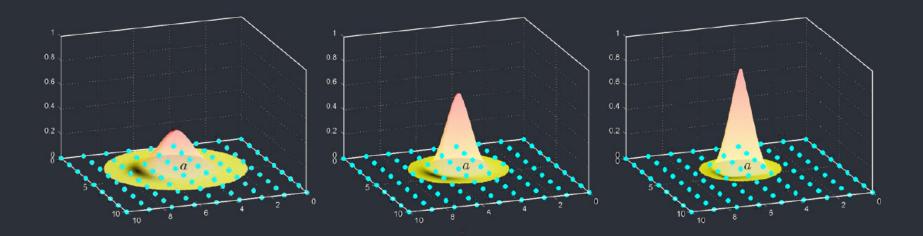


THE VIRTUAL ELEMENT DECOMPOSITION: A NEW PARADIGM FOR DEVELOPING NODAL INTEGRATION SCHEMES FOR MESHFREE GALERKIN METHODS



Rodrigo Silva-Valenzuela, Alejandro Ortiz-Bernardin Department of Mechanical Engineering Universidad de Chile www.camlab.cl/alejandro

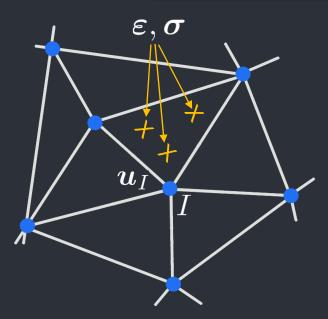
Joint work with: N. Sukumar (UC-Davis) E. Artioli (U. Rome-Tor Vergata)

Funded through grant CONICYT/FONDECYT No. 1181192

WONAPDE 2019 Sixth Chilean Workshop on Numerical Analysis of Partial Differential Equations Concepción ● Chile ● January 22, 2019

- Motivation
- Meshfree Basis Functions
- Meshfree Integration Cells
- Nodal Integration Using the Virtual Element Decomposition (NIVED)
- Numerical Tests
- Summary and Outlook

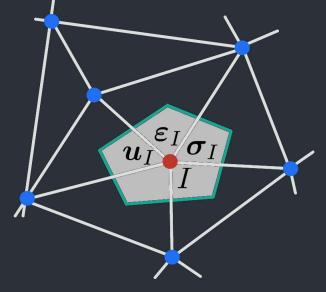
Motivation



Numerical integration of the stiffness matrix

Gauss integration

- Displacements at nodes
- Stresses/Strains at Gauss points



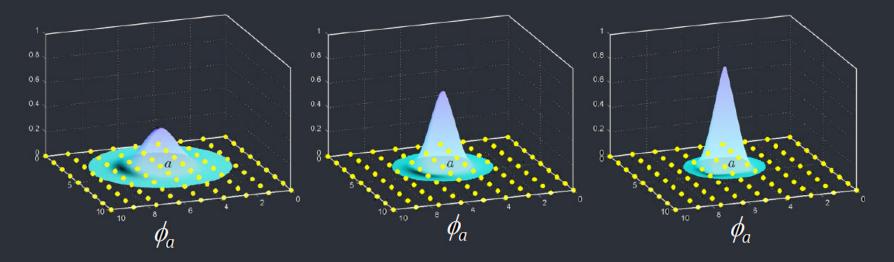
Nodal integration

- Displacements at nodes
- Stresses/Strains at nodes

Puso et al., IJNME, 74(3), 2008:

- Direct integration at nodes leads to instabilities
- A penalty stabilization is added to the stiffness matrix

