Delynoi

An object-oriented C++ library for the generation of
polygonal meshes

Delynoi Primer
Version 1.0

Rev. ©
August, 2017

Delynoi Primer

Copyright and License

Delynoi 1.0, Copyright © 2017
by Catalina Alvarez, Nancy Hitschfeld-Kahler, Alejandro Ortiz-Bernardin

Department of Computer Science

Department of Mechanical Engineering
Facultad de Ciencias Fisicas y Matematicas
Universidad de Chile

Av. Beauchef 851, Santiago, Chile

GPL

Free Software

Your use or distribution of Veamy or any derivative code implies that you agree to
this License.

This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

Delynoi Primer

TABLE OF CONTENTS

1 Features of Delynol ..t iiiiineieneneeeeononesooesasssosonsssossnnssossnnsss
2 1Y o U o of = ol o o= PP
3 Up and running with Delynod ... ieiiiiiniiinineetnenenerosenoosssnonssossnnnss
4 Creating a Mmesh .. i ittt i ittt ittt ienennassonenesossnnsssosonsssannas
5 Including a custom generation funCtionviiiiiiiiiieiienenereonnnneronnnnnns
6 Creating a mesh from a predefined list of pointsciiiiiiiiiiiiineiennnns

7 Including holes in the domainsiiiit ittt iiinneeereneneeeosnnnesoennnens

Delynoi Primer

1 Features of Delynoi

e The meshes are generated on arbitrary domains, created from user points. Do-
mains have no restrictions on convexity.

e It allows the inclusion of completely contained or intersecting holes, which
are processed if required.

e The meshes are generated from seed points, which can be either read directly
from a text file, included one by one, or created from a number of generation
rules included in the library. New generation rules can be included easily.

e Meshes can be stored in OFF-style text files, or used directly on another pro-
gram.

e To generate the meshes, the library first obtains the conforming Delaunay tri-
angulation using Triangle; the triangulation is considered a mesh that is left
available for use in case it is desired. Then, it computes the constrained Vo-
ronoi diagram.

2 Source code

The source code is available to be downloaded from Delynoi’s repository:

https://github.com/capalvarez/Delynoi

Download the code before proceeding with the rest of this tutorial.

3 Up and running with Delynoi

Delynoi has been tested on Unix-like machines only. Delynoi is dependant on CMake, so
make sure it is available in your machine. If it is not, install it before proceeding
with the rest of this tutorial. To install CMake on Debian-based operating systems
(such as Ubuntu), on a terminal type and execute:

sudo apt-get install cmake

Unpack the code to a folder of your choice. Fig. 1 shows the content of Delynoi that
was unpacked to “/home/Software/”

<

o
om

8 98 C rnd [E] preview [[F] split = cControl

I > Home > Software > Delynoi
i Home €

- - -—
Network ' m
B3 Root delynoi ib test CMakelists.txt README.md
[Trash

[® Today

[% vesterday
[This Month
[® Last Month

£ Documents
L] images
£3 Audio Files
H videos

23,3 GiB Hard Drive
I windows
65,2 GiB Hard Drive

lib (folder) 58,1 GiB free

Fig. 1: Delynoi source code.

https://github.com/capalvarez/Delynoi

Delynoi Primer

Inside the “test” folder of Delynoi’s root directory (see Fig. 2) it can be found a
simple example showing Delynoi’s usage. In this folder there is also a CMakelists.txt
file to help running the examples. In this part of the tutorial we assume no previous
knowledge on CMake, and explain all steps for compiling and running a custom Delynoi
program.

We include the file “LShapeTestMain.cpp”, which generates a polygonal mesh from ran-
dom points in an L-shaped domain.

test — Dolphin

< 50 8- 98 Q Fnd [preview [F] split = control

Places > Home > Software > Delynoi > test

[tore | E—

- B) < 5 B

B Root test_examples CMakelists.txt CreateFromFileTe CustomGenerato LShapeTestMain, ReadPointsFromF
[l Trash st.cpp rTestMain.cpp wpp ileTestMain.cpp

B Today SimpleSquareTes SwissCheeseTest UnicornTestMain.
¥ vesterday tMain.cpp Main.cpp cpp
B This Month

B Last Month
ch For

= Documents

El 1mages

J3 Audio Files

H videos

[windows
H 65,2 GiB Hard Drive
B 23,3 GiB Hard Drive

1 Folder. 8 Files (5,3 KiB) -_— - 58,0 GiB free

Fig. 2: Delynoi’s test folder. The main C++ setup file implementing a problem of in-
terest must be placed in this folder. Several main setup C++ files are shown. In this
part of the tutorial, the C++ file “LShapeTestMain.cpp” will be used.

