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Abstract

Supervised learning algorithms have been proposed as a suitable alternative

to model updating methods in structural damage assessment, being Artificial

Neural Networks the most frequently used. Notwithstanding, the slow learn-

ing speed and the large number of parameters that need to be tuned within

the training stage have been a major bottleneck in their application. This

article presents a new algorithm for real-time damage assessment that uses

a linear approximation method in conjunction with antiresonant frequencies

that are identified from transmissibility functions. The linear approximation

is handled by a statistical inference model based on the maximum-entropy

principle. The merits of this new approach are twofold: training is avoided

and data is processed in a period of time that is comparable to the one of Neu-

ral Networks. The performance of the proposed methodology is validated by

considering three experimental structures: an eight-degree-of-freedom (DOF)

mass-spring system, a beam, and an exhaust system of a car. To demonstrate
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the potential of the proposed algorithm over existing ones, the obtained re-

sults are compared with those of a model updating method based on parallel

genetic algorithms and a multilayer feedforward neural network approach.

Keywords: Structural damage assessment, supervised learning algorithms,

maximum-entropy principle, linear approximation

1. Introduction

The purpose of structural damage assessment is to detect and characterize

damage at the earliest posible stage, and to estimate how much time remains

before maintenance is required, the structure fails or the structure is no

longer functional. Damage assessment has a tremendous potential for life-

safety and/or economic benefits, this generates a wide interest in the civil,

mechanical and aerospace engineering fields.

A global technique called vibration-based damage assessment [1] has been

rapidly expanding over the last few years. The basic idea is that vibration

characteristics (natural frequencies, mode shapes, damping, frequency re-

sponse function, etc) are functions of the physical properties of the structure.

Thus, changes to the material and/or geometric properties due to damage

will cause detectable changes in the vibrations characteristics. Many stud-

ies have demonstrated that vibration measurements are sensitive enough to

detect damage even if it is located in hidden or internal areas [2].

Vibration-based damage assessment methods are classified as model-based

or non-model based. Non-model-based methods detect damage by compar-

ing the measurements from the undamaged and damaged structures, whereas

model-based methods locate and quantify damage by correlating an analyt-
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ical model with test data from the damaged structure. Non-model-based

methods usually provide the first two levels of damage assessment (detection

and location), whereas model-based methods can achieve up to the third

level (quantification). Additionally, model-based methods are particularly

useful for predicting the system response to new loading conditions and/or

new system configurations (damage states), allowing damage prognosis [3].

Model-based damage assessment requires the solution of a nonlinear in-

verse problem, which can be accomplished using supervised learning algo-

rithms as neural networks or by global optimization algorithms. The most

successful applications are model updating methods based on global opti-

mization algorithms [4, 5, 6, 7, 8]. Model updating is an inverse method that

identifies the uncertain parameters in a numerical model and is commonly

formulated as an inverse optimization problem. In model updating-based

damage assessment, the algorithm uses the differences between the models

of the structure that are updated before and after the presence of damage to

localize and determine the extent of damage. The basic assumption is that

the damage can be directly related to a decrease of stiffness in the structure.

However, these algorithms are exceedingly slow and the damage assessment

process is achieved via a costly and time-consuming inverse process, which

presents an obstacle for real-time damage assessment applications. Real-time

damage assessment allows to continuously monitor the state of a structure,

which is critical to avoid catastrophic failures. For example, many catas-

trophic collapses of wind turbines could have been avoided if the damage

had been detected and the turbines had been stopped in time [9].

To reduce the time required to assess damage, supervised learning algo-
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rithms have been proposed as an alternative to model updating. The objec-

tive of supervised learning is to estimate the structure’s health based on cur-

rent and past samples. Supervised learning can be divided into two classes:

parametric and non-parametric. Parametric approaches assumed a statistical

model for the data samples. A popular parametric approach is to model each

class density as Gaussian [10]. Nonparametric algorithms do not assume a

structure for the data. The most frequently nonparametric algorithms used

in damage assessment are Artificial Neural Networks [11, 12, 13, 14]. A

trained neural network can potentially detect, locate and quantify structural

damage in a short period of time. Hence, it can be used for real-time damage

assessment.

