Veamy

An extensible object-oriented C++ library
for the virtual element method

Veamy Primer
Version 2.0

Rev. ©
January, 2018

Veamy Primer Veamy v2.0

Copyright and License

Veamy, Copyright © 2017-2018
by Catalina Alvarez, Nancy Hitschfeld-Kahler, Alejandro Ortiz-Bernardin
http://camlab.cl/research/software/veamy/

CEMCEN - Center for Modern Computational Engineering
Department of Computer Science

Department of Mechanical Engineering

Facultad de Ciencias Fisicas y Matematicas
Universidad de Chile

Av. Beauchef 851, Santiago 8370456, Chile

PL

Free Software

Your use or distribution of Veamy or any derivative code implies that you agree to
this License.

This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

Veamy Primer Veamy v2.0

TABLE OF CONTENTS

10

11

New and updated feature summaryc..o.uiiiiiiiiiiiiiiiiinieiineeennecennnnns 3
FEatures Of Veamyuiiiieiiii ittt ittt tenneeeneesonaeeenessnaesosnssanassnns 3
1Y o U o of = o' T 1= e 3
Up and running with Veamyiiiuuiiiiiiiiiiiiii ittt iineennacennnnns 4
Using a PolyMesher mesh and boundary conditions in Veamy 9
Using a generic mesh file ...ttt ittt ittt ienneeenaeennnns 12
Additional eXamples ...ttt ittt ittt ittt it it ettt 13
.1 Perforated Cook s membraneoeiieiniiiiiiiiieiieneeneeneeneenennenns 13
.2 N o)V == 1 0 14
Geometry definition and mesh generationttt 16

Problem conditions: material definition, body/source terms, essential and natural
boundary Conditions ...ttt ittt 19

Setting precision for printing on output files, 23

Veamy”’ s WeDSIte vttt i it et ettt it e et 23

Veamy Primer Veamy v2.0

1 New and updated feature summary

From Veamy v1.1.1 to Veamy 2.0:

e Add documentation to the source code.

e Implement VEM for the two-dimensional Poisson problem.

e Implement Feamy, a FEM module that uses three-node triangular finite elements
for the solution of the two dimensional linear elastostatic problem.

e Add methods to compute the L*-norm and H'-seminorm of the error.

e Improve the in-built polygonal mesh generator.

e Change to Eigen’s sparse solver for the solution of the system of linear equa-
tions.

e Add additional test files.

e New simplified methods to impose essential and Neumann boundary conditions.

e Fix several bugs.

From Veamy 1.0 to Veamy v1.1.1:
e Add documentation.
e Add method to include custom precision for printing output data.
e Add plane stress material formulation.
e Update installation instructions.
e Include more tests and mesh examples.
e Fix several bugs

2 Features of Veamy

Veamy 1is an open source C++ library that implements the virtual element method. The
current release of this library allows the solution of the two-dimensional linear
elastostatic problem and the two-dimensional Poisson problem. The two-dimensional
linear elastostatic problem can also be solved using the standard three-node finite
element triangle. For this, a module called Feamy is available within Veamy.

Features:

e Includes its own mesher based on the computation of the constrained Voronoi
diagram. The meshes can be created in arbitrary two-dimensional domains, with
or without holes, with procedurally generated points.

e Meshes can also be read from OFF-style text files.

e Allows easy input of boundary conditions by constraining domain segments and
nodes.

e The results of the computation can be either written into a file or used di-
rectly.

e PolyMesher meshes and boundary conditions can be read straightforwardly in
Veamy to solve problems using the VEM.

3 Source code

All the information related to Veamy and its source code is available on the web:

http://camlab.cl/research/software/veamy/

Download the code before proceeding with the rest of this primer.

Veamy Primer Veamy v2.0

4 Up and running with Veamy

Veamy has been tested on Unix-like machines only. First of all, make sure that CMake
is available in your machine. If it is not, install it before proceeding with the
rest of this primer. To install CMake on Ubuntu machines, on a terminal type and exe-
cute:

sudo apt-get install cmake

Unpack the code to a folder of your choice. Fig. 1 shows the content of Veamy that
was unpacked to “/home/Software/”

Veamy-master

§ < @Home Software | Veamy-master
© Recent

= - & @ @ =

docs b olymesher test veam, CMakeLists.txt README.md
B Desktop £ Y

D Documents
¥ Downloads
& Music

@ pictures
 videos

@ Trash

R Network

@ 8668 volume
@ computer

8 connecttoserver

Dao«4NDE DD D

Fig. 1: Veamy source code.

Go inside “test” folder of Veamy’s root directory (see Fig. 2). This test folder is
where the main C++ setup file implementing a problem of interest must be placed. In
this example, a “cantilever beam subjected to a parabolic end load” will be solved in
Veamy. This problem is part of the numerical examples provided in:

A. Ortiz-Bernardin, C. Alvarez, N. Hitschfeld-Kahler, A. Russo, R. Silva, E. Olate-
Sanzana. Veamy: an extensible object-oriented C++ 1library for the virtual element
method. arXiv:1708.03438 [cs.MS]

You may consult the details of the geometry and boundary conditions therein as in
this primer we only refer to the final main C++ setup file to run the example.

The implementation of the cantilever beam subjected to a parabolic end load is pro-
vided in the main C++ setup file named “ParabolicMain.cpp” (see Fig. 2).

Veamy Primer Veamy v2.0

¥ =@ me B

@Home ¢

© Recent
R @ Home

feamy_tests mesh examples test files CMakeLists.txt CookTestMain.cpp CylinderTestMain. q T op
I Desktop op TestMain.cpp TestMainT3.cop stMain.cpp

¥ Downloads et pies o = e =

93 Music op PP ain.cop Main.cpp P op
@ Pictures

)
=
e

m Videos
@ Trash
@ Network

@ 86GBVolume
@ computer
D Connecttoserver

Fig. 2: Veamy’s test folder. The main C++ setup file implementing a problem of inter-
est must be placed in this folder. Several main setup C++ files are shown. In this
part of the primer, the C++ file “ParabolicMain.cpp” will be used.

