PPD OB

86.GB Volume

Computer

=Nl

Connect to Server

B 6 ¥

Fig. 4: CMakelLists.txt is located in test folder and controls which main C++ setup
file is processed in Veamy.

Veamy Primer Veamy v1.1

Open “CMakelists.txt” and on the highlighted zone, write the name of the main C++
setup problem file, in this case, “ParabolicMain.cpp,” as shown in Fig. 5. Save and
close the file.

*CMakeLlsts.txt (~/Software/Veamy-master/test) - gedit B o o0s

Open v+ R

Set (CMAKE_CXX_FLAGS "S{CHAKE CXX FLAGS} -std=gnu++11")
set(SOURCE_FILES [ZTETTINY 1. cpp)}
add_executable(Test S{SOURCE_FILES})

target_link_libraries(Test libutilities libmesher libveamy)

L EEFEELELEEIE

3

LK

. CMake ¥ Tab Width: 8 v Ln2,Col35 v INS.
Fig. 5: Open “CMakelLists.txt” and on the highlighted zone, write the name of the main
C++ setup problem file.

Go back to the Veamy’s root folder and there create a folder “build” (Fig. 6).

=@ 0 0 &

Veamy-master

§ < RHome | software | Veamy-master
© Recent
==
B Desktop lib polymesher test build| veamy CMakeLists.txt README.md
ﬁ D Documents
¥ Downloads
= B
B & pictures
' Videos
@ Trash
R Network
—g- @ 868 Volume
el © computer
E 9 Connecttoserver
2
=
-
‘ “Untitled Folder" selected (containing 0items)

Fig. 6: In Veamy’s root folder create the folder “build”.

Go inside the “build” folder and on a terminal, type and execute:

cmake ..

to create the makefiles. Then, to compile the program, on a terminal type and exe-
cute:

make

Veamy Primer Veamy v1.1

Several files are created. Also, another folder called “test” is created inside
“build”. The executable of the test problem is stored in this “test” folder and is
called “Test”. Go inside “build/test/” folder (Fig. 7) and, on a terminal, type and
execute:

./Test

S-S

O Recent <>
@ Home h‘

Chakefiles cmake install. ClestTestfile.cmake Makefile Test
@ Desktop cmake

D Documents
¥ Downloads
&3 Music

@ pictures alejandro@mentor01: ~/Software/ Veamy-master/bulld/test
 Videos
@ Trash

&R Network

i @ 86GB Volume
=

@ computer

E B Connecttoserver

PP O

o

[96%] Linking C
[96%] Built

alejand tor
alejandrogmentorei:

B«

Fig. 7: Go inside “build/test/” folder and on a terminal type and execute ./Test

While running, Veamy prints out some messages on the screen indicating the progress
of the simulation, as shown in Fig. 8.

=@ o) s &

© Recent Q
= >
CMakeFiles cmake_install CTestTestile.cmake Makefile parabolic_beam_ parabolic_beam_ Test

- [Desktop cmake displacements.txt mesh.bxt
@ Trash

&R Network

i @ 86GB Volume

N ® computer

E 8 Connect to server

alejandro@mentoro1: ~/Software/ Veamy-master/build/test

/build/test/parabolic_bean_

uild/tests |

B«

Fig. 8: Veamy prints out some messages while running the simulation.

The last lines of the printed out messages indicate the location of the output fold-
ers. The output files contain the mesh and the nodal displacement solution. The mesh
can be visualized using the MATLAB function “plotPolyMesh.m” that is inside folder
“Veamy_root_directory/lib/visualization/” or if you want to visualize both the mesh

Veamy Primer Veamy v1.1

and the displacement nodal solution, use the MATLAB function
“plotPolyMeshDisplacements.m” that is also available in the “visualization” folder
(see Fig. 9).