There are different types of network architectures, among which multi-

layer feedforward networks are the most frequently used. Although once the

network is already trained it can process data very quickly, the slow learning

speed and the large number of parameters that need to be tuned within the

training stage have been a major bottleneck in their application [14]. Gupta

et al. [15, 16] presented a new nonparametric method, which generalizes lin-

ear approximation by using the maximum-entropy (max-ent) principle [17]

for statistical inference. A similar approach is adopted by Erkan [18] for

semi-supervised learning problems, where a decision rule is to be learned

from labeled and unlabeled data. Recently, max-ent methods have become

quite popular in the computational mechanics community as a powerful tool

for numerical solution of PDEs [19, 20], and their applications in the solution

of ill-posed inverse problems have also been explored, which includes dam-

age assessment applications [21, 22]. By using max-ent linear approximation
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methods, training is avoided and data is processed in a period of time that is

comparable to the one of Neural Networks. In addition, it only requires one

parameter to be selected. Hence, max-ent linear approximation methods be-

come very appealing for real-time health monitoring applications. Gupta [15]

demonstrated the application of the max-ent linear approximation approach

to color management and gas pipeline integrity problems. In the present

paper, we demonstrate the applicability in structural damage identification.

An important aspect of structural damage assessment is the selection of

an appropriate measure of the system response. The idea of using directly

the frequency response functions (FRFs) has attracted many researchers [23].

Among all the dynamic responses, the FRF is one of the easiest to obtain in

real-time, as the in situ measurement is straightforward. Nevertheless, FRFs

have the disadvantage that they cannot be identified from output-only modal

analysis; thus the measurement of the excitation force is always required. For

structures in real conditions, it often becomes very difficult to measure the

excitation force. Thus, a critical issue is to reduce the dependence upon

measurable excitation forces. An alternative to FRFs are transmissibility

functions. They relate the responses at two sets of co-ordinates. Conse-

quently, they do not involve the measurement of excitation forces. The only

condition is that the location of the excitation force must be known.

The majority of the research in transmissibility-based damage identi-

fication are data-based approaches for damage detection and localization.

Chesné and Deraemaeker [24] presented a review of them, in addition to

a study of the feasibility of transmissibility functions for damage detection

and localization. The researchers concluded that extreme care should be
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taken when using transmissibility functions in an unsupervised manner, i.e.

without knowing how they will be affected by damage, because damage lo-

calization is not always guaranteed. The first study of transmissibility func-

tions as indicators of structural damage was presented by Worden [25]. The

researcher showed for a simple lumped-parameter system that transmissibili-

ties are able to detect small stiffness changes. Since then, the research group

leaded by Worden and Manson have done extensive research in this topic [26].

In [27], the researchers used a representative aircraft skin panel to investigate

the sensitivity of transmissibility features to damage. Damage detection is

achieved via a statistical outlier analysis. This algorithm was later compared

with the performance of density estimations and auto-associative neural net-

works in [28]. The feature vector was constructed from transmissibility data,

selecting spectral lines centered at a particular peak and then using PCA to

reduce the dimension of the data set. Outlier analysis and neural networks

prove to be more sensitive to damage. Manson et al. [29, 30] tested the per-

formance of the outlier analysis technique to detect damage in an inspection

panel of a Gnat aircraft. Damage was introduced as holes and saw-cuts across

the panel. To achieve the next step of damage assessment, i.e. localization,

Pierce et al. [31] proposed an interval-based classification network. Experi-

mental transmissibility data was collected from a series of undamaged and

damaged scenarios. The performance of the network was evaluated with un-

seen test data, obtaining a classification rate of 91%. Around the same time

as Worden, Zhang et al. [32] presented a methodology to detect experimen-

tal damage using changes in the transmissibility functions. Transmissibility

functions were derived from structural translations and from curvatures, be-
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ing the last ones the most sensitive to damage. Johnson and Adams [33] have

also studied the use of transmissibility functions for detecting, locating and

quantifying damage. They demonstrated that since transmissibility func-

tions are determined solely by the system zeroes (antiresonant frequencies),

they are potentially better indicators of localized damage. These results were

used to develop a framework for transmissibility-based damage identification

using smart sensor arrays [34]. The damage feature is constructed based on

the changes of the logarithms of transmissibility functions due to damage.