Open “ParabolicMain.cpp” file. If you are interested, browse the code in this file to
realize how a problem implementation is setup in Veamy. To run this problem is im-
portant to update the folder where the output files will be stored. In order to spec-
ify the output folder, check the instructions that are provided as comments in
“ParabolicMain.cpp” (see Fig. 3). Modify accordingly, save and close the setup file.

ParabolicMain.cpp (~/Software/Veamy-master/test) - gedit

Open ~ Rl

double 1 - sid: :pow(D,3)/12.
Feturn -Pry/(6vEbarATSa((6L - 3%K)%x + (2+vBar)¥std: ipow(y,2) - 3%std::pon(D,2)/2%(1+vBar));

= std::pow(D,3)/12
Feturn P/(6vEbar tTy* (3evbar std: spon(y, 2)H(Lx) + (3HL-x)¥std: :pon(x,2));
i

int main(){

/1 set precision for plotting to output files:

/1 OPTION 1: tn ~Veamyconfig: :instance()->setPrectston(Prectston: sprectston: inid)”

use "small” for 6 digits; mid” for 16 digits; "large” for 16 digits

7] OPTION 2: set the desired precision, for instance, as:

7] VeanyConfig: :instance()->setPrectston(12) for 12 digits. Change "12" by the desired prectsion.
instance()->setPreciston(..... »

Ston, which 1s 6 digits, will be used.
rectsion: :mid);

VeamyConfig: : instance()->setPrecision(Precision: :

// DEFINING PATH FOR THE OUTPUT FILES:
he path for the output files is not given, they are written to /home directory by default.

// Otherwise, include the path. For instance, for /home/user/Docunents/Veany/output.txt , the path

nust be "Docunents/Veany/output. txt"
71 CAUTION: the path nust exists either because it is already in your system or becuase it is created
71 by Veamy's configuration files. For instance, Veany creates the folder "/test” inside "/bulld’, so
71 one can save the output files to */build/test/" folder, but not to {butld/test/nycuston_folder ",
" Jmycuston_folder” be created by Veany's configuration files
T1ng esh ilaNane < Tic_bean_nesh. txt”
ring dispFileNane - "parabolic_bean_displacements. txt"

ut << "W+ Starting Veamy *+*" << stdiiendl;
ut << "--> Test: Cantilever bean subjected to a parabolic end load <--" << std: send;
ut << *..." << std:zendl

fa

ut << "+ Defining the domain
ctor<Point> rectangleaxs_potnts = (pnm(n -2), Point(s, -2), Polnt(s, 2), Point(o, 2)};
rectangladzs(ractanglads® polnts);

ut << "done" << std: :

t << "+ Generating polygonal nesh
angleaxs. generateSeedents(Po\ntcenem(or(fun(tlons :constantAlternating(), functions::constant()), 24, 12);
std::vector<Point> seeds = rectangle4xs.getseedPoints();

TrianglevoronoiGenerator meshGenerator (seeds, rectanglesxs);

Mesh<Polygon> mesh = meshGenerator.getMesh();

std::cout << "done” << std::endl

ut << "+ Printing mesh to a file
intInFile(neshFileNane);
ut << "done” << std::endl;

std::cout << "+ Defining linear elastic materia
Material* matertal = new MaterialPlanestrain (1e/ o. 3)

Fig. 3: Main C++ setup file for the cantilever beam subjected to a parabolic end
load.

Now, the test folder contains a file named “CMakelists.txt”. This file is important
because it controls which main C++ setup file will be processed in Veamy. The file
inside “test” folder is shown in Fig. 4.

Veamy Primer Veamy v2.0

@Home Softwart

© Recent
R @ Home

T feamy_tests mesh examples. test_files CMakeLists.txt} CookTestMain.cpp CylinderTestMain. <pp
esktop

TestMain.cpp TestMainT3.cpp stMain.cpp

D Documents
¥ Downloads
43 Music

@ Pictures

op PP ain.cop Main.cpp P op

 videos
@ Trash

& Network

@ 86GBVolume
@ computer

B connecttoserver

Fig. 4: CMakeLists.txt is located in test folder and controls which main C++ setup
file is processed in Veamy.

Open “CMakelLists.txt” and on the highlighted zone, write the name of the main C++
setup problem file, in this case, “ParabolicMain.cpp,” as shown in Fig. 5. Save and
close the file.

CMakeLists.txt (~/Software/Veamy-master/test) - gedit
Open v R

Set (CHAKE_CXX_FLAGS "S{CMAKE_CXX_FLAGS) -std=gnu++11")
cet[ISOURCE_FILES m&w
add_executable(Test ${SOURCE_FILES})

target_Tink_libraries(Test libutilities libdelynot libveany)

®
]
“
]

PNCO4NDED

CMake ~ TabWidth: 8 v n2,Col3s v NS

Fig. 5: Open “CMakelLists.txt” and on the highlighted zone, write the name of the main
C++ setup problem file.

Go back to the Veamy’s root folder and there create a folder “build” (Fig. 6).

Veamy Primer Veamy v2.0

§ < QHome Software Veamy-master test
B © recent
= P - - - - - -

docs lib polymesher test veamy CMakeLists.txt README.md

[Desktop

’~ D Documents
- < Downloads
= o

@ Pictures
' Videos

@ Trash

@ Network

@ 8668 volume
@ computer

O Connecttoserver

Doao«4DE DD

Fig. 6: In Veamy’s root folder create the folder “build”.

