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Abstract

In this paper, we extend the concept of MINI element over triangles to star convex arbitrary
polytopes. This is achieved by employing the volume averaged nodal projection (VANP)
method over polytopes in combination with the strain smoothing technique. Within this
framework, the dilatation strain is projected onto the linear approximation space, thus re-
sulting in a purely displacement based formulation. The stability is ensured by enhancing
the displacement field with bubble basis functions. The salient features of the proposed
method are two fold: the VANP alleviates the locking phenomenon and the strain smooth-
ing suppresses the need to compute the derivative of the basis functions, thus reducing the
computational burden. Various benchmark problems in two and three dimensions are nu-
merically solved to demonstrate the robustness, accuracy and the convergence properties of
the proposed framework.

Keywords: VANP operator, nearly-incompressible elasticity, bubble basis functions, strain
smoothing (SFEM), arbitrary polytopes, volumetric locking.

1. Introduction

The introduction of elements with arbitrary edges and faces in two and three dimensions,
respectively, has revolutionized and generalized the finite element method (FEM) and has
led to the development of the polygonal FEM [1–4]. Some of the salient features of the
PFEM are: (a) relaxes the restriction on element topology; (b) can work with non-conforming
elements and quadtree/octree decomposition without splitting into simplex elements or using
constraint equations [5] and (c) offers greater flexibility in meshing complex geometries [3, 6, 7]
and in fracture problems [8]. However, one of the challenges faced with the PFEM is in
evaluating the integral of the weak form exactly, which affects the accuracy of the results.
The issue is basically due to lack of polynomial consistency of the discrete system causing
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a limit on the convergence of the finite element solutions [9, 10]. Thus, various efforts have
been put to develop the quadrature scheme for the PFEM [10–12]. Inspired by the nodal
integration scheme proposed for the meshfree methods [13–15] and later extended to the finite
element method by Liu et al., [16], Francis and Natarajan [17–19] employed the cell-based
strain smoothing scheme for numerically integrating the terms in the bilinear and linear form.

Due to aforementioned properties, in the recent past, considerable effort has been made to
develop methods with polygonal discretizations, viz., virtual element method [20–23], virtual
node method [24], smoothed finite element method [18, 25], scaled boundary finite element
method [17, 26, 27] and the discontinuous Galerkin method [28]. Since its inception, the
PFEM has been employed to solve problems involving large deformations [29], contact prob-
lems [30] and fracture mechanics [8]. However, to the best of author’s knowledge, only a
few papers have employed polygonal finite element method for nearly incompressible elastic-
ity [10, 31] and fluid flow [11]. Talischi et al., [11] employed a linearly complete barycentric
coordinates with piecewise constant pressure interpolation over Voronoi type meshes. It was
shown that the formulation was unconditionally stable without any additional treatment.
In their formulation, pressure was treated as additional variable, moreover, the pressure is
discontinuous across the element boundaries.

The main objectives of the paper are: (a) to extend the recently proposed ‘volume av-
eraged nodal projection’ (VANP) method to arbitrary polytopes (in both two and three
dimensions) and (b) employ the cell-based strain smoothing technique to integrate the terms
in the bilinear linear form. The VANP is a purely-displacement based formulation introduced
by Ortiz et al., [32–34]. Unlike the previous work, herein we present a pure displacement
formulation using the VANP technique and consider both polygonal and polyhedral finite
elements. Within this framework, the displacement field is approximated over the enhanced
nodes with bubble basis function ensuring stability and the linearly complete pressure field
is approximated over the standard nodes using Wachspress basis functions. The locking-free
behavior of the VANP approach is rendered by projecting the dilatation strain onto the linear
approximation space. Few other approaches of stabilized mixed formulation with lower-order
elements and equal order interpolants using local L2 projection for pressure are discussed in
[35, 36] and the projection of the pressure field onto a lower space through a least-squares
based projection technique are given in [37, 38]. The efficacy and robustness of the arbitrary
polytopes in nearly incompressible regime are presented by solving few benchmark problems.
The salient features of the work are:

• the VANP method alleviates locking phenomenon and is purely a displacement based
formulation. The pressure is continuous across the element boundaries and computed
in the post-processing step.

• the strain smoothing suppresses the need for isoparametric mapping and hence the
computation of the Jacobian is eliminated.