S) s B

lib visualization Q = | ®

© Recent

- plotPolyMesh.m plotPolyMeshbispl
esktop

D Documents
¥ Downloads

& Music

[B

@ Ppictures
" Videos alejandro@mentor01: ~/Software/Veamy-master/bulld/test
@ Trash

& Network

@ 86G8 Volume
@ computer

O ConnecttoServer

.. done

BeNDH DD

uild/test/parabo
uild/test/parabo

* my has ended
atejandrognens

holl

L

Fig. 9: Use “plotPolyMesh.m” to visualize the mesh or “plotPolyMeshDisplacements.m”
to visualize both the mesh and the nodal displacement solution. Both MATLAB files are
located inside folder “Veamy_root_directory/lib/visualization/”.

h § n h g
Uy x10* Uy ﬁmﬁ %] %107
4 s 4 4
3 5 3 05 3 25
2 4 2 2
L1 2
1 2 1 1
>0 o >0 15 >0 15
A 2 A Kl
1
2 4 2 -2 2
3 6 3 3 05
25
4 8 4 4
0 2 4 6 8 0 2 q 6 8 0 2 4 6 8
x z x

Fig. 1@: Mesh and nodal displacements for the beam problem are plotted using the
“plotPolyMeshDisplacements.m” MATLAB function.

4 Using a PolyMesher mesh and boundary conditions in Veamy

Now, we show how to use a mesh and boundary conditions obtained from PolyMesher. This
primer assumes that the user knows how to use PolyMesher. This problem is part of the
numerical examples provided in:

A. Ortiz-Bernardin, C. Alvarez, N. Hitschfeld-Kahler, A. Russo, R. Silva, E. Olate-
Sanzana. Veamy: an extensible object-oriented C++ library for the virtual element
method. arXiv:1708.03438 [cs.MS]

You may consult the details of the geometry and boundary conditions therein as in
this primer we only refer to the final main C++ setup file to run the example.

The procedure is straightforward. In PolyMesher add a call to the MATLAB function
“PolyMesher2Veamy.m”. This function is located in “Veamy_root_directory/polymesher/”,
as shown in Fig. 11. The call to this function is done on the 1last line of the

Veamy Primer Veamy v1.1

“PolyMesher.m” function, as shown in Fig. 12. After defining a model and boundary
conditions, and performing the meshing copy the file “polymesher2veamy.txt” to a
folder of your choice to be used in Veamy. In the source code of Veamy, the example
file containing the PolyMesher mesh and boundary conditions is located inside the
folder “Veamy_root_directory/test/test_files/”.

The implementation of the PolyMesher to Veamy example is provided in the main C++
setup file named “PolyMesherMain.cpp” (see Fig. 13). This setup file as usual is in-
side “Veamy_root_directory/test/” folder. Go to this folder and open
“PolyMesherMain.cpp” (see Fig. 13). Explore this file to see details about its imple-
mentation. The function that reads the PolyMesher mesh and boundary conditions is
“initProblemFromFile”. You will have to provide the path to the folder where the
PolyMesher mesh and boundary conditions are located. Update the output folders (check
the instructions that are provided as comments). Modify the paths accordingly, save
and close the setup file.

polymesher = B o) 1948 L%

o) el AT

© Recent

= Mo
ST .

7) e

. <+ Downloads

ol -

e

- Videos

© Trash

D D

@ Network
@ 86GB Volume
@ computer

B ConnecttoServer

I 1~] |

4

B

L

Fig. 11: The MATLAB function “PolyMesher2Veamy.m” is located in folder
“Veamy_root_directory/polymesher/”.

Veamy Primer Veamy v1.1

PolyMesher.m |
% elements written in Matlab", Struct Multidisc Optim, 2812, %
% DOI 18.1887/s88158-811-8706-1 *
% %
% Ref2: A Pereira, C Talischi, GH Paulino, IFM Menezes, M5 Carvalho, *
£ "Implementation of fluid flow topolegy optimization in PolyTop”, &
E1 Struct Multidisc Optim, 2013, DOI XOC.J000(/00000C-300C-X00(-X %
oo m oo ®

function [MNode,Element,Supp,load,P] = PolyMesher(Domain,NElem,MaxIter,P)
if ~exist('P",'var'), P=PolyMshr_RndPtSet(NElem,Domain); end
NElem = size(P,1);
Tol=5e-6; It=@; Err=1; c=1.5;
BdBox = Domain('BdBox'); PFix = Domain('PFix'});
Area = (BdBox(2)-BdBox(1))*(BdBox(4)-BdBox(3));
Pc = P; figure;
while(It<=MaxIter &% Err>Tol)
Alpha = c*sqrt(Area/NElem);
P = Pc; ¥Lloyd's update
R_P = PolyMshr_Rflct(P,NElem,Domain,Alpha); ¥Generate the reflections
[P,R_P] = PolyMshr_FixedPoints(P,R_P,PFix); ¥ Fixed Points
[Node,Element] = woronoin{[P;R_P]); #¥Construct Voronoi diagram
[Pc,A] = PolyMshr_CntrdPly(Element,Node,NElem);
Area = sum(abs(A));
Err = sqri(sum((A."2).*sum{(Pc-P).*(Pc-P),2)))*NElem/Area™l.5;
fprintf('It: %3d Error: ¥1.3e\n',It,Err); It=It+l;
if NElem<=28@@, PolyMshr_PlotMsh(Node,Element,NElem); end;
end
[Node,Element] = PolyMshr_Extrids(NElem,Node,Element); #Extract node list
[Node,Element] = PolyMshr_CllpsEdgs(Node,Element,@.1); #Remove small edges