Go inside the “build” folder and on a terminal, type and execute:

cmake ..

to create the makefiles. Then, to compile the program, on a terminal type and exe-
cute:

make

Several files are created. Also, another folder called “test” is created inside
“build”. The executable of the test problem is stored in this “test” folder and is

called “Test”. Go inside “build/test/” folder (Fig. 7) and, on a terminal, type and
execute:

./Test

B © Recent <>
E @ Home = |

CMakeFiles cmake_install. CTestTestfile.cmake Makefile Test
i Desktop

” [D Documents

¥ Downloads
&3 Music

@ Pictures
 videos alejandro@mentor01: ~/Software/Veamy-master/bulld/test
@ Tash

& Network

@ 86GB Volume
@ computer

B connecttoserver

Linking atic library liblibve

O4DE DD D

(4

Fig. 7: Go inside “build/test/” folder and on a terminal type and execute ./Test

Veamy Primer Veamy v2.0

While running, Veamy prints out some messages on the screen indicating the progress
of the simulation, as shown in Fig. 8.

O Recent <>
@ Home =]

CMakeFiles cmake_install, CTestTestfile.cmake Makefile Test
[Desktop

D Documents
¥ Downloads
43 Music

@ Pictures
| Videos

@ Trash

& Network

3D D00 e

@ 865G Volume

Nl © computer
8 comp ubjected to a parabolic end load <

D Connecttoserver
one
ing ona - done
g a
g peliAl

done
rial ... don

nn boundary condittons ...
done

nt solution to a file ... done
ully

BINO &

®
Fig. 8: Veamy prints out some messages while running the simulation.

The last lines of the printed out messages indicate the location of the output fold-
ers. The output files contain the mesh and the nodal displacement solution. The mesh
can be visualized using the MATLAB function “plotPolyMesh.m” that is inside the fold-
er “Veamy_root_directory/lib/visualization/” or if you want to visualize both the
mesh and the nodal solution, use the MATLAB function “plotPolyMeshDisplacements.m”
for the elasticity problem or “plotPolyMeshScalarField.m” for the Poisson problem
that are also available in the “visualization” folder (see Fig. 9). The plots for the
beam subjected to a parabolic end load are shown in Fig. 1@.

visualization

§ < QtHome Software Veamy-master lib visualization
O Recent

= M-
; .

@ Deskiop acements.m Fieldm

D Documents
¥ Downloads
&3 Music

@ Pictures
 videos

@ Tash

@ Network

@ 86GB Volume
@ computer

B ConnecttoServer

N04NDEDDD

B[l

Fig. 9: Use “plotPolyMesh.m” to visualize the mesh, or “plotPolyMeshDisplacements.m”
or “plotPolyMeshScalarField.m” to visualize both the mesh and the nodal solution.
These files are located inside the folder “Veamy_root_directory/lib/visualization/”.

Veamy Primer Veamy v2.0

h‘ 3

[Je

Yy

A b b LN o o v won
o
Yy

N R - S SR I

0 2 4 6 8 0 2 4
x z x
Fig. 1@: Mesh and nodal displacements for the beam problem are plotted using the
“plotPolyMeshDisplacements.m” MATLAB function.

5 Using a PolyMesher mesh and boundary conditions in Veamy

Now, we show how to use a mesh and boundary conditions obtained from PolyMesher. This
primer assumes that the user knows how to use PolyMesher. This problem is part of the
numerical examples provided in:

A. Ortiz-Bernardin, C. Alvarez, N. Hitschfeld-Kahler, A. Russo, R. Silva, E. Olate-
Sanzana. Veamy: an extensible object-oriented C++ 1library for the virtual element
method. arXiv:1708.03438 [cs.MS]

You may consult the details of the geometry and boundary conditions therein as in
this primer we only refer to the final main C++ setup file to run the example.

The procedure is straightforward. In PolyMesher add a call to the MATLAB function
“PolyMesher2Veamy.m”. This function is located in “Veamy_root_directory/polymesher/”,
as shown in Fig. 11. The call to this function is done on the 1last line of the
“PolyMesher.m” function, as shown in Fig. 12. After defining a model and boundary
conditions, and performing the meshing copy the file “polymesher2veamy.txt” to a
folder of your choice to be used in Veamy. In the source code of Veamy, the example
file containing the PolyMesher mesh and boundary conditions is located inside the
folder “Veamy_root_directory/test/test_files/”.

The implementation of the PolyMesher to Veamy example is provided in the main C++
setup file named “PolyMesherMain.cpp” (see Fig. 13). This setup file as usual is in-
side “Veamy_root_directory/test/” folder. Go to this folder and open
“PolyMesherMain.cpp” (see Fig. 13). Explore this file to see details about its imple-
mentation. The function that reads the PolyMesher mesh and boundary conditions is
“initProblemFromFile”. You will have to provide the path to the folder where the
PolyMesher mesh and boundary conditions are located. Update the output folders (check
the instructions that are provided as comments). Modify the paths accordingly, save
and close the setup file.

Veamy Primer Veamy v2.0

Folymesher ~ @ o) e &

ter polymesher

© Recent

@ Home
PolyMesher2veam

@ Desktop Vi

D Documents

¥ Downloads

&3 Music

B O

@ Pictures
| Videos
@ Trash
& Network

@ 868 Volume
@ computer

O ConnecttoServer

B

LRSI B

Fig. 11: The MATLAB function “PolyMesher2Veamy.m” is located in folder
“Veamy_root_directory/polymesher/”.