Maia et al. [35] presented a method for computing the transmissibility matrix

from responses only. They showed that transmissibility functions are sensi-

tive to damage making them a possible approach for damage assessment. A

similar approach was used to explore the ability of a transmissibility method

for detecting and localizing damage [36]. The researchers concluded that it is

possible to detect sensitive changes to damage but further research is needed.

In a later work, Maia et al. [37] compared two damage indicators constructed

with transmissibly functions and with frequency response functions. They

concluded that the method based on transmissibility measurements is much

more sensitive for the detection and relative quantification of damage.

Transmissibility functions have also been used in model updating. Steenack-

ers et al. [38] proposed to use transmissibility measurements instead of fre-

quency response functions in model updating. The researchers updated the

finite element model of a mobile substation support structure using driving

point transmissibility poles. Driving point transmissibility poles correspond

to the resonances of the structure when the excitation degree of freedom is

constrained. This is equivalent to the antiresonant frequencies of the driving
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point frequency response function. The authors concluded that the finite

element model updated with transmissibility information is equivalent to the

model updated with FRFs or operational modes. Hence, transmissibility

functions are a good alternative in model updating when the excitation force

is not measured. Meruane [39] presented a model updating and damage

assessment algorithm that uses antiresonant frequencies derived from trans-

missibility data. Antiresonance frequencies correspond to the dips in FRFs

and consequently to the dips and peaks in transmissibility functions. Hence,

it is possible to identify antiresonance frequencies using transmissibility in-

formation. Transmissibility functions seem to be quite promising in diverse

fields such as output-only modal analysis [40, 41, 42], model updating and

damage assessment.

The primary contribution of this research is the development of a novel

real-time damage assessment algorithm that uses a linear approximation

method in conjunction with antiresonant frequencies that are identified from

transmissibility functions. The linear approximation is handled by a statisti-

cal inference model based on the maximum-entropy principle [17]. The merits

of this new approach are twofold: training is avoided and data is processed

in a period of time that is comparable to the one of Neural Networks. The

performance of the proposed methodology is validated by considering three

experimental structures: an eight-degree-of-freedom (DOF) mass-spring sys-

tem, a beam, and an exhaust system of a car. To demonstrate the poten-

tial of the max-ent linear approximation method over existing ones, results

obtained via the max-ent formalism are compared with those of a model

updating method based on parallel genetic algorithms [39] and a multilayer
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feedforward neural network approach [14].

The remainder of this work is structured as follows: Section 2 provides

general antecedents and related research on the max-ent linear approxima-

tion method. Section 3 describes the setting up of the database. Sections

4 presents the case studies and the damage assessment results using three

approaches: feedforward neural networks, model updating with parallel ge-

netic algorithms and max-ent linear approximation. Finally, conclusions and

forthcoming work are presented in Section 5.

2. Linear approximation with maximum-entropy principle

The main problem of vibration-based damage assessment is to ascertain

the presence, location and severity of structural damage given a structure’s

dynamic characteristics. This principle is illustrated in Fig. 1; the vibration

characteristics of the structure, which in this case correspond to antiresonant

frequencies, act as the input to the algorithm, and the outputs are the damage

indices of each element in the structure.

Experimental structure Transmissibility functions

X

Feature
vector

Damage 
assessment 
algorithm

Ŷ

Estimated
damage

Figure 1: Scheme of the damage assessment algorithm.

Let the observation vector Yj =
{
Y j
1 , Y

j
2 , . . . , Y

j
m

}
∈ Rm represents the

jth damage state of a structure, where m is the number of structural ele-
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ments. Let the feature vector Xj =
{
Xj

1 , X
j
2 , . . . , X

j
n

}
∈ Rn represent a set of

characteristics parameters of the structure (antiresonant frequencies) associ-

ated to the damage state Yj. The variables X and Y have joint distribution

PX,Y . A set of k independent and identically distributed samples be drawn

from PX,Y , these samples represent the database (X1,Y1), (X2,Y2), ..., (Xk,Yk).

The central problem in supervised learning is to form an estimate of PY |X ,

i.e. given a certain feature X to estimate the corresponding observation Y.