[Node,Element] = PolyMshr_Rsqshds(Nede,Element); ¥Reoder Nodes
BC=Domain('BC',{Node,Element}); Supp=BC{l}; Load=BC{2}; %Recover BC arrays
PolyMshr_PlotMsh(MNode,Element,NElem,Supp,Load); #Plot mesh and BCs
PolyMesher2Veamy (Node, Element ,NElem, Supp,Load) ; %Plot mesh to a Veamy mesh format
- L:-:I.PBAIL GENERATE RANDOM POINTSET

Fig. 12: Call to “PolyMesher2Veamy.m” in “PolyMesher.m” is done on its last

PolyMesherMain.cpp (~/Software/Veamy-master/test) - gedit

B oo ®
#include <veany/Veamer.h>
ﬁ #include <utilities/utilities.h>

S Py

std::cout << "**¥ Starting Veamy ***" << std::endl;
Test: Using o Pu\yhsﬂvev esh and boundary conditions <--" << std::endl;
" << std:zendl

std::cout << °

/1 DEFINING PATH FOR THE OUTPUT FILES:

/1 If the path for the output files is not given, they are written to /Home directory by default.

71 Otherutse, tnclude the path. For instance, for /Hone/user /Docunents/Veany/output. txt., the path

/1 must be "Documents/Veamy/output. txi

77 ChTIoN: the path mut Sxiste either because it Ls already tn your system or becuase Lt is created

// byiVemny!steanfiguration files: For Lnstance; Vaany creates| tha falder ftext" tnetds *Jhutld'; =
e theoutput files to */butld/test/” by " [build/test/nycuston_folder”
ton_folde: t be created b 1

line.

=B) 90 &

/1 File that contains the PolyMesher mesh and boundary conditions. Use Matlab function
11 PolyMesheraveany.m to generate this file
Std::string polyMesherMeshFileNane = "Software/Veany-naster/test/test_files/polynesherveany. txt";

std: << "+ Defining linear elastic material ...
Rateriat n(1e7, 0.3);
ticout << "done” << std::endl;

std::icout << "+ Preparing the simulation fron a PolyMesher mesh and boundary conditions ... ";
Veamer v;

Polygonaitesh mesh = v. UﬂtProhlenFromFlle(pulyMesherMeshFlleNxme n);

std:icout << "done” << std:

std: << "+ Printing mesh to a file
peh Dr\ntInFl\e(meshFl\eName
std:icout << "done” << std::endl;

endl
Stdiicout <« biir Veany has ended *++" <c std::endl;

=
= e Wit -

Fig. 13: Main C++ setup file for the PolyMesher mesh and boundary condition

Ln1gcoli v NS

example.

From now on, the procedure to run the PolyMesher problem in Veamy is identical to the

one performed for the beam problem.

Go inside the “Veamy_root_directory/build/” folder and on a terminal, type and exe-

cute to update the makefiles:

cmake ..

Then, to compile the program, on a terminal type and execute:

make

10

Veamy Primer Veamy v1.1

If this procedure has been done several times before, many of the libraries are like-
ly to be already compiled, so the compilation procedure is quite short in comparison
with the first time compilation. The executable of the test problem is stored in the
“build/test/” folder and is called “Test”. Go inside “build/test/” folder and,
terminal, type and execute:

on a

./Test

The output screen for the PolyMesher problem is shown in Fig. 14. The last lines of
the printed out messages indicate the location of the output folders. The output
files contain the mesh and the nodal displacement solution. The mesh can be visual-
ized using the MATLAB function “plotPolyMesh.m” that is inside folder
“Veamy_root_directory/lib/visualization/” or if you want to visualize both the mesh
and the displacement nodal solution, use the MATLAB function
“plotPolyMeshDisplacements.m” that is also available in the “visualization” folder.
The mesh and the nodal displacements for the PolyMesher example are shown in Fig. 15.