The rest of the manuscript is organized as follows: Section 2 summarizes the formulation
consisting of the strong form for the incompressible linear elastic isotropic material, the u-p
mixed weak form, the construction of Wachspress basis functions and bubble basis functions
and the VANP method. Section 4 consists of the two dimensional and three dimensional
numerical examples to prove the efficiency and the convergence properties of the proposed
framework, followed by the conclusions and future work.
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2. Formulation

2.1. Strong Form

Consider an elastic body in d = {2, 3} dimensional space defined by an open domain
Ω ⊂ Rd, bounded by the d - 1 dimensional surface Γ such that Γ = Γu ∪ Γt and Γu ∩
Γt = ∅. The governing equation with boundary conditions using mixed formulation for both
incompressible and nearly-incompressible linear elastic isotropic material is described below:

∇ · σ + b = 0 in Ω (1a)

∇ · u+
p

λ
= 0 in Ω (1b)

u = u on Γu (1c)

σ.n = t on Γt (1d)

where u describes the nodal displacement of the elastic body subjected to external tractions
t and body force b. The Γu is the Dirichlet boundary and Γt is the Neumann boundary. The
Cauchy stress tensor σ is related to the small strain tensor ε and the pressure parameter p
by the following constitutive relation:

σ(u, p) = −pI+ 2µ∇u (2)

where λ and µ are the Lame’s constant which are defined as:

λ =
Eν

(1 + ν)(1− 2ν)
(3)

µ =
E

2(1 + ν)
(4)

where ν is the Poisson’s ratio and E is the Young’s modulus of the material. The kinematic
relation between the small strain tensor ε and the displacement vector u is:

ε = ∇u =
1

2

(
∇u+∇uT

)
(5)

For nearly-incompressible linear elastic body, as ν tends to 0.5, the volumetric strain is zero,
therefore we can say ∇.u = εvol = tr(ε) ≈ 0 Thus, the hydrostatic pressure field p can be
approximate as :

p = −λ∇.u = −λtr(ε) = −λεvol (6)

2.2. Weak Form

Let U and V be the trial and the test spaces for the displacement field, respectively, such
that

U := {u : u ∈ H1(Ω),u = u on Γu}
V := {δu : δu ∈ H1(Ω), δu = 0 on Γu}

where H1(Ω) denotes the Sobolev space of order one. Since, only nodal variable pressure is
required, let p and δp be the trial and the test functions for the pressure variable, respectively.
Such that p ∈ P and δp ∈ P , we define P by
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P := {p : p ∈ L2(Ω),
∫
Ω

p dΩ = 0}

where L2(Ω) denotes the Sobolev space of order zero. The u − p mixed weak form is given
by

2µ

∫
Ω

∇u : ∇δu dΩ−
∫
Ω

p∇.δu dΩ =

∫
Ω

b.δu dΩ +

∫
Γt

t.δu dΓ ∀δu ∈ V (7a)

∫
Ω

δp (∇.u+
p

λ
) dΩ = 0 ∀δp ∈ P (7b)

The discretization of the weak form leads to a system of linear equations. In the standard
u − p mixed formulation both the displacement and the pressure are independent nodal
variables. The pressure and the displacement field in Equation (7) is discretized using

ph(x) =
Ns∑
I=1

ϕI(x)pI (8a)

δph(x) =
Ns∑
I=1

ϕI(x)δpI (8b)

uh(x) =
N+∑
I=1

ϕI(x)uI (9a)

δuh(x) =
N+∑
I=1

ϕI(x)δuI (9b)

where p is the nodal pressure, u is the nodal displacement and ϕI are the associated basis
functions. In order to ensure the stability of the method, the displacement field is enhanced
with bubble basis functions by adding an additional bubble node (denoted by N b) at the
geometric center of each element as shown in Figure 1. The resulting enhanced node set is
denoted by N+ and the standard node set is denoted by N s, such that N+ = N s∪N b. From
Equations (8)-(9), we can observe that the pressure field is approximated over the standard
node set N s, whereas, the displacement field is approximated over the enhanced node set
N+.