Let Ŷ denote the estimated value of Y. Linear approximation takes the N

nearest neighbors to a test point X and uses a linear combination of them

to represent X as

X =
N∑
j=1

wj(X)Xj(X),
N∑
j=1

wj(X) = 1, (1)

where w1, w2, . . . , wN are weighting functions, and X1(X),X2(X), . . . ,XN(X)

are the N closest neighbors to a test point X out of the database set. The

equations given in (1) can be expressed as the following system of linear

equations:

Aw = b, (2)

with A =



X1
1 X2

1 . . . XN
1

X1
2 X2

2 . . . XN
2

...
...

. . .
...

X1
n X2

n . . . XN
n

1 1 . . . 1


(n+1)×N

, b =



X1

X2

...

Xn

1


(n+1)×1

, w =


w1

w2

...

wN


N×1
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After w is obtained from (2), Ŷ is estimated as

Ŷ =
N∑
j=1

wj(X)Yj(X), (3)

where Y1(X),Y2(X), . . . ,YN(X) are the corresponding observations to the

N selected neighbors. To solve the linear system given in (2), the number

of unknowns N must equal the number of constraints n + 1. Often there

are more than n + 1 samples that are relevant to estimate a test point X

(N > n + 1). Thus, the system of linear equations becomes undetermined.

The system (2) is very common in computational mechanics (see for in-

stance, [19]) to construct basis functions for approximation of field variables

in Partial Differential Equations (PDEs) and for curve and surface fitting in

computational geometry (see for instance, [43]). Typically, when (2) is unde-

termined, its solution is tackled via an unconstrained optimization technique

of the family of least-squares. However, these methods produce some neg-

ative weights, which lacks physical meaning. An alternative that produces

positive weights is obtained via the maximum-entropy (max-ent) variational

principle [17].

The notion of entropy in information theory was introduced by Shannon

as a measure of uncertainity [44]. Later, on using the Shannon entropy,

Jaynes [17] postulated the maximum-entropy principle as a rationale means

for least-biased statistical inference when insufficient information is available.

The maximum-entropy principle is suitable to find the least-biased probabil-

ity distribution when there are fewer constraints than unknowns and is posed

as follows:

Consider a set of N discrete events {x1, . . . , xN}. The possibility of each
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event is pi = p(xi) ∈ [0, 1] with uncertainty − ln pi. The Shannon entropy

H(p) = −
∑N

i=1 pi ln pi is the amount of uncertainty represented by the dis-

tribution {p1, . . . , pN}. The least-biased probability distribution and the one

that has the most likelihood to occur is obtained via the solution of the

following optimization problem (maximum-entropy principle):

max
p∈RN

+

[
H(p) = −

N∑
i=1

pi ln (pi)

]
, (4a)

subject to the constraints:

N∑
i=1

pi = 1,
N∑
i=1

pigr(xi) =< gr(x) >, (4b)

where RN
+ is the non-negative orthant and < gr(x) > is the known expected

value of functions gr(x) (r = 0, 1, . . . ,m), with g0(x) = 1 being the normal-

izing condition.

The optimization problem (4) assigns probabilities to every xi in the set.

Now, assume that the probability pi has an initial guess mi known as a prior,

which reduces its uncertainty to − ln pi+lnmi = − ln(pi/mi). An alternative

problem can be formulated by using this prior in (4) [45]:

max
p∈Rn

+

[
H(p) = −

N∑
i=1

pi ln

(
pi
mi

)]
, (5a)

subject to the constraints:

n∑
i=1

pi = 1,
n∑

i=1

pigr(xi) =< gr(x) > . (5b)
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In (5), the variational principle associated with
∑N

i=1 pi ln
(

pi
mi

)
is known

as the principle of minimum relative (cross) entropy [46, 47]. Depending

upon the prior employed, the optimization problem (5) will favor some xi

in the set by assigning more probability to them, and eventually, assigning

non-zero probability (pi > 0) to a selected number of xi (i < N) in the set. It

can be easily seen that if the prior is constant, the Shannon-Jaynes entropy

functional (4) is recovered as a particular case. The max-ent approach is

demonstrated next by means of two dice experiments.