Terminal

lib visualization

O Recent
@ Home
B Desktop

D Documents

plotpolyMesh.m plotPolymeshDispl

& Downloads
& Music

& Pictures
 Videos alefandro@mentoro1: ~/Software/Veamy-master/bulld/test
© Trash

&R Network

@ 868 Volume
@ computer
3 Connect to Server

done
n boundary conditions ...
. done

done

ent solution to a file ...
ly

B4NDEHPDD ON

ter/build/ parabolic_bean_mesh. txt
ter,

parabolic_bean_displacements. tx

tests I

o

Fig. 14: Output screen for the PolyMesher example. Use “plotPolyMesh.m” to visualize
the mesh or “plotPolyMeshDisplacements.m” to visualize both the mesh and the nodal

displacement solution. Both MATLAB files are located inside folder
“Veamy_root_directory/lib/visualization/”.
ul x2150'5 u;L 10 [es?] x10°
3 7 3 -0.1 3 10
: " : B : :
! 04 7
1 05 1 05 1 3
B 0 & 06 = 5
0 05 0 07 ! 4
1 1 1 -08 1 3
15 -0.9 M
2 2 2 1 2 4
0 1 2 3 0 1 2 3 0 1 2 3
z T x
Fig. 15: Nodal displacements for the PolyMesher example are plotted using the

“plotPolyMeshDisplacements.m” MATLAB function.

11 -

Veamy Primer Veamy v1.1

5 Using a generic mesh file

Reading a generic mesh file is very similar to the process of using a PolyMesher
mesh. The only difference is that boundary conditions are not provided with the mesh
file. That is, the mesh is read from a file, but the boundary conditions must be pro-
vided in Veamy similarly as done in the cantilever beam problem of Section 3. An ex-

ample of this is provided in the main C++ setup file
“Veamy_root_directory/test/EquilibriumPatchTestMain.cpp”. In this main C++ setup
file, the external test mesh, which is the file

“Veamy_root_directory/test/test_files/equilibriumTest_mesh.txt”, is read by the func-
tion “createFromFile”:

std::string externalMeshFileName =
"Software/Veamy-master/test/test_files/equilibriumTest_mesh.txt";

PolygonalMesh mesh;

mesh.createFromFile(externalMeshFileName);

As you can confirm by exploring the external mesh file “equilibriumTest_mesh.txt”, it
contains the nodal coordinates of the mesh and the element connectivity.

6 Additional examples

These additional examples require the user to have read the previous sections of this
primer.

6.1 Perforated Cook”s membrane

The implementation of the perforated Cook’s membrane is provided in the main C++ set-
up file named “CookTestMain.cpp”. This setup file as usual 1is inside
“Veamy_root_directory/test/” folder. Go to this folder and open “CookTestMain.cpp”
(see Fig. 16). Explore this file to understand its implementation. Be sure you update
the path to the output files. The important lines of code are highlighted. They pro-
vide the information for the four points that define the geometry and three circular
holes on it.

This problem is part of the numerical examples provided in:
A. Ortiz-Bernardin, C. Alvarez, N. Hitschfeld-Kahler, A. Russo, R. Silva, E. Olate-
Sanzana. Veamy: an extensible object-oriented C++ 1library for the virtual element

method. arXiv:1708.03438 [cs.MS]

You may consult the details of the geometry and boundary conditions therein as in
this primer we only refer to the final main C++ setup file to run the example.

- 12 -

Veamy Primer Veamy v1.1

CookTestMain.cpp (~/Software/Veamy-master/test) - gedit

#include <vector>

#include <mesher/models/basic/Point.h>

#include <mesher/models/Region.h>

#include <mesher/models/holefCircularHole.h>
#include <mesher/models/generator/functions.h>
#include <mesher/voronoi/TriangleMeshGenerator.hs>
#include <veamy/Veamer.h>

#include <veamy/models/constraints/values/Constant.h>
#include <utilities/utilities.h>

int main(){

std::cout << "*** starting Veamy ***" << std::endl;
stdiicout << "--> Test: Cook's membrane <--" << std:iendl;
std::cout << " << std:iendl;

/I DEFINING PATH FOR THE OUTPUT FILES:

/I If the path for the output files is not given, they are written to /Home directory by default.