Open “LShapeTestMain.cpp” file. If you are interested, browse the code in this file
to realize how a mesh is generated using Delynoi. In case you require the mesh to be
written to a text file, check the instructions that are provided as comments in
“LShapeTestMain.cpp” (see Fig. 3). Modify accordingly, save and close the setup file.

File Edit View Projects Bookmarks Sessions Tools Settings Help

] LShapeTestMain.cpp (3 m
GH E TFinclude <delynol/models 5
BN g #include < L
- #include <d L et N
2R 2| #include <d y 10iGen
W T
w |vint maln(!{
& std::vector<Point> 1_ palnts = {Peint(10,0), Point(20,0), Point(20,20), Peint(®,20),
. g Point(0,10), Point(1d,10)};
M Region 1_region(l_points);
Blye B -
= region. generateSeedPolnts(PotheneratorEfunctwns :randem_double(®,20),
ul fun(tlons :random_double(0,20)], 10) ;
B L std: \(‘TC'<|‘01r\t> seeds = l reglon getSeadents(!
Se. TriangleVoronoiGenerator g(seeds, 1_region);
i Mesh<Polygon> LRandom = g.getM esh()?
=D LRandom.printInFile("LShapedMesh. txt");
& in }
oA
Hvi
Bw
B 2
B e

Line 1, Column 1 INSERT SoftTabs:4(8) ¥ UTF8 v [<S I

Q search and Replace [Current Project

LshapeTestMain.cpp (C++ source code, 662 B) 58,0 GiB free

Fig. 3: Main C++ setup file for generation of a polygonal mesh from random points in
a L-shaped domain.

As mentioned before, the test folder contains a file named “CMakelLists.txt”. The file
inside “test” folder is shown in Fig. 4.

Delynoi Primer

4 88 57 98 Q Find B Preview [F] split = cControl

» Home > Software > Delynoi > test

[eme [—
B e n s < < < <

B Root test_examples (RUEIEREERE CreateFromFileTe CustomGenerato LShapeTestMain. ReadPointsFromF
[l Trash st.cpp rTestMain.cpp Ppp ileTestMain.cpp
Recently Saved ' ' '

1 Today simpleSquareTes SwissCheeseTest UnicornTestMain,

I vesterday tMain.cpp Main.cpp pp

4 This Month

I Last Month

Fos

= Documents
El Images
I3 Audio Files
H videos

B windows
P2 65,2 GiB Hard Drive
23,3 GiB Hard Drive

CMakeLists.txt {CMake source code, 186 B) -— - 58,0 GiB free
Fig. 4: CMakelLists.txt is located in test folder and controls which main C++ setup
file is processed in Delynoi.

Open “CMakelLists.txt” and on the highlighted zone, write the name of the main C++
setup problem file, in this case, “LShapeTestMain.cpp,” as shown in Fig. 5. Save and
close the file.

< 88 87 98 | Q Fnd [preview [T split = control

s

Edit View Projects Bookmarks Sessions Tools Settings Help

CMakeLists.txt

set (CMAKE_CXX_FLAGS "S{CMAKE_CXX_FLAGS} -std=gnu++11")
set(SOURCE_FILES

add_executable(Test S{SOURCE_FILES})
target_link_libraries(Test libutilities libdelynoi)

[Documents

Line 2, Column 36 INSERT SoftTabs:4(8) ¥ UTF-8 v CMake v

Q Search and Replace

Fig. 5: Open “CMakelLists.txt” and on the highlighted zone, write the name of the main
C++ setup problem file.

Go back to the Delynoi library root folder and there create a folder “build” (Fig.
6).

Delynoi Primer

Delynoi — Dolphin

B8 85 98 QFind [Preview [B splic = control

> Home » Software > Delynoi

- - -— -—
B Network o}
i te:

CMakeLists.txt README.md

Root delyno

B 23,3 GiB Hard Drive
[windows
[65,2 GiB Hard Drive

delynoi (folder) 58,1 GiB free

Fig. 6: In Delynoi’s root folder create the folder “build”.