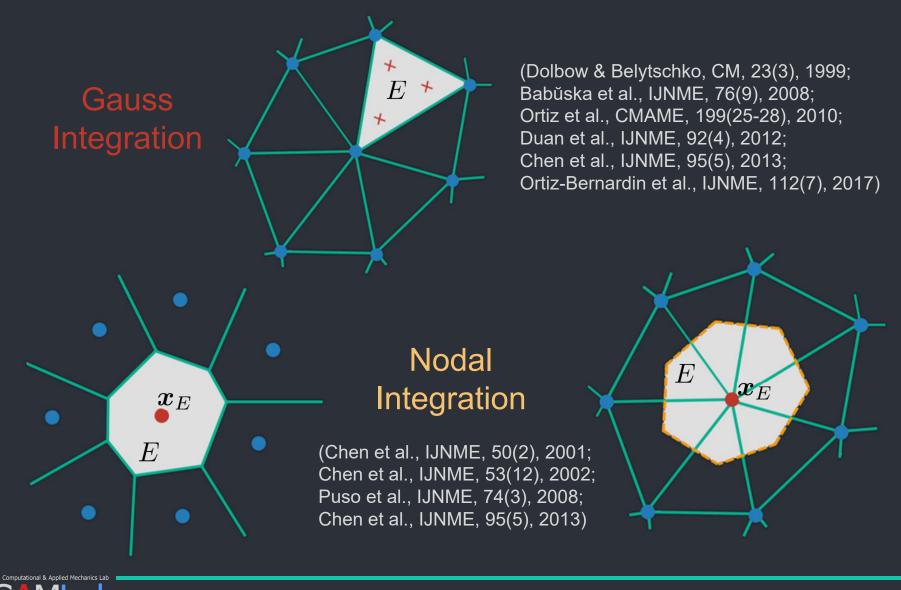
Meshfree Basis Functions



- Rational (nonpolynomial) basis functions
- Linear approximation plus some nonpolynomial terms
- Integration errors affecting consistency and stability

Belytschko et al., IJNME, 37(2), 1994; Liu et al., IJNMF, 20(8-9), 1995; Atluri & Zhu, CM, 22(2), 1998; De & Bathe, CM, 25(4), 2000; Sukumar et al., IJNME, 43(5), 1998; Sukumar, IJNME, 61(12), 2004; Arroyo & Ortiz, IJNME, 65(13), 2006 ... and many others!

Meshfree Integration Cells



5

NIVED: Basis and Spaces

 \mathbf{x}_{E}

E

Adapted from (O-B et al., IJNME, 112(7), 2017)

Bilinear form (linear elasticity) at the cell level:

$$a_E(\boldsymbol{u}^h, \boldsymbol{v}^h) = \int_E \boldsymbol{\sigma}(\boldsymbol{u}^h) : \boldsymbol{\nabla} \boldsymbol{v}^h \, \mathrm{d} \boldsymbol{x}$$

 $\boldsymbol{\sigma}(\boldsymbol{u}^h) = \boldsymbol{D} : \boldsymbol{\nabla}_\mathrm{S} \boldsymbol{v}^h$

Approximation basis:

 $\mu := \{1, x, y\} \cup \{\text{nonpolynomial terms}\}$

Displacement spaces:

 $\mathcal{P}(E) =$ linear displacements

 $\mathcal{H}(E) =$ nonpolynomial displacements

$$\therefore \boldsymbol{u}^h, \boldsymbol{v}^h \in \mathcal{W}(E) = \mathcal{P}(E) \oplus \mathcal{H}(E)$$

Let
$$\Pi: \mathcal{W}(E) \to \mathcal{P}(E), \ \Pi p = p, \ \forall p \in \mathcal{P}(E).$$
 Then,
$$v^h = \Pi v^h + (v^h - \Pi v^h)$$
$$\in \mathcal{P} \qquad \in \mathcal{H}$$

The projection satisfies the orthogonality condition

$$a_E(\boldsymbol{p}, \boldsymbol{v}^h - \Pi \boldsymbol{v}^h) = 0 \quad \forall \boldsymbol{p} \in \mathcal{P}(E), \ \boldsymbol{v}^h \in \mathcal{W}(E)$$

which allows writing

$$a_E(\boldsymbol{u}^h, \boldsymbol{v}^h) = a_E(\Pi \boldsymbol{u}^h, \Pi \boldsymbol{v}^h) + a_E(\boldsymbol{u}^h - \Pi \boldsymbol{u}^h, \boldsymbol{v}^h - \Pi \boldsymbol{v}^h)$$