PolyMesher.m |
% elements written in Matlab", Struct Multidisc Optim, 2812, k3
x DOI 10.1087/560158-011-8706-2 *
b E
% Ref2: A Pereira, C Talischi, GH Paulino, IFM Menezes, MS Carvalho, *
% "Implementation of fluid flow topolegy optimizatien in PolyTop"”, ®
£ Struct Multidisc Optim, 2013, DOI XO(.J000(/X00000(-000-X00(-X ¥
o m o 1

function [Node,Element,Supp,Lload,P] = PolyMesher(Domain,NElem,MaxIter,P)
if ~exist('P','var'), P=PolyMshr_RndPtsSet(NElem,Domain); end
NElem = size(P,1};
Tol=5Se-6; It=8; Err=1l; c=1.5;
BdBox = Domain('BdBox'); PFix = Domain('PFix'};
Area = (BdBox(2)-BdBox(1))*(BdBox(4)-BdBox(3));
Pc = P; figure;
while(It<=MaxIter &% Err:Tol)
Alpha = c*sqrt(Area/NElem);
P = Pc; ¥Lloyd's update
R_P = PolyMshr_Rflct(P,NElem,Domain,Alpha); Xeenerate the reflections
[P,R_P] = PolyMshr_FixedPoints(P,R_P,PFix); ¥ Fixed Points
[Node,Element] = woronoin([P;R_P]1); #Construct Voronoi diagram
[Pc,A] = PolyMshr_CntrdPly(Element,Node,NElem);
Area = sum(abs{A));
Err = sqri(sum((A.~2).*sum((Pc-P).*(Pc-P),2)))*NElem/Area~1.5;
fprintf('It: %3d Error: ¥1.3e\n',It,Err); It=It+l;
if NElem<=28@@, PolyMshr_PlotMsh(Node,Element,NElem); end;
end
[Node,Element] = PolyMshr_Extrids(NElem,Node,Element); #Extract node list
[Node,Element] = PolyMshr_CllpsEdgs(Node,Element,@.1); #Remove small edges

[Node,Element] = PolyMshr_Rsqshds(Nede,Element); ¥Reoder Nodes
BC=Domain('BC',{Node,Element}); Supp=BC{l}; Load=BC{2}; %Recover BC arrays
PolyMshr_PlotMsh(MNode,Element,NElem,Supp,Load); #Plot mesh and BCs
PolyMesher2Veamy (Node, Element ,NElem, Supp,Load) ; ¥Plot mesh to a Veamy mesh format
- L:-:I.PBAIL GENERATE RANDOM POINTSET

Fig. 12: Call to “PolyMesher2Veamy.m” in “PolyMesher.m” is done on its last line.

Veamy Primer Veamy v2.0

PolyMesherMain.cpp (~/Software/Veamy-master/test) - gedit

open + F

#include <veamy/Veaner.h>
#include <veamy/physics/materials/MaterialPlanestratn.h>
#include <veamy/config/VeanyConfig.h>

#include <veamy/physics/conditions/LinearlasticityConditions.h>
#include <veamy/problems/VeanylinearElasticitydiscretization.h>

int matn(){
/1 set precision for plotting to output files:
/1 OPTION 1: in “Veamyconfi: :instance()->setprecision(Precision: spreciston: :nid)”
/17 use "snall” for ¢ diglts; ntd” for 1o digits; "large” for 16 digi
71 OPTION 2: set the destred prectsion, for instance, as:
{# Vemytontiatcinstanca ()2 >setPrecision(12) for 12 digits. Change "12" by the desired precision.
/1 OPTION 3: Onit any {nstruction "VeanyConfly: :instance().>setPrectsion.....
71 fron this file. In this case, the default precision, which is 6 digits, will be used.
VeamyConfig: : instance()->setPreciston(Precision: :precision: :mid);

// DEFINING PATH FOR THE OUTPUT FILES:

11 If the path for the output files is not glven, they are written to /home directory by default.

71 Otherwise, include the path. For instance, for /home/user/Documents/Veamy/output.txt , the path

/ must be "Documents/Veamy/output. txt"

/1 CAUTION: the path nust exists either because it is already in your system or becuase it is created
71 by Veamy's configuration files. For instance, Veamy creates the folder "/test” inside "/bulld", so
11 ane can save the output files to */build]test/~ folder, but not to */butldftest/nycuston folder,
/1 since */mycuston_folder" won't be created by V cany's configuration files.

// File that contains the PolyMesher mesh and boundary conditions. Use Matlab function
/1 PolyMesheraveany.n to generate this file

/1 UPDATE PATH ACCORDING TO YOUR FOLDERS

std::string polyMeshereshFileNane = "Software/Veany-naster/test/test_files/polynesher2veany. txt";

std::cout << "
std:icout <
std::cout <

tarting Veany L
est: Ustng 8 P()\y!\eﬂvev mesh and boundary conditions <--" << std::endl;
< std::zendl;

std::cout << "+ Defining linear elastic material
Materials natertal = new HatertatpLanestratn(ie7 3):
LlnearE\astl(\ty(nnd\tlons conditions - new LinearElasticityConditions(natertal);
std::cout << "done” << std:

std: << "+ Preparing the sinulation from a PolyMesher mesh and boundary conditions
veamyunearﬂastl(\tyDls(ret\zatlon problen = new veamyLlnearElast\(\tyDls(retuatlon(cond\tlons)

Veaner v(problen);
Mesh<Polygon> mesh = v. \M(ProblemmeF\le(pnlyMesherMeshF\\eName)
std::cout << "done’ << st

std::cout << "+ Printing mesh to a file
nech printinFLle(neshFLicNane):
std::cout << “done’ << std::endl;

std::cout << "+ Simulating
Eigen: :Vectorkd X = v. s\mula!e(mesh)
std::cout << "done” << std:

= Std::cout << "+ Printing nodal displacenent solution to a file
. v.writeDisplacenents(dispFileNane, x);
Ci+ v TabWidth:s v Ln3n,colst v NS

Fig. 13: Main C++ setup file for the PolyMesher mesh and boundary condition example.

From now on, the procedure to run the PolyMesher problem in Veamy is identical to the
one performed for the beam problem.

Go inside the “Veamy_root_directory/build/” folder and on a terminal, type and exe-
cute to update the makefiles:

cmake ..