Go inside the “build” folder and on a terminal, type and execute:

cmake ..

to create the makefiles. Then, to compile the program, type and execute:

make

Several files are created. Also, another folder called “test” is created inside
“build”. The executable of the test problem is stored in this “test” folder and is

called “Test”. Go inside “build/test/” folder (Fig. 7) and, on a terminal, type and
execute:

./Test

File Edit |View Bookmarks Semtings Help
st : bash

Fig. 7: Go inside “build/test/” folder and on a terminal type and execute ./Test

4 Creating a mesh

The most common expected use case for Delynoi is generating a mesh from scratch,
first defining the domain, and then procedurally creating the seed points from the
list of predefined generation rules. Such case is presented in the “UnicornTest-
Main.cpp” and “LShapeTestMain.cpp” text files found in the “test” folder. Open the
files to see the details of each implementation.

Delynoi Primer

To run each example, the instructions are exactly the same as seen in section 3. Mod-
ify the “CMakelLists.txt” file inside the “test” folder, changing “example.cpp” for
the name of the example.

5 Including a custom generation function

The predefined generating functions can be found inside the Delynoi library, in a
file named “functions.cpp”, located in “delynoi/src/models/generation”.

To include a custom generator function, a new class inheriting from Functor must be
created. Any Functor class must include a method named “apply”, which receives a dou-

ble and returns a double, doing the required processing to the received value.

An example of a custom generating function can be seen in Fig. 8.

< File Edit View Projects Bookmarks Sessions Tools Settings Help
lac E CustomGeneratorTestMain.cpp O m
CrHe £ Finclude ARTETL - era] tor.h>
2 | #include th
BN & | yinclude <delynoi/s basi t.
=10 #include <delynoi/mode eq ! IF
e 2| #include <delynoifvoronoi/TriangleVoronoiGenerator. }
)

fecen & wclass CustomGenerater: public Functor{

Y e inline double applyl(double x) {
BT = return x/2;
wve B,
B Th .
N w int main(){

o std::vector<Point> square_points = {Point(0,0), Point(10,2}, Peint(10,10),

- Point(0,10)};

Region squarelsquare_points);

ED

il square.generateSeedPoints(PointGenerator (new CustomGenerator(), new
El 1m CustomGenerator()), 10, 10);
3 Au std::vector<Point> seeds = square.getSeedPoints(});
B vic TriangleVoronoiGenerator generator (seeds, square);

Mesh<Polygon> m = generator.getMesh(]);
et m.printInFile("CustomGeneratorMesh.txt");
B wi ¥
B 65
23
Line 1, Column 1 INSERT SoftTabs:4(8) ~ UTF-8 Cer v
Q Search and Replace [E Current Project
CustomGeneratorTestMain.cpp (C++ source cod... 58,0 GiB free

Fig. 8: Creation of a custom generation function and its use for the mesh generation.

6 Creating a mesh from a predefined list of points

Most of the included examples compute the meshes inside the given domain from seed
points procedurally generated. To use a list of predefined points, one can either
create the points one by one, or read them from a text file (Fig. 9). We consider the
second case as it is more general.

Delynoi Primer

intsFromFileTestMain.cpp * — Kate

File Edit view Projects Bookmarks Sessions Tools Settings Help

ReadPointsFromFileTestMain.cpp O m

Tude <vect
lude <dely models/ba F

#include - v 15 /Req h
#include <dely v T gleV] 1t N> mF
L
v int maln[]{ T
d ector<Point> square_points = {Point(0,@), Point(1,0), Point(1,1),
Po]nt(0,1}};
Region squarc[square points);

[Projects [F Documents

squarc addSeedsFromFile("/Software/Delynoi/test/test_examples/points_file.txt");
ctor<Point> seeds = square.getSeedPoints();

Tr]anglu\lurunolﬁcncratur generator (sccu; square);
Mesh<Polygon> m = generator. gr:tﬂ('sh(
m.printInFile(HcmFramFllchih txt) !

Line 1, Column 1 INSERT SoftTabs:4(8) ¥ UTF8 C++ v

Q search and Replace [E Current Project

ReadPointsFromFileTestMain.cpp (C++ source ¢ 58,0 Gifl free

Fig. 9: Reading the seed points from a text file.

The highlighted zone in Fig. 9 specifies the name of the text file containing the
points. In this case, the text file 1is 1left as an example in the “de-
lynoi/test/test_examples” folder. When using a custom file, one must be careful set-
ting the complete path to the file, starting from “/home”.

7 Including holes in the domains

Delynoi can generate meshes in arbitrary shaped domains, including holes either in-
side the domain, or intersecting its boundary. In the first case, the domain is un-
touched, keeping the holes inside. In the second case, the 1library processes the
holes and the domain, clipping as necessary. Both cases, however, are exactly equal
from the users’ perspective.

The file named “SwissCheeseTestMain.cpp” shows how to include several holes in a do-
main.
--- THE END ---