Example 2.1. A fair dice is thrown. The set of possible outcomes are the

events {1, 2, 3, 4, 5, 6}. Since the dice is fair, we infer that all the events

have equal possibility 1/6 of being the outcome. Taking the expectation of the

outcome yields:

E =
1

6
· 1 +

1

6
· 2 +

1

6
· 3 +

1

6
· 4 +

1

6
· 5 +

1

6
· 6 = 3.5.

If this expectation is viewed as the constraint in the max-ent problem (4), the

set of possibilities previously inferred is exactly predicted by max-ent. The

result is shown in Fig. 2.

Example 2.2. A biased dice is thrown. The set of possible outcomes are the

events {1, 2, 3, 4, 5, 6}. A guess is made on each outcome via the following

set of prior possibilities w = {0.1, 0.1, 0.1, 0.1, 0.5, 0.1}. On considering these

priors, the expectation of the outcome yields:

E = 0.1 · 1 + 0.1 · 2 + 0.1 · 3 + 0.1 · 4 + 0.5 · 5 + 0.1 · 6 = 4.1.
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Figure 2: Throwing a fair dice. If the dice is fair, max-ent assigns equal possibilities to all

events.

If this expectation is viewed as the constraint in the max-ent problem (5), the

set of ‘most honest’ possibilities assigned by max-ent is p = {0.1, 0.1, 0.1, 0.1, 0.5, 0.1},

which is exactly the guess, as expected. The result is depicted in Fig. 3.

Because of its general character and flexibility, we adopt the relative en-

tropy approach for our problem, where the probability pi is replaced with

the weighting function wi of the linear approximation problem posed in (1).

This reads:

max
w∈RN

+

[
H(w) = −

N∑
i=1

wi(X) ln

(
wi(X)

mi(X)

)]
, (6a)

subject to the constraints:

N∑
i=1

wi(X)X̃i = 0,
N∑
i=1

wi(X) = 1, (6b)
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Figure 3: Throwing a biased dice. If the dice is biased, max-ent assigns the most probable

possibility to each event.

where X̃i = Xi − X has been introduced as a shifted measure for stability

purposes. A typical prior distribution is the smooth Gaussian [48]

mi(X) = exp(−βi‖X̃i‖2), (7)

where βi = γ/h2i ; γ is a parameter that controls the radius of the Gaussian

prior at Xi, and therefore its associated weight function; and hi is a char-

acteristic n−dimensional Euclidean distance between neighbors that can be

distinct for each Xi. In view of the optimization problem posed in (6) for

supervised learning, maximizing the entropy chooses the weight solution that

commits the least to any one in the database samples [16].

The solution of the max-ent optimization problem is handled by using

the procedure of Lagrange multipliers, which yields [45]:

wi(X) =
Zi(X;λ∗)

Z(X;λ∗)
, Zi(X;λ∗) = mi(X) exp(−λ∗ · X̃i), (8)

where Z(X;λ∗) =
∑

j Zj(X;λ∗), X̃i = [X̃ i
1 . . . X̃

i
N ]T and λ∗ = [λ∗1 . . . λ

∗
N ]T.
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In (8), the Lagrange multiplier vector λ∗ is the minimizer of the dual

optimization problem posed in (6) [45]:

λ∗ = arg min
λ∈RN

lnZ(X;λ), (9)

which gives rise to the following system of nonlinear equations:

f(λ) = ∇λ lnZ(λ) = −
N∑
i

wi(X)X̃i = 0, (10)

where ∇λ stands for the gradient with respect to λ. Once the converged λ∗

is found, the weight functions are computed from (8).

3. Construction of the database

Database samples are generated using a numerical (finite element) model

of the structure. Two approaches are used to overcome the dependency on

the accuracy of the numerical model. The first is to update the numerical

model using experimental data from the undamaged structure. The numer-

ical models corresponding to the three case studies were updated using the

algorithm described in [39]. The second is to define an input parameter that

considers the initial errors in the numerical model, thus avoiding the need

for an accurate numerical model. This goal is achieved using the changes in

the data instead of their absolute values [49]. With the validated numerical

model, the database is built as follows:

1. Define a set of damage scenarios to be used in the database.

2. Set j = 1.

3. Parameterize the jth scenario with an observation vector Yj.

4. Build the numerical model associated with the jth scenario.
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5. Construct a feature vector Xj using the antiresonant frequencies de-

rived from the numerical model.