First term gives **consistency** and second one **stability**. The stability term can be approximated, which gives

$$a_E^h(\boldsymbol{u}^h, \boldsymbol{v}^h) := a_E(\Pi \boldsymbol{u}^h, \Pi \boldsymbol{v}^h) + s_E(\boldsymbol{u}^h - \Pi \boldsymbol{u}^h, \boldsymbol{v}^h - \Pi \boldsymbol{v}^h)$$

NIVED: Projection Operator

Using the "intrinsic" formula given in (BdV et al., M3A, 24(8), 2014), the projection operator sampled at x_E is

$$\Pi \boldsymbol{v}^{h}(\boldsymbol{x}_{E}) = \left(\frac{1}{|E|} \int_{E} \boldsymbol{\nabla} \boldsymbol{v}^{h} \, \mathrm{d} \boldsymbol{x}\right) \cdot (\boldsymbol{x} - \boldsymbol{x}_{E}) + \boldsymbol{v}_{E}^{h}$$

where

$$\frac{1}{|E|} \int_{E} \nabla \boldsymbol{v}^{h} \, \mathrm{d}\boldsymbol{x} = \frac{1}{|E|} \int_{E} \nabla_{\mathrm{S}} \boldsymbol{v}^{h} \, \mathrm{d}\boldsymbol{x} + \frac{1}{|E|} \int_{E} \nabla_{\mathrm{AS}} \boldsymbol{v}^{h} \, \mathrm{d}\boldsymbol{x}$$
$$\boldsymbol{v}_{E}^{h} := \boldsymbol{v}^{h}(\boldsymbol{x}_{E})$$

Virtual element decomposition:

 $a_E^h(\boldsymbol{u}^h, \boldsymbol{v}^h) := a_E(\Pi \boldsymbol{u}^h, \Pi \boldsymbol{v}^h) + s_E(\boldsymbol{u}^h - \Pi \boldsymbol{u}^h, \boldsymbol{v}^h - \Pi \boldsymbol{v}^h)$

consistency

stability

Nodal integration: sampling the consistency part at x_E and using the projection operator leads to

$$a_{E}(\Pi \boldsymbol{u}^{h}, \Pi \boldsymbol{v}^{h}) = \int_{E} \boldsymbol{\sigma}(\Pi \boldsymbol{u}^{h}) : \boldsymbol{\nabla}\Pi \boldsymbol{v}^{h} \, \mathrm{d}\boldsymbol{x}$$

$$= \boldsymbol{\sigma}(\Pi \boldsymbol{u}^{h}(\boldsymbol{x}_{E})) : \boldsymbol{\nabla}\Pi \boldsymbol{v}^{h}(\boldsymbol{x}_{E}) |E|$$

$$= \left(\frac{1}{|E|} \int_{E} \boldsymbol{\nabla}_{\mathrm{S}} \boldsymbol{v}^{h} \, \mathrm{d}\boldsymbol{x}\right) : \boldsymbol{D} : \left(\frac{1}{|E|} \int_{E} \boldsymbol{\nabla}_{\mathrm{S}} \boldsymbol{u}^{h} \, \mathrm{d}\boldsymbol{x}\right) |E|$$

$$= \boldsymbol{q}^{\mathsf{T}} \, \boldsymbol{K}_{E}^{\mathrm{c}} \, \boldsymbol{d} \quad \text{(consistency stiffness)}$$

Virtual element decomposition:

 $a_E^h(\boldsymbol{u}^h, \boldsymbol{v}^h) := a_E(\Pi \boldsymbol{u}^h, \Pi \boldsymbol{v}^h) + s_E(\boldsymbol{u}^h - \Pi \boldsymbol{u}^h, \boldsymbol{v}^h - \Pi \boldsymbol{v}^h)$

consistency

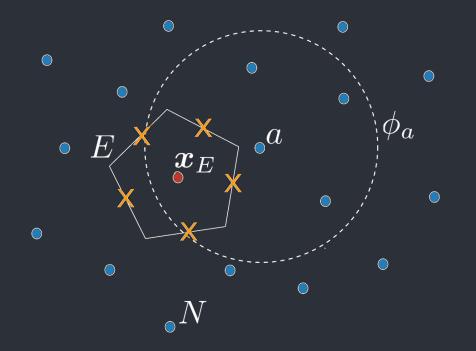
stability

For the stability part choose s_E such that it is positive definite and scales uniformly with the exact bilinear form (e.g.: Gain et al., CMAME, 282, 2014):