Then, to compile the program, on a terminal type and execute:

make

If this procedure has been done several times before, many of the libraries are like-
ly to be already compiled, so the compilation procedure is quite short in comparison
with the first time compilation. The executable of the test problem is stored in the
“build/test/” folder and is called “Test”. Go inside “build/test/” folder and, on a
terminal, type and execute:

./Test

The output screen for the PolyMesher problem is shown in Fig. 14. The last lines of
the printed out messages indicate the location of the output folders. The output
files contain the mesh and the nodal displacement solution. The mesh can be visual-
ized using the MATLAB function “plotPolyMesh.m” that is inside folder
“Veamy_root_directory/lib/visualization/” or if you want to visualize both the mesh
and the nodal displacement solution, use the MATLAB function
“plotPolyMeshDisplacements.m” that is also available in the “visualization” folder.
The mesh and the nodal displacements for the PolyMesher example are shown in Fig. 15.

11

Veamy Primer Veamy v2.0

visualization

§ < @Home Software Veamymaster lib visualization

© Recent

e

o @ Desktop acements.m Field.m

D Documents
& Downloads
& Music

& Pictures

»m Videos

@ Trash

@ Network

@ 8668 volume
@ computer

O Connecttoserver

ao4IDEPP DY

B[l

®

Fig. 14: Output screen for the PolyMesher example. Use “plotPolyMesh.m” to visualize
the mesh or “plotPolyMeshDisplacements.m” to visualize both the mesh and the nodal
displacement solution. Both MATLAB files are located inside folder
“Veamy_root_directory/lib/visualization/”.

;3 ;3

Ug x10° Uy 610'5 [|u®| N
3 3 -0.1 3 10
-0.2

2 2 03 2
04

-0.5

-0.6

0.5 -0.7

4 08 K
15 -0.9

Fig. 15: Nodal displacements for the PolyMesher example are plotted using the
“plotPolyMeshDisplacements.m” MATLAB function.

6 Using a generic mesh file

Reading a generic mesh file is very similar to the process of using a PolyMesher
mesh. The only difference is that boundary conditions are not provided with the mesh
file. That is, the mesh is read from a file, but the boundary conditions must be pro-
vided in Veamy similarly as done in the cantilever beam problem of Section 4. An ex-

ample of this is provided in the main C++ setup file
“Veamy_root_directory/test/EquilibriumPatchTestMain.cpp”. In this main C++ setup
file, the external test mesh, which is the file

“Veamy_root_directory/test/test_files/equilibriumTest_mesh.txt”, is read by the func-
tion “createFromFile”:

std::string externalMeshFileName =
"Software/Veamy-master/test/test_files/equilibriumTest_mesh.txt";

Mesh<Polygon> mesh;

mesh.createFromFile(externalMeshFileName);

- 12 -

Veamy Primer Veamy v2.0

As you can confirm by exploring the external mesh file “equilibriumTest_mesh.txt”, it
contains the nodal coordinates of the mesh and the element connectivity.

7 Additional examples

These additional examples require the user to have read the previous sections of this
primer.

7.1 Perforated Cook”s membrane

The implementation of the perforated Cook’s membrane is provided in the main C++ set-
up file named “CookTestMain.cpp”. This setup file as usual 1is inside
“Veamy_root_directory/test/” folder. Go to this folder and open “CookTestMain.cpp”
(see Fig. 16). Explore this file to understand its implementation. Be sure you update
the path to the output files. The important lines of code are highlighted. They pro-
vide the information for the four points that define the geometry and three circular
holes on it.

This problem is part of the numerical examples provided in:

A. Ortiz-Bernardin, C. Alvarez, N. Hitschfeld-Kahler, A. Russo, R. Silva, E. Olate-
Sanzana. Veamy: an extensible object-oriented C++ 1library for the virtual element
method. arXiv:1708.03438 [cs.MS]

You may consult the details of the geometry and boundary conditions therein as in
this primer we only refer to the final main C++ setup file to run the example.

CookTestMaln.cpp (~/Software/Veamy-master/test) - gedit ¥ =@ o

save

#include <vector>

Finclude <delynot/models/basic/potat.h>
<delynot /models/Region.h
Zdelynot /models/hote/CireularHole.h»
delynoi/models/ge r/functions/functions.h>

i/voronot/Trian: onotGenerator .h>
alues/Constant.h>

tertalPlanestrain.h>
g.h>

amy/physics/conditions/LinearElasticityConditions.h>

#include <veamy/problems/VeanylinearElasticitydiscretization.h>

tnt natn(){
Set precision for plotting to output files:

77 From this file. Tn this case. the defoult preciston. Which Ls 6 digies, MLl be used.
VeamyConfig: :instance()->setPrecision(Precision: :precision: :mid);

// DEFINING PATH FOR THE OUTPUT FILES:

11 If the path for the output files is not glven, they are written to /home directory by default.

71 Otherwise, include the path. For instance, for /home/user/Documents/Veamy/output.txt , the path
/] must be "Docunents /Veany/output. txt”

) caTTIOn: (e pathlni€ exlSts Slther beeale (L S{aIEERI I JoEISVSEENIGR bechase. 1t (afcreats
11 by Veanys configuration files. For instance, veany creates the folder =/test” inside -/butld,

71 one can save the output files to "/build/test/” folder, but not to */bulld/test/nycuston_folder"
7] Since " mycuston_folder” won't be created by Veany's Configuration files.
s5td::string meshFileName = "cook_membrane_nmesh. txt"
std::string dispFileName = "cook_nembrane: d\~})\azr‘/‘@lv s.txt”
std::string geoFileName = "cook_nembrane_geometry. txt"
std:zendl;
7 << std:zendy;

std:cout << "+ Defining the domain
£t vactor<rotnts Toean pointe - (POLAL(b,0), PoLNt(48,4), Potnt(45,64), Potnt(o,44));
Region Teean(TBean_points);

Hole holel = CircularHole(Point(8,30), 5);
Hole holez = CircularHole(Point(24,40), 4);
Hole hole3 = CircularHole(Point(40,50), 3);
TBean.addHole(hole1);

TBean. addHole(hole2);

TBean. addHole(hole3);

std::cout << 'done’ << std::endl;

std: << "+ Printing geometry to a file ... ";
Tﬂeam pr\ntlnFi‘E(EEnF\\eNa)
std::cout << "done’ << std::endl;

std:scout << '+ Generating polygonal nesh
ateseedpol functlons: sconstantALternating(), functtons::constant()), 15, 16);l

Cr+ v TabWidth: 8 v nsg,Col1l v NS

Fig. 16: Main C++ setup file for the perforated Cook’s membrane example.