6. Add the pair of vectors (Xj,Yj) to the database, set j = j + 1 and go

to step 3.

3.1. Feature vector

The jth feature vector Xj contains the experimental changes in the an-

tiresonant frequencies with respect to the intact case:

Xj =

{
ωD
1,1 − ωU

1,1

ωU
1,1

,
ωD
2,1 − ωU

2,1

ωU
2,1

, . . . ,
ωD
n1,1
− ωU

n1,1

ωU
n1,1

, . . . ,
ωD
nr,r − ω

U
nr,r

ωU
nr,r

}
, (11)

The superscripts D and U refer to damaged and undamaged, respectively,

and ωi,r is the ith antiresonant frequency of the rth Frequency Response

Function (FRF). Experimental antiresonances are identified from transmis-

sibility measurements using the algorithm presented in [39].

3.2. Observation vector

The jth observation vector Yj contains damage indices represented by

elemental stiffness reduction factors, defined as the ratio of the stiffness re-

duction to the initial stiffness. The stiffness matrix of the damaged structure,

Kd, is expressed as a sum of element matrices multiplied by reduction factors:

Kd =
m∑
i=1

(
1− Y j

i

)
Ki, (12)

where Ki is the stiffness matrix of the ith element. Thus, Y j
i = 0 indicates

that the ith element is undamaged, whereas 0 < Y j
i < 1 implies partial

damage and Y j
i = 1 complete damage.
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3.3. Distribution of patterns

The distribution of patterns in the database plays a crucial role in the

success of the algorithm. The relationship between antiresonant frequencies

and different damage levels is not linear. Therefore, the algorithm might not

be able to interpolate data. In this study, the patterns were generated by

considering single damage scenarios with eight damage levels distributed as

0, 20, 40, 60, 80, 90, 95 and 99.9%.

4. Application cases

The results of the max-ent linear approximation algorithm are compared

with those obtained by a multilayer feedforward neural network approach [14]

and a model updating method based on parallel genetic algorithms [39]. The

neural network was trained with the same database used for the max-ent

linear approximation method, but polluted with 1.0% random noise to min-

imize false damage detection due to experimental noise [14]. The procedure

to assess the experimental damage using the max-ent linear approximation

is implemented as follows:

1. Perform an experimental test of the damaged structure and identify

the antiresonant frequencies.

2. Construct the feature test point X using (11).

3. Read the feature vectors in the database.

4. Select parameter βi in the Gaussian prior given in (7), so that k neigh-

bours contribute to the solution.

5. Solve the system of nonlinear equations presented in (10).

6. Compute the weight functions from (8).
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7. Read the observation vectors in the database and estimate the experi-

mental damage from (3).

The next sub-sections present each application case and the results obtained

by the three approaches.

4.1. Eight-DOF spring-mass system

The structure shown in Fig. 4 consists of an eight-DOF spring-mass sys-

tem. Los Alamos National Laboratory (LANL) designed and constructed this

system to study the effectiveness of various vibration-based damage identifi-

cation techniques [50]. Eight translating masses connected by springs form

the system. Each mass is a disc of aluminium with a diameter of 76.2 mm

and a thickness of 25.4 mm. The masses slide on a highly polished steel rod

and are fastened together with coil springs. The positions of the springs and

masses are designated sequentially, with the first ones being closest to the

shaker attachment.

In the undamaged configuration, all springs are identical and have a lin-

ear stiffness coefficient. Damage was simulated by replacing the fifth spring

with another spring that has a lower stiffness (55% stiffness reduction). Ac-

celeration was measured horizontally at each mass yielding eight measured

DOFs. The structure was excited randomly by an electro-dynamic shaker.

Twenty-eight antiresonant frequencies were identified from the transmissibil-

ity measurements.

The numerical model was built in Matlab R© with springs and concentrated

masses. The initial parameters were as follows:

• Mass 1: 559.3 g (This mass is greater than the others due to the hard-
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Figure 4: Experimental eight-degrees-of-freedom system.

ware required to attach the shaker)

• Masses 2 to 8: 419.4 g

• Spring constants: 56.7 kN/m

In the undamaged case, the maximum difference between the experimen-

tal and numerical antiresonances was 3.7%. The database samples were

created using the seven springs as possible locations for damage, resulting in

56 patterns.