$$egin{aligned} s_E(\Pioldsymbol{u}^h,\Pioldsymbol{v}^h) &= oldsymbol{q}^{\mathsf{T}}(oldsymbol{I}-\Pi)\,lpha_E\,oldsymbol{I}\,(oldsymbol{I}-\Pi)oldsymbol{d}\ &=oldsymbol{q}^{\mathsf{T}}\,oldsymbol{K}_E^{\mathrm{s}}\,oldsymbol{d} & (ext{stability stiffness}) \end{aligned}$$

where α_E is an scaling parameter.

NIVED: Implementation



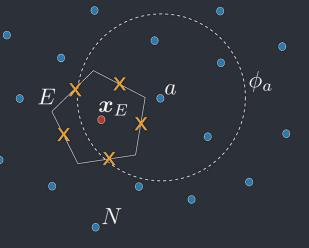
- cloud of nodes (including -) from 1 to N
- • is the integration point with coordinates \boldsymbol{x}_E
- E is the integration cell and the representative nodal volume
- X are auxiliary integration points on the boundary of the cell
- Contribution: support of ϕ_a touches the cell

Everything reduces to the computation of the constant strain over the element:

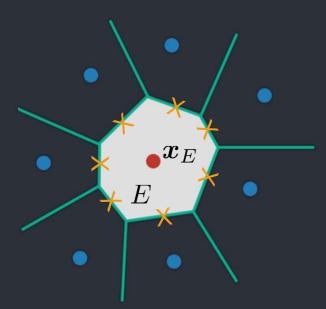
$$\frac{1}{|E|} \int_E \boldsymbol{\nabla} \boldsymbol{v}^h \, \mathrm{d} \boldsymbol{x} = \frac{1}{|E|} \int_E \boldsymbol{\nabla}_{\mathrm{S}} \boldsymbol{v}^h \, \mathrm{d} \boldsymbol{x} + \frac{1}{|E|} \int_E \boldsymbol{\nabla}_{\mathrm{AS}} \boldsymbol{v}^h \, \mathrm{d} \boldsymbol{x}$$

By applying the divergence theorem, these integrals are evaluated on the boundary of the cell:

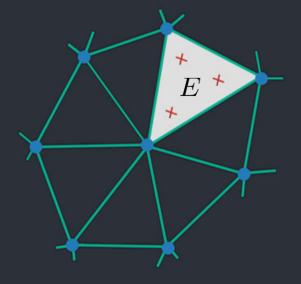
$$egin{aligned} &rac{1}{|E|}\int_E oldsymbol{
aligned} \mathbf{v}_{
m S}oldsymbol{v}^h\,\mathrm{d}oldsymbol{x} &= rac{1}{2|E|}\int_{\partial E} \left(oldsymbol{v}^h\otimesoldsymbol{n}+oldsymbol{n}\otimesoldsymbol{v}^h
ight)\,\mathrm{d}s \ &rac{1}{|E|}\int_E oldsymbol{
aligned} \mathbf{v}_{
m AS}oldsymbol{v}^h\,\mathrm{d}oldsymbol{x} &= rac{1}{2|E|}\int_{\partial E} \left(oldsymbol{v}^h\otimesoldsymbol{n}-oldsymbol{n}\otimesoldsymbol{v}^h
ight)\,\mathrm{d}s \ & oldsymbol{e} \end{aligned}$$



Numerical Tests: Integration Cells



Meshes use the same node set



NIVED

1-pt per edge (basis function only)

MEM

Internal Gauss points: 1-pt, 3-pt, 6-pt, 12-pt (basis functions and derivatives)