]} otherwise, include the path. For instance, for /Home/user/Documents/Veamy/output.txt , the path
// must be "Documents/Veamy/output.txt"

// CAUTION: the path must exists either because it is already in your system or becuase it is created
/1 by Veamy's configuration files. For instance, Veamy creates the folder "/test” inside "/build”, so
// one can save the output files to "/build/test/" folder, but not to "/build/test/mycustom_folder",
// since "/mycustom_folder” won't be created by Veamy's configuration files.

std::string meshFileName = "Software/Veamy-master/build/test/cook_membrane_mesh.txt";

std::string dispFileName = "Software/Veamy-master/build/test/cook_membrane displacements.txt";

string geoFileName = "Software/Veamy-master/build/test/cook_membrane_geometry.txt";

cout << "+ Defining the domain ... ";
::vector<Point> TBeam_points = {Point(0,0), Point(48,44), Point(48,64), Point(0,44)};
Region TBeam(TBeam_points);

Hole holel = CircularHole(Point(8,30), 5);
Hole hole2 ircularHole(Point(24,40), 4);
Hole hole3 ircularHole(Point(40,50), 3);
TBeam. addHi hole1);
TBeam.addHole(hole2);
TBeam.addHole 3
std::cout << "done" << std::endl;

std::zcout << "+ Printing geometry to a file ... ";
TBeam.printInFile(geoFileName);
std::cout << "done” << std::endl;

std::cout << "+ Generating polygonal mesh ... ";
TBeam.generateSeedPoints(PointGenerator(functions::
std::vector<Point> seeds = TBeam.getSeedPoints();

TrianalaMachCanaratar alcande TBaam:

constantAlternating(), functions::constant()), 16, 16);

C++ v TabWidth:8 v Ln3g,Col26 ¥ INS

Fig. 16: Main C++ setup file for the perforated Cook’s membrane example.

In order to run the test, follow the same steps described in the previous examples.
Once you have compiled the problem, go inside “build/test/” folder and, on a termi-
nal, type and execute:

./Test

The output files are visualized, as in the previous examples, using the MATLAB func-
tion “plotPolyMeshDisplacements.m”. The plots are shown in Fig. 17.

12 15
o
1 10
-2
B s 10
4 N
5
-6 4 5
7
K 2
-9 N
10 20 30 40 50 60 70 10 20 30 40 50 60 70 60 70 0
€z X

Fig. 17: Nodal displacements for the perforated Cook’s membrane problem are plotted
using the “plotPolyMeshDisplacements.m” MATLAB function.

6.2 A toy example

In this example, a Unicorn loaded on its back and fixed at its feet is solved using
Veamy. This problem is part of the numerical examples provided in:

A. Ortiz-Bernardin, C. Alvarez, N. Hitschfeld-Kahler, A. Russo, R. Silva, E. Olate-
Sanzana. Veamy: an extensible object-oriented C++ 1library for the virtual element
method. arXiv:1708.03438 [cs.MS]

13

Veamy Primer Veamy v1.1

You may consult the details of the geometry and boundary conditions therein as in
this primer we only refer to the final main C++ setup file to run the example.

The implementation of the Unicorn problem is provided in the main C++ setup file
named “UnicornTestMain.cpp”. This setup file as usual is inside
“Veamy_root_directory/test/” folder. Go to this folder and open “UnicornTestMain.cpp”
(see Fig. 18). Be sure you update the path to the output files. The important lines
of code are highlighted. They provide the information for the points that define the
boundary of the Unicorn.

UnicornTestMain.cpp (~/Software/Veamy-master/test) - gedit

é Open ¥ M

#include <mesher/models/basic/Point.h>
#include <mesher/models/Region.hs>
#include <mesher/models/generator/functions.h>
#include <mesher/voronoi/TriangleMeshGenerator.h>
#include <veamy/Veanmer.hs

F #include <veamy/models/constraints/values/Constant.h>
#include <utilities/utilities.h>

int main(){

1icout << "*** starting Veamy ***" << std::endl;
cout << "--> Test: Unicorn <--" << std::endl;
ricout << "..." << std::endl;