In order to run the test, follow the same steps described in the previous examples.
Once you have compiled the problem, go inside “build/test/” folder and, on a termi-
nal, type and execute:

./Test

The output files are visualized, as in the previous examples, using the MATLAB func-
tion “plotPolyMeshDisplacements.m”. The plots are shown in Fig. 17.

13 -

Veamy Primer Veamy v2.0

12 15
o
-1 10
-2
5
A 10
4 A
-5
6 4 5
7
g 2
o ,
60 70 10 20 30 40 50 60 70 60 70 o

X

Fig. 17: Nodal displacements for the perforated Cook’s membrane problem are plotted
using the “plotPolyMeshDisplacements.m” MATLAB function.

7.2 A toy example

In this example, a Unicorn loaded on its back and fixed at its feet is solved using
Veamy. This problem is part of the numerical examples provided in:

A. Ortiz-Bernardin, C. Alvarez, N. Hitschfeld-Kahler, A. Russo, R. Silva, E. Olate-
Sanzana. Veamy: an extensible object-oriented C++ 1library for the virtual element
method. arXiv:1708.03438 [cs.MS]

You may consult the details of the geometry and boundary conditions therein as in
this primer we only refer to the final main C++ setup file to run the example.

The implementation of the Unicorn problem is provided in the main C++ setup file
named “UnicornTestMain.cpp”. This setup file as usual is inside
“Veamy_root_directory/test/” folder. Go to this folder and open “UnicornTestMain.cpp”
(see Fig. 18). Be sure you update the path to the output files. The important lines
of code are highlighted. They provide the information for the points that define the
boundary of the Unicorn.

UnicornTestMain.cpp (~/Software/Veamy-master/test) - gedic =@ 74 n

save
include <delynot/nodels/bastc/Potnt. h>
r/tunctions/tunctions. b
constratnts/values/Constant.h>
rialPlanestrain.h>
aterialPlanestrain.h>

s/conditions/LinearElasticityconditions.h>
e iyl e

tnt matn(){

/] set precision for plotting to output files:

/] OPTION 1: in "VeamyConfig:: instance()->setPrecision(Precision: :precision: :mid)”

/1 use "snall" for 6 digits; "mid" for 16 digits; "large” for 16 digits.
1 OPTION 2: set the desired prectsion, for instance, as:
: 1instance()->setPrecision(12) for 12 digits. Change *12" by the desired precision.
it any instruction "VeamyConfig::instance()->setPrecision(.....
le. In this case, the default precision, which is 6 digits, will be used.
VeamyConfig: :instance()->setPrecision(Preciston: :precision: :mid);

// DEFINING PATH FOR THE OUTPUT FILES:
If the path for the output files is not given, they are written to /home directory by default.
// Otherwibe, tnclude the path. For instance, for /hone/user /Docunents/Veany/output. txt , the path
nust be "Docunents/Veany/output.
R M e Ty —
/] by Veany's configuration files. For instance, Veany creates the folder "/test” inside "/build’, so
71 one can save the output files to "/build/test/" folder, but not to L s
11 since "fnycuston folder” won't be created by Veany's configuration file

ring meshFileName = "unicorn mesh.txt"
ring dispFileName = "unicorn c\SDl‘(a‘veMs txt”
ring geoFileName = "unicorn_geometry. txt"

Ut << "*** Starting Veamy ***" << std::endl;
ut << "--> Test: Unicorn <--" << std::end
"..." << std:zendl;

t << "+ Defining the domain ..
std ivector<Point> unicorn_points = {I

$(2,0), Potnt(3,0.5), Point(3.5,2), Potnt(4,4), Potnt(s,4), lelnf (RS
Potnt Po ,0.5), Point(16,0), Point(10.5,0.5), Point(11.2,2

Potnt

Point
Point:

2),
POANE(14,16.5) POAL(1E, 15.8). PoLAE(is.3,20),
s518.9)) potnbClo,10), fotne(d 103,
% Polnt(3.3,11.3), Potnt(1,10.5),
Potme(0.418.59) PoRE(6. 3.8.8), Potne(o.a.8), Potni(a.s 3 1), Polne(iosob.%};
Reglon untcorn(unicorn. potnts);
ut jone " std::end’

std::cout << "+ Printing geometry to a file ... ";
unicorn. DnntInFlle(geoF\leName)
std::cout << "done” << std:

ut << "+ Generating polygonal mesh .
generateSeedentS(Po\ntcenerator(fun(tlons :constantAlternating(), functions::constantAlternating()), 26, 25);
std::vector<Point> seeds = unicorn.getseedPoints();

TrianolevoronotGenerator a(seeds, unicorny:

Cr+ v TabWidth: 8 v 1coll v NS

Fig. 18: Main C++ setup file for the Unicorn example.

14

Veamy Primer Veamy v2.0

In order to run the test, follow the same steps described in the previous examples.

Once you have compiled the problem, go inside “build/test/” folder and, on a termi-
nal, type and execute:

./Test

The output files are visualized, as in the previous examples, using the MATLAB func-
tion “plotPolyMeshDisplacements.m”. The plots are shown in Fig. 19.