Test: Patch Test

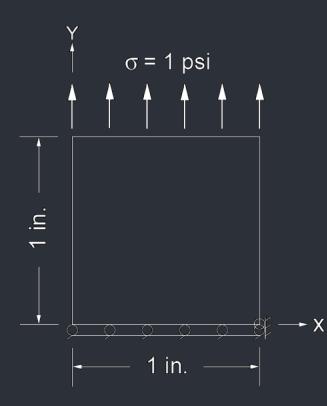


Table 1: Relative error in the H^1 seminorm

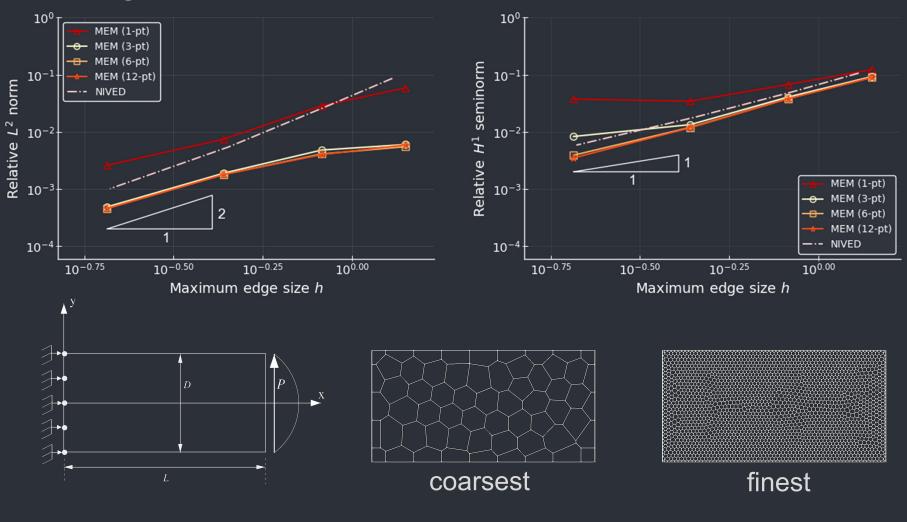
Method	Gauss rule	Regular	Distorted	Unstructured
MEM	1-pt	1.4×10^{-2}	5.4×10^{-2}	2.5×10^{-2}
MEM	3-pt	2.6×10^{-3}	5.3×10^{-3}	4.8×10^{-3}
MEM	6-pt	5.4×10^{-5}	1.9×10^{-3}	1.3×10^{-3}
MEM	12-pt	2.3×10^{-7}	$7.7 imes 10^{-4}$	4.5×10^{-4}
NIVED	1-pt/edge	3.6×10^{-15}	5.2×10^{-15}	$7.8 imes 10^{-15}$

Table 2: Relative error in the L^2 norm					
Method	Gauss rule	Regular	Distorted	Unstructured	
MEM	1-pt	1.0×10^{-2}	2.0×10^{-2}	1.7×10^{-2}	
MEM	3-pt	2.3×10^{-3}	1.6×10^{-3}	$1.6 imes 10^{-3}$	
MEM	6-pt	5.0×10^{-5}	$8.0 imes 10^{-4}$	1.2×10^{-3}	
MEM	12-pt	2.2×10^{-7}	3.0×10^{-4}	5.0×10^{-4}	
NIVED	1-pt/edge	3.6×10^{-15}	4.1×10^{-15}	2.5×10^{-15}	