During the set-up of the damage identification algorithm, the only pa-

rameter that needs to be selected in the max-ent computation is γ for the
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Gaussian prior. This parameter controls the radius of the weight functions

associated with those feature vectors Xj that contribute to the approxima-

tion at the feature test vector X. Therefore, it determines the number of

neighbors to the test point. In addition, the weights associated with the

active neighbors are determined up on their distances to the test point. The

closer the distance, the larger the weight. Fig. 5 shows the damage assess-

ment results using the values γ = 1, 100, 800 and 1600. An horizontal line

indicates the actual stiffness reduction. In each case there are 57, 46, 6 and

2 neighbors contributing to the final solution, respectively. These results

indicate that using a larger value of γ results in more accurate solutions.

Nevertheless, if γ is too high there might not be enough neighbors to build

the approximation.
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Figure 5: Damage identification results for the eight-degrees-of-freedom mass-spring sys-

tem using different values for γ in the Gaussian prior.

Fig. 6 shows the results for the experimental damage case using γ = 800.

The results are compared with those obtained using model updating and
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neural networks methods. The three methods were able to correctly identify

the experimental damage represented by a 55% stiffness reduction in element

5, although the neural network identifies a small false damage at element

2. In terms of time, the model updating approach required 206 seconds

to yield a solution, the linear approximation required 0.2 seconds, whereas

the neural network required only 0.09 seconds. It should be noted that

linear approximation and neural network algorithms can reach a solution in

less than a second, which can be considered real-time for structural damage

assessment problems.
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Figure 6: Identification of experimental damage in the eight DOF mass-spring system

using two algorithms: linear approximation with maximum entropy and model updating

with parallel genetic algorithms.

4.2. Experimental beam

In the second experimental case, the structure consisted of a steel beam

with a rectangular cross-section. The beam measured 1 m in length and had

a cross-sectional area of 25×10 mm2. As shown in Fig. 7, soft springs suspend
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the structure to simulate a “free-free” boundary condition. A shaker excites

the beam at one end, and the response is measured by 11 accelerometers.

Both the excitation force and the measured responses are in the horizontal

direction. In this direction, antiresonant frequencies are more sensitive to

the experimental damage. Thirty-six antiresonant frequencies were identified

from the transmissibility measurements.

Figure 7: Experimental beam.

The numerical model was built in Matlab R© with 2D beam elements. The

model featured 20 beam elements and 40 degrees of freedom, as shown in

Fig. 8. In the undamaged case, the maximum difference between the ex-

perimental and numerical antiresonances was 3.63%. Shadowed elements

represent possible locations of damage, resulting in 18 damage locations and

144 patterns.

The structure was subjected to three different damage scenarios contain-

ing single cracks. Cracks were introduced into the structure by saw cuts, as
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Figure 8: Numerical model of the beam and element numbering.

illustrated in Fig. 9. Table 1 summarizes the damage scenarios indicating

the distance from the left-end to the cut, the corresponding element in the

numerical model, and the cut length. In the first damage scenario the cut is

in between elements 9 and 10.

Figure 9: Saw cuts introduced into the beam.

Damage

scenario

Distance from

the left end

Element

number

Saw cut

length

(mm) (mm)

1 450 9-10 3

2 685 14 7

3 810 17 15

Table 1: Damage scenarios introduced to the beam

The parameter γ in the Gaussian prior is selected so 6 neighbors con-

tribute to the solution. Fig. 10 shows the results of the experimental damage

identified by three approaches: neural network, model updating and linear
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approximation. An arrow indicates the actual damage location. In the first

damage scenario, the only approach that detected a damage in the actual lo-

cation is the max-ent linear approximation, detecting 8% stiffness reduction

in elements 9 and 10. In the second and third damage scenarios, damage is

correctly located by the three approaches. Although with the neural network

approach damage quantification is not accurate and a few false damages are

detected.

In terms of time, the model updating approach requires approximately

900 seconds to assess the experimental damage, the linear approximation

requires 0.3 seconds, whereas the neural network requires only 0.1 seconds.