IE
25 0

05 06 25

05

20 25

Fig. 19: Nodal displacements for the Unicorn problem are plotted using the
“plotPolyMeshDisplacements.m” MATLAB function.

- 15 -

Veamy Primer Veamy v2.0

8 Geometry definition and mesh generation

Geometry definition and polygonal mesh generation in Veamy are handled using Delynoi,
an object oriented C++ library for the generation of polygonal meshes that is based
on the constrained Voronoi diagram. Delynoi depends on two external open source
libraries, whose code is included in the repository:

e Triangle - A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.

e Clipper - an open source freeware library for clipping and offsetting lines
and polygons.

All the information related to Delynoi and its source code is available on the web:

http://camlab.cl/research/software/delynoi/

Nevertheless, few examples are presented in what follows.

Example: Perforated Cook’s membrane
707
60+
50+
40t
30

201

-10 O 10 20 30 40 50 60 70

Define the corner points of the Cook’s membrane
std::vector<Point> TBeam_points = {Point(®©,0), Point(48,44), Point(48,64), Point(0,44)};

Define the region formed by the points
Region TBeam(TBeam_points);

Define holes
Hole holel = CircularHole(Point(8,30), 5); Hole hole2 = CircularHole(Point(24,40), 4);
Hole hole3 = CircularHole(Point(40,50), 3);

Add holes to the region
TBeam.addHole(holel); TBeam.addHole(hole2); TBeam.addHole(hole3);

Generate seeds points in the region

TBeam.generateSeedPoints (PointGenerator(functions::constantAlternating(),
functions::constant()), 16, 16);

std::vector<Point> seeds = TBeam.getSeedPoints();

Compute the polygonal mesh using the constrained Voronoi diagram
TriangleVoronoiGenerator g(seeds, TBeam);
Mesh<Polygon> mesh = g.getMesh();

- 16 -

Veamy Primer Veamy v2.0

Example: Unicorn

22 0 2 4 6 8 10 12 14 16 18 20

Define the points of the Unicorn boundary

std: :vector<Point> unicorn_points = {Point(2,0), Point(3,0.5), Point(3.5,2), Point(4,4),
Point(6,4), Point(8.5,4), Point(9,2), Point(9.5,0.5), Point(10,0), Point(10.5,0.5),
Point(11.2,2.5), Point(11.5,4.5), Point(11.8,8.75), Point(11.8,11.5), Point(13.5,11),
Point(14.5,11.2), Point(15,12), Point(15,13), Point(15,14.5), Point(14,16.5), Point(15,19.5),
Point(15.2,20), Point(14.5,19.7), Point(11.8,18.2), Point(10.5,18.3), Point(10,18),
Point(8,16), Point(7.3,15.3), Point(7,13.8), Point(6.7,11.5), Point(3.3,11.3), Point(1,10.5),
Point(0.4,8.8), Point(0.3,6.8), Point(0.4,4), Point(0.8,2.1), Point(1.3,0.4)};

Define the region formed by the points
Region unicorn(unicorn_points);

Generate seeds points in the region

unicorn.generateSeedPoints(PointGenerator(functions::constantAlternating(),
functions::constantAlternating()), 20, 25);

std::vector<Point> seeds = unicorn.getSeedPoints();

Compute the polygonal mesh using the constrained Voronoi diagram
TriangleVoronoiGenerator g(seeds, unicorn);
Mesh<Polygon> mesh = g.getMesh();

- 17 -

Veamy Primer Veamy v2.0

Example: Cantilever beam subjected to a parabolic end load

y

»

A

Py

~

Define the corner points of the beam
std::vector<Point> rectangle4x8_ points={Point(®, -2), Point(8, -2), Point(8, 2), Point(@, 2)};

Define the region formed by the points
Region rectangle4x8(rectangled4x8_points);

Generate seeds points in the region

rectangle4x8.generateSeedPoints(PointGenerator(functions::constantAlternating(),
functions::constant()), 24, 12);

std::vector<Point> seeds = rectangle4x8.getSeedPoints();

Compute the polygonal mesh using the constrained Voronoi diagram
TriangleVoronoiGenerator g(seeds, rectangle4x8);
Mesh<Polygon> mesh = g.getMesh();

- 18 -

Veamy Primer Veamy v2.0

9 Problem conditions: material definition, body/source terms,
essential and natural boundary conditions

The material, body/source terms and boundary conditions are declared as part of an
object of a class pertaining to the type of problem (linear elasticity or Poisson).
Available materials are isotropic linear elastic (plane strain and plane stress).
Boundary conditions are assigned by constraining domain segments and nodes. Some ex-
amples follow.

Example: Perforated Cook’s membrane
707
60+
50+
40t

301

Elastic Material
Material* material = new MaterialPlaneStrain(240, ©.3); // Also available: MaterialPlaneStress
LinearElasticityConditions* conditions = new LinearElasticityConditions(material);

Essential boundary conditions on the left edge:
PointSegment leftSide(Point(@,0), Point(0,44));
SegmentConstraint left(leftSide, mesh.getPoints(), new Constant(0));

Natural boundary condition on the right edge:
PointSegment rightSide(Point(48,44), Point(48,64));
SegmentConstraint right(rightSide, mesh.getPoints(), new Constant(6.25));

Add boundary conditions to the model:
conditions->addEssentialConstraint(left, mesh.getPoints(),
elasticty_constraints::Direction::Total);
conditions->addNaturalConstraint(right, mesh.getPoints(),
elasticty_constraints::Direction::Vertical);

- 19 -

Veamy Primer Veamy v2.0

Example: Unicorn

_2 T
-2 0 2 4 6 8 10 12 14 16 18 20

Elastic Material
Material* material = new MaterialPlaneStrain(le4, ©.25); // Also available: MaterialPlaneStress
LinearElasticityConditions* conditions = new LinearElasticityConditions(material);

Essential boundary conditions at Unicorn’s feet:
Point leftFoot(2,0);