// DEFINING PATH FOR THE OUTPUT FILES:
7! If the path for the output files is not given, they are written to /Home directory by default.
// Otherwise, include the path. For instance, for /Home/user/Documents/Veamy/output.txt , the path
// must be "Documents/Veamy/output.txt"
// CAUTION: the path must exists either because it is already in your system or becuase it is created
/ by veamy's configuration files. For instance, Veamy creates the folder "/test” inside "/build”", so
71 one can save the output files to "/build/test/" folder, but not to "/build/test/mycustom_folder",
/! since "/mycustom_folder" won't be created by Veamy's configuration files.
std::string meshFileName = "Software/Veamy-master/build/test/unicorn_mesh.txt";
std::string dispFileName = "Software/Veamy-master/build/test/unicorn_displacements.txt";

::string geoFileName = "Software/Veamy-master/build/test/unicorn_geometry.txt";

cout << "+ Defining the domain ...

vector<Point> unicorn_points = {Potnt(z 0), Point(3,0.5), Point(3.5,2), Point(4,4), Point(6,4), Point(8.5,4),
Point(9,2), Point(9.5,0.5), Point(10,0), Point(10.5,0.5), Point(11.2,2.5),
Point(11.5,4.5), Point(11.8,8.75), Point(11.8,11.5), Point(13.5,11), Point(14.5,11.

Point(), Point(15,13), Point(15,14.5), Point(u 16.5), Potnt(ls 19.5), Pnint(is 3 ,20),
Point(19.7), Point(11.8,18.2), Point(16.5,18.3), Point(10,18), Point(8,16),
Po‘Lnt(7 3,15.3), Point(7,13.8), Po-l.nt(e 7lh u 53, Point(z 3,11.3), Point(i 1e s,

std icout << "done” << scd endl.

std:icout << "+ Printing geometry to
unicorn.printInFile(gecFileName);
std::cout << "done" << std::endl;
std::cout << "+ Generating polygonal mesh ... ";

unicorn. generateSeedPoints (PointGenerator (functions: :constantAlternating(), functions::constantAlternating()), 20, 25);
std::vector<Point> seeds = unicorn.getSeedPoints();

TriangleMeshGenerator g(seeds, unicorn);

PolygonalMesh mesh = g.getMesh();

std::cout << "done” << std::endl;

C++ v Tabwidth:8 v Ln35Col36 ¥ NS

Fig. 18: Main C++ setup file for the Unicorn example.

In order to run the test, follow the same steps described in the previous examples.
Once you have compiled the problem, go inside “build/test/” folder and, on a termi-
nal, type and execute:

./Test

The output files are visualized, as in the previous examples, using the MATLAB func-
tion “plotPolyMeshDisplacements.m”. The plots are shown in Fig. 19.

n 3
ul ul [[es*]
25 0 25 08 5
o5 06 25
04 2
-1
02
15
1.5
0
1
-2 -02
05
25 04
0 5 10 15 20 25 20 25 20 2%
x

Fig. 19: Nodal displacements for the Unicorn problem are plotted using the
“plotPolyMeshDisplacements.m” MATLAB function.

14 -

Veamy Primer Veamy v1.1

7 Geometry definition and mesh generation

Geometry definition and polygonal mesh generation in Veamy are handled using Delynoi,
an object oriented C++ library for the generation of polygonal meshes that is based
on the constrained Voronoi diagram. Delynoi depends on two external open source
libraries, whose code is included in the repository:

e Triangle - A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.

e Clipper - an open source freeware library for clipping and offsetting lines
and polygons.

The source code, several examples and the Delynoi primer are accessible from the
GitHub repository:

https://github.com/capalvarez/Delynoi

Nevertheless, few examples are presented in what follows.

Example: Perforated Cook’s membrane
701
60+
50+
40

301

-10 O 10 20 30 40 50 60 70

Define the corner points of the Cook’s membrane
std::vector<Point> TBeam_points = {Point(0,0), Point(48,44), Point(48,64), Point(0,44)};

Define the region formed by the points
Region TBeam(TBeam_points);

Define holes
Hole holel = CircularHole(Point(8,30), 5); Hole hole2 = CircularHole(Point(24,40), 4);
Hole hole3 = CircularHole(Point(40,50), 3);

Add holes to the region
TBeam.addHole(holel); TBeam.addHole(hole2); TBeam.addHole(hole3);

Generate seeds points in the region

TBeam.generateSeedPoints (PointGenerator(functions::constantAlternating(),
functions::constant()), 16, 16);

std::vector<Point> seeds = TBeam.getSeedPoints();