4.3. Car Exhaust System

The structure consists of a car exhaust system as shown in Fig. 11. The

dimensions are: length: 2.3 m, width: 0.45 m. The exhaust pipe has a

diameter of 38 mm. The structure is suspended by soft springs and is excited

randomly by an electrodynamic shaker. The response is captured by 16

accelerometers. The test is performed in a frequency range of 0 − 512 Hz

with a frequency resolution of 0.25 Hz.

The numerical model shown in Fig. 12 was built in Matlab R© with 2D

beam elements and concentrated inertias for the masses. The model has

47 beam and 5 inertia elements, with 144 degrees of freedom. Thirty-two

antiresonances were identified from the transmissibility functions. All of

them are used during the model updating process. The maximum difference

between the experimental and numerical antiresonances after updating was

7.6%.

A single fatigue crack with three increasing levels of damage is introduced
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to the structure. Fig. 13-a) shows the crack, which is located in element 31,

close to the welded connection between elements 30 and 31 and covers around

60% of the pipe perimeter. The fatigue test is done again twice to grow the

crack. Fig. 13-b) shows the second damage level; here the structure has

already failed due to unstable crack propagation. The open crack covers

around 70% of the perimeter. The last damage level is shown in Fig. 13-c).

The crack covers around 85% of the perimeter.

Elements 18 to 47 are considered possible locations of damage, giving 30

damage locations and 240 patterns.

The parameter γ in the Gaussian prior is selected so six neighbors patterns

contribute to the solution. Fig. 14 shows the results of the experimental

damage identified by the three approaches: neural network, model updating

and linear approximation. An arrow indicates the actual damage location. In

the three damage scenarios, the damage is correctly identified by the linear

approximation and the model updating approaches. Though, in the first case

the damage detected by the linear approximation approach is closer to the

actual location. On the other hand, the neural network technique, instead

of detecting one large damage, it detects two to three medium damages at

locations near the actual one.

In terms of time, the model updating approach requires approximately

1800 seconds to assess the experimental damage in each case, the linear

approximation approach requires 0.7 seconds, whereas the neural network

requires only 0.2 seconds.
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5. Conclusions

This article presented a new supervised learning algorithm for real-time

damage assessment that uses a linear approximation method in conjunction

with antiresonant frequencies that are identified from transmissibility func-

tions. The linear approximation is handled by a statistical inference model

based on the maximum-entropy principle. The performance of the proposed

methodology was validated by considering three experimental structures: an

eight-DOF mass-spring system, a beam, and an exhaust system of a car.

To demonstrate the potential of the proposed algorithm over existing

ones, the obtained results are compared with those of a model updating

method based on parallel genetic algorithms and a multilayer feedforward

neural network approach. The results show that the neural network was the

fastest in assessing damage, but quantification was not accurate. The model

updating, on the other hand, provides accurate results, but it requires be-

tween 3 to 30 minutes to assess damage. The max-ent linear approximation

combines the best of both; it provides a fast and accurate damage assess-

ment. In the three structures, the max-ent linear approximation was suc-

cessful in assessing the experimental damage. The detected damage closely

corresponds to the experimental damage in all cases, obtaining results very

similar to those of a model updating approach in a processing time equivalent

to neural networks. Hence, the proposed algorithm provides the possibility

of continuously monitoring the state of a structure.

The three structures used to validate the damage assessment algorithm

are unidimensional in nature. Although the exhaust system is a 2D structure,

it behaves similar to an unidimensional structure. Thus, more research is
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needed to test the performance of the proposed algorithm with 2D and 3D

structures.

The linear max-ent approximation method, as presented, is able to accu-

rately assess single damage scenarios. Further research is needed to adapt

this algorithm to cases with multiple damage scenarios.
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Figure 10: Identification of experimental damage in the beam using two algorithms: lin-

ear approximation with maximum entropy and model updating with parallel genetic al-

gorithms.
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Figure 11: Experimental set-up of the car exhaust system.
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Figure 12: Finite element model and element numbering of the car exhaust system.

Figure 13: Three levels of damage introduced to the car exhaust system.
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Figure 14: Identification of experimental damage in the car exhaust system using two

algorithms: linear approximation with maximum entropy and model updating with parallel

genetic algorithms.
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