Computational & Applied Mechanics Lat

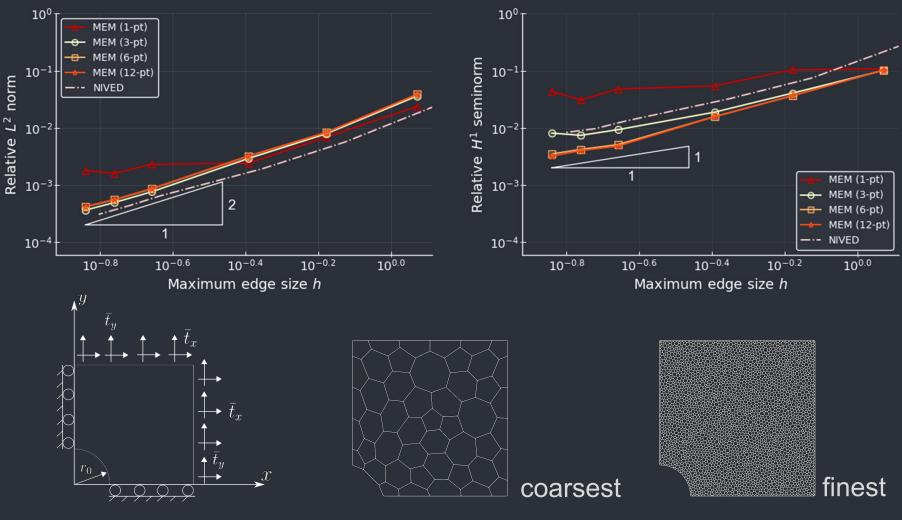
Test: Cantilever Beam

Convergence



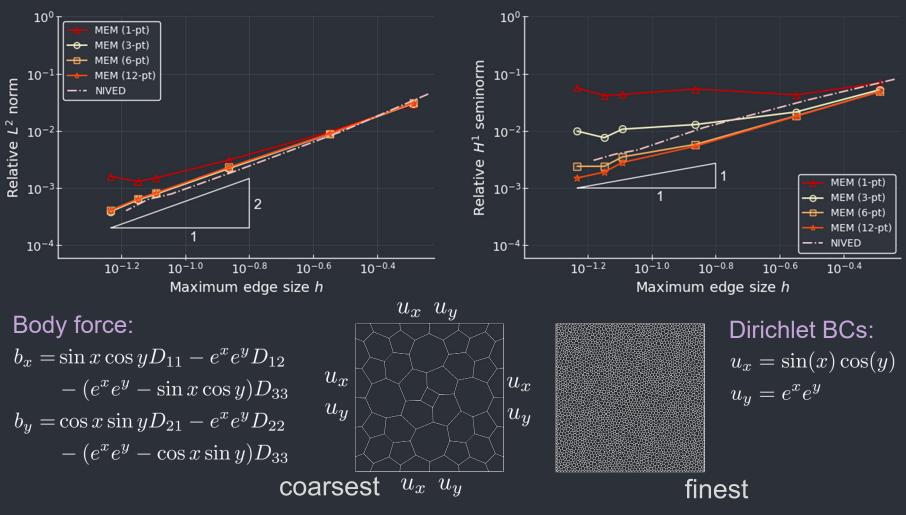
Test: Plate With a Hole

Convergence



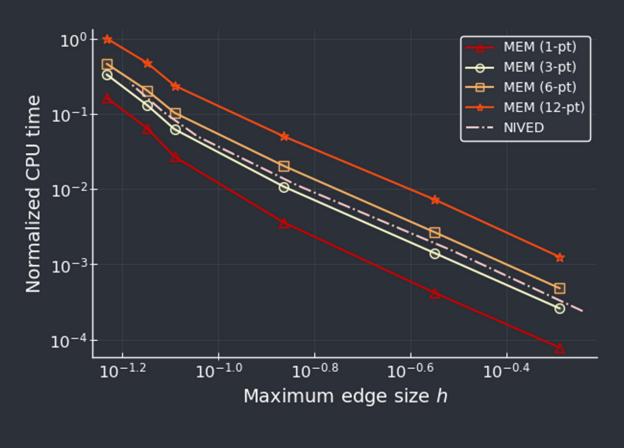
Test: Manufactured Problem

Convergence



Test: Manufactured Problem (Cont'd)

Timing



Normalized CPU time = $T/T_{\rm max}$

Summary and Outlook

- Developed NIVED (Nodal Integration VED) for linear elasticity
- VED provides consistency (patch test satisfaction) and optimal convergence to the nodal integration method
- Computational cost: NIVED similar to 3-pt Gauss rule
- NIVED for nonlinear problems (elastoplasticity) is under development
- Outlook: large deformations, 3D simulations

- M3A: Mathematical Models and Methods in Applied Sciences
- CMAME: Computer Methods in Applied Mechanics and Engineering
- IJNME: International Journal for Numerical Methods in Engineering
- IJNMF: International Journal for Numerical Methods in Fluids
- CM: Computational Mechanics