Use Triangle to generate a Delaunay tessellation
TriangleMeshGenerator g(seeds, TBeam);

Compute the polygonal mesh using the constrained Voronoi diagram
PolygonalMesh mesh = g.getMesh();

- 15 -

Veamy Primer Veamy v1.1

Example: Unicorn

()

_2 T
-2 0 2 4 6 8 10 12 14 16 18 20

Define the points of the Unicorn boundary

std::vector<Point> unicorn_points = {Point(2,0), Point(3,0.5), Point(3.5,2), Point(4,4),
Point(6,4), Point(8.5,4), Point(9,2), Point(9.5,08.5), Point(10,8), Point(10.5,0.5),
Point(11.2,2.5), Point(11.5,4.5), Point(11.8,8.75), Point(11.8,11.5), Point(13.5,11),
Point(14.5,11.2), Point(15,12), Point(15,13), Point(15,14.5), Point(14,16.5), Point(15,19.5),
Point(15.2,20), Point(14.5,19.7), Point(11.8,18.2), Point(10.5,18.3), Point(10,18),
Point(8,16), Point(7.3,15.3), Point(7,13.8), Point(6.7,11.5), Point(3.3,11.3), Point(1,10.5),
Point(@.4,8.8), Point(@.3,6.8), Point(0.4,4), Point(0.8,2.1), Point(1.3,0.4)};

Define the region formed by the points
Region unicorn(unicorn_points);

Generate seeds points in the region

unicorn.generateSeedPoints(PointGenerator(functions::constantAlternating(),
functions::constantAlternating()), 20, 25);

std::vector<Point> seeds = unicorn.getSeedPoints();

Use Triangle to generate a Delaunay tessellation
TriangleMeshGenerator g(seeds, unicorn);

Compute the polygonal mesh using the constrained Voronoi diagram
PolygonalMesh mesh = g.getMesh();

- 16 -

Veamy Primer Veamy v1.1

Example: Cantilever beam subjected to a parabolic end load

y

»

A

Py

~

Define the corner points of the beam
std::vector<Point> rectangle4x8_ points={Point(®, -2), Point(8, -2), Point(8, 2), Point(@, 2)};

Define the region formed by the points
Region rectangle4x8(rectangled4x8_points);

Generate seeds points in the region

rectangle4x8.generateSeedPoints(PointGenerator(functions::constantAlternating(),
functions::constant()), 24, 12);

std::vector<Point> seeds = rectangle4x8.getSeedPoints();

Use Triangle to generate a Delaunay tessellation
TriangleMeshGenerator meshGenerator = TriangleMeshGenerator(seeds, rectangle4x8);

Compute the polygonal mesh using the constrained Voronoi diagram
PolygonalMesh mesh = meshGenerator.getMesh();

- 17 -

Veamy Primer Veamy v1.1

8 Essential and natural boundary conditions

Boundary conditions are assigned by constraining domain segments and nodes. Some ex-
amples follow.

Example: Perforated Cook’s membrane
701
60+
50+
40+
301

201

-10 0 10 20 30 40 50 60 70
Essential boundary conditions on the left edge:

EssentialConstraints essential;

PointSegment leftSide(Point(©,0), Point(0,44));

SegmentConstraint left(leftSide, mesh.getPoints(), Constraint::Direction::Total,
new Constant(@));

essential.addConstraint(left, mesh.getPoints());

Natural boundary condition on the right edge:

NaturalConstraints natural;

PointSegment rightSide(Point(48,44), Point(48,64));

SegmentConstraint right(rightSide, mesh.getPoints(), Constraint::Direction::Vertical,
new Constant(6.25));

natural.addConstraint(right, mesh.getPoints());

Add boundary conditions to the model:

ConstraintsContainer container;
container.addConstraints(essential, mesh);
container.addConstraints(natural, mesh);

- 18 -

Veamy Primer

Veamy v1.1

Example: Unicorn

()

_2 T
-2 0 2 4 6 8 10 12 14 16 18 20

Essential boundary conditions at Unicorn’s feet:

EssentialConstraints essential;

Point leftFoot(2,0);

PointConstraint left(leftFoot, Constraint::Direction::Total, new Constant(9));
Point rightFoot(10,0);

PointConstraint right(rightFoot, Constraint::Direction::Total, new Constant(®));
essential.addConstraint(left);

essential.addConstraint(right);