PointConstraint left(leftFoot, new Constant(0));

Point rightFoot(10,0);

PointConstraint right(rightFoot, new Constant(®));

Natural boundary condition on Unicorn’s back:
PointSegment backSegment(Point(6.7,11.5), Point(3.3,11.3));
SegmentConstraint back (backSegment, mesh.getPoints(), new Constant(-200));

Add boundary conditions to the model:

conditions->addEssentialConstraint(left, elasticity_ constraints::Direction::Total);
conditions->addEssentialConstraint(right, elasticity constraints::Direction::Total);
conditions->addNaturalConstraint(back, mesh.getPoints(),
elasticty_constraints::Direction::Total);

- 20 -

Veamy Primer Veamy v2.0

Example: Cantilever beam subjected to a parabolic end load

y

»

A

Py

5

N\

S

~

User defined functions:

double tangencial(double x, double y){
double P = -1000; double D = 4;
double I = std::pow(D,3)/12; double value = std::pow(D,2)/4-std::pow(y,2);
return P/(2*I)*value;

¥
double uX(double x, double y){
double P = -1000; double Ebar = 1le7/(1 - std::pow(©.3,2));
double vBar = 0.3/(1 - 0.3); double D = 4;
double L = 8; double I = std::pow(D,3)/12;
return -P*y/(6*Ebar*I)*((6*L - 3*x)*x + (2+vBar)*std::pow(y,2) -
3*std: :pow(D,2)/2*(1+vBar));

¥
double uY(double x, double y){

double P = -1000; double Ebar = 1le7/(1 - std::pow(0.3,2));

double vBar = 0.3/(1 - 0.3); double D = 4;

double L = 8; double I = std::pow(D,3)/12;

return P/(6*Ebar*I)*(3*vBar*std: :pow(y,2)*(L-x) + (3*L-x)*std::pow(x,2));
}

Elastic Material
Material* material = new MaterialPlaneStrain(le7, ©.3); // Also available: MaterialPlaneStress
LinearElasticityConditions* conditions = new LinearElasticityConditions(material);

Essential boundary conditions on the left edge:

Function* uXConstraint = new Function(uX);

Function* uYConstraint = new Function(uY);

PointSegment leftSide(Point(@,-2), Point(0,2));

SegmentConstraint constl (leftSide, mesh.getPoints(), uXConstraint);
SegmentConstraint const2 (leftSide, mesh.getPoints(), uYConstraint);

Natural boundary condition on the right edge:

Function* tangenciallLoad = new Function(tangencial);

PointSegment rightSide(Point(8,-2), Point(8,2));

SegmentConstraint const3 (rightSide, mesh.getPoints(), tangencialload);

Add boundary conditions to the model:
conditions->addEssentialConstraint(constl, mesh.getPoints(),
elasticty_constraints::Direction::Horizontal);
conditions->addEssentialConstraint(const2, mesh.getPoints(),
elasticty_constraints::Direction::Vertical);
conditions->addNaturalConstraint(const3, mesh.getPoints(),
elasticty_constraints::Direction::Vertical);

- 21 -

Veamy Primer Veamy v2.0

Example: Poisson problem with a non constant source term (f=32y(1-y)+32x(1-x))

(0.1) (1.1

(1.0)

User defined functions:

double sourceTerm(double x, double y){
return (32*y*(1-y) + 32*x*(1-x));

}

std: :vector<double> exactScalarField(double x, double y){
return {16*x*y*(1-x)*(1-y)};
}

std: :vector<double> exactGradScalarField(double x, double y){
return {16*y*(1-y)*(1-2*x),16*x*(1-x)*(1-2*y)};
}

Body/Source term
BodyForce* f = new BodyForce(sourceTerm);
PoissonConditions* conditions = new PoissonConditions(f);

Essential boundary conditions on the left edge:
PointSegment leftSide(Point(@,0), Point(0,1));
SegmentConstraint left (leftSide, mesh.getPoints(), new Constant(®)); // u=e;

Essential boundary conditions on the bottom edge:
PointSegment downSide(Point(@,0), Point(1,0));
SegmentConstraint down (downSide, mesh.getPoints(), new Constant(@)); // u=e;

Essential boundary conditions on the right edge:
PointSegment rightSide(Point(1,0), Point(1, 1));
SegmentConstraint right (rightSide, mesh.getPoints(), new Constant(®)); // u=e;

Essential boundary conditions on the top edge:
PointSegment topSide(Point(®@, 1), Point(1, 1));
SegmentConstraint top (topSide, mesh.getPoints(), new Constant(@)); // u=0;

Add boundary conditions to the model:
conditions->addEssentialConstraint(left, mesh.getPoints());
conditions->addEssentialConstraint(down, mesh.getPoints());
conditions->addEssentialConstraint(right, mesh.getPoints());
conditions->addEssentialConstraint(top, mesh.getPoints());

- 22 -

Veamy Primer Veamy v2.0

10 Setting precision for printing on output files

In order to set the decimal precision for the floating-point values that are written
to output files, one of the following instructions can be added to the lines of code
in the main C++ setup file:
For predefined 6 decimals use:

VeamyConfig: :instance()->setPrecision(Precision: :precision::small);
For predefined 10 decimals use:

VeamyConfig: :instance()->setPrecision(Precision: :precision::mid);
For predefined 16 decimals use:

VeamyConfig: :instance()->setPrecision(Precision::precision::large);

There is also a way to directly set the number of decimals. For instance, to set 12
decimals use:

VeamyConfig::instance()->setPrecision(12)

e If these instructions are omitted, the default number of decimals used to write
the output files is 6.

e The example files that are located in the “test” folder of Veamy’s root directory
use the foregoing instructions for setting the precision. See these example files
for more details.

11 Veamy’s website

Check Veamy’s website for newer versions:

http://camlab.cl/research/software/veamy/

--- THE END ---

- 23 -