Natural boundary condition on Unicorn’s back:

NaturalConstraints natural;

PointSegment backSegment(Point(6.7,11.5), Point(3.3,11.3));

SegmentConstraint back (backSegment, mesh.getPoints(), Constraint::Direction::Total,
new Constant(-200));

natural.addConstraint(back, mesh.getPoints());

Add boundary conditions to the model:

ConstraintsContainer container;
container.addConstraints(essential, mesh);
container.addConstraints(natural, mesh);

- 19 -

Veamy Primer

Veamy v1.1

Example: Cantilever beam subjected to a parabolic end load

y

»

A

Py

5

N\

S

~

User defined functions:

double tangencial(double x, double y){
double P = -1000; double D = 4;
double I = std::pow(D,3)/12; double value = std::pow(D,2)/4-std::pow(y,2);
return P/(2*I)*value;

¥
double uX(double x, double y){
double P = -1000; double Ebar = 1e7/(1 - std::pow(©.3,2));
double vBar = 0.3/(1 - 0.3); double D = 4;
double L = 8; double I = std::pow(D,3)/12;
return -P*y/(6*Ebar*I)*((6*L - 3*x)*x + (2+vBar)*std::pow(y,2) -
3*std: :pow(D,2)/2*(1+vBar));

double uY(double x, double y){

double P = -1000; double Ebar = 1e7/(1 - std::pow(0.3,2));

double vBar = 0.3/(1 - 0.3); double D = 4;

double L = 8; double I = std::pow(D,3)/12;

return P/(6*Ebar*I)*(3*vBar*std::pow(y,2)*(L-x) + (3*L-x)*std::pow(x,2));
}

Essential boundary conditions on the left edge:

EssentialConstraints essential;

Function* uXConstraint = new Function(uX);
Function* uYConstraint = new Function(uY);
PointSegment leftSide(Point(@,-2), Point(0,2));

SegmentConstraint constl (leftSide, mesh.getPoints(), Constraint::Direction::Horizontal,

uXConstraint);

essential.addConstraint(constl, mesh.getPoints());
SegmentConstraint const2 (leftSide, mesh.getPoints(),
Constraint::Direction::Vertical, uYConstraint);
essential.addConstraint(const2, mesh.getPoints());

Natural boundary condition on the right edge:

NaturalConstraints natural;
Function* tangenciallLoad = new Function(tangencial);
PointSegment rightSide(Point(8,-2), Point(8,2));

SegmentConstraint const3 (rightSide, mesh.getPoints(), Constraint::Direction::Vertical,

tangencialload);
natural.addConstraint(const3, mesh.getPoints());

Add boundary conditions to the model:

ConstraintsContainer container;
container.addConstraints(essential, mesh);
container.addConstraints(natural, mesh);

- 20 -

Veamy Primer Veamy v1.1

9 Material definition

Material is specified either as a plane strain or plane stress material using the
following lines of code:

Material* material = new MaterialPlaneStrain(24e, 0.3);
ProblemConditions conditions(container, material);

for plane strain condition, and

Material* material = new MaterialPlaneStress(240, 0.3);
ProblemConditions conditions(container, material);

for plane stress condition.

The arguments in both “MaterialPlaneStrain” and “MaterialPlaneStress” above are the
Young’s modulus (240 in the example) and Poisson’s ratio (0.3 in the example) of the
material.

10 Setting precision on output operations

In order to set the decimal precision for the floating-point values that are written
to output files, one of the following instructions can be added to the lines of code
in the main C++ setup file:
For predefined 6 decimals use:

VeamyConfig::instance()->setPrecision(Precision: :precision::small);
For predefined 10 decimals use:

VeamyConfig: :instance()->setPrecision(Precision: :precision::mid);
For predefined 16 decimals use:

VeamyConfig: :instance()->setPrecision(Precision::precision::large);

There is also a way to directly set the number of decimals. For instance, to set 12
decimals use:

VeamyConfig::instance()->setPrecision(12)

e If these instructions are omitted, the default number of decimals used to write
the output files is 6.

e The example files that are located in the “test” folder of Veamy’s root directory
use the foregoing instructions for setting the precision. See these example files
for more details.

11 Veamy’s website

Check Veamy’s website for newer versions:

http://camlab.cl/research/software/veamy/

--- THE END ---

- 21 -