In this paper, we discretize the domain with arbitrary polygons and polyhedra in two and
three dimensions, respectively. While there are different ways to represent the basis functions
over arbitrary polytopes [2], we choose the Wachspress interpolants to describe the unknown
fields [39]. These functions are rational polynomials and the construction of the Wachspress
basis function is given as: Let P ⊂ IR3 be a simple convex polyhedron with facets F and
vertices V as shown in Figure 2. For each facet f ∈ F , let nf be the unit outward normal
and for any x ∈ P , let hf (x) denote the perpendicular distance of x to f , which is given by

hf (x) = (v − x) · nf (10)
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�a) �b)

Figure 1: Schematic representation of enhanced node set N+ for both the two dimensional and three dimen-
sional formulation, respectively. The bubble node set N b is shown by the filled square inside the element,
located at the geometric center of each arbitrary polytope.

for any vertex v ∈ V that belongs to f . For each vertex v ∈ V , let f1, f2, f3 be the three
faces incident to v and for x ∈ P , let

wv(x) = det(pf1 ,pf2 ,pf3) (11)

where, pf := nf/hf (x) is the scaled normal vector, f1, f2, · · · , fd are the d faces adjacent to
v listed in an counter-clockwise ordering around v as seen from outside P (see Figure 2) and
det denotes the regular vector determinant in Rd. The shape functions for x ∈ P is then
given by

ϕv(x) =
wv(x)∑

u∈V
wu(x)

. (12)

The Wachspress basis functions are the lowest order shape functions that satisfy boundedness,
Kronecker delta property, linearity and linear consistency over arbitrary convex polytopes as
shown in Figure 3. The bubble basis functions denoted by ϕb are zero along the boundaries
of the element and at the standard nodes N s and one at the bubble node N b of the element
as shown in Figure 3. Mathematically, the bubble basis functions is given by;

ϕbe = (N s
e )

2

Ns
e∏

I=1

ϕI (13)

where, N s
e , ϕbe are the standard node set and bubble node of an element Ωe as shown in

Figure 3.
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Figure 2: Construction for the Wachspress basis function.

(a) (b)

(c) (d)

Figure 3: Wachspress basis function: (a) standard node of a pentagon, (b) enhanced/bubble node of a
pentagon, (c) standard node of a polyhedra and (d) bubble node of a polyhedra.
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2.3. Volume-average nodal projection (VANP) operator

The VANP method inspired by the B-bar method [40], was introduced by Ortiz et al., [32–
34] to alleviate volumetric locking for nearly incompressible media in the meshfree methods.
The key advantage of the proposed method is that the displacement field and the pressure
field are coupled. Such that, the classical u − p mixed formulation can be translated into
a purely displacement based formulation using the VANP method. Such that, the classical
u−p mixed formulation can be translated into a purely displacement based formulation using
the VANP method, which was originally proposed in the finite element pressure projection
[37] and RKPM meshfree pressure projection [38] for nearly incompressible hyperelasticity.
This implies that the displacement field is the only nodal solution and the pressure field is
obtained as post processing.
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Figure 4: Schematic representation of two and three dimensional integration cell Ωc, used for the computation
of the VANP operator over a current node ‘c’.

In this technique, for each current node ‘c’ of an element (n-sided polygon or polyhedron)
an integration cell denoted by Ωc is created, as shown in Figure 4. All the elements attached
to the current node ‘c’ becomes the part of the integration cell Ωc as shown in Figure 4.
The integration cell Ωc created is used to evaluate the projection operator denoted by π,
which is later used to calculate the modified strain denoted by εh(uh) to alleviate locking
phenomenon. In this process, an additive decomposition is applied to the standard total
strain, which leads to:

εh(uh) = εdevh (uh) + εvolh (uh)

=

(
εh(uh)−

1

3
tr εh(uh)I

)
+

1

3
tr εh(uh)I (14)

In the present method, the dilatational part is projected onto the another space which helps
to alleviate the volumetric locking. The projection operator denoted by π operates over the
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dilatational strain εvolh (uh). Thus, the projected dilatational strain is denoted by εvolh (uh).
The total modified strain is called as a discrete modified strain denoted by εh(uh) is evaluated
as:

εh(uh) = εdevh (uh) + π
[
εvolh (uh)

]
= εdevh (uh) + εvolh (uh) (15)

The pressure constraint is obtained by substituting Equations (8)-(9) into Equation (7b).
It can be shown that after relying on the arbitrariness of the nodal pressure test functions
the discrete pressure term leads to the following:∫

Ω

Ns∑
I=1

ϕI(x)δpI

{
∇.uh +

1

λ

Ns∑
I=1

ϕI(x)pI

}
dΩ = 0 ∀δp ∈ P (16a)

∫
Ω

ϕI(x)∇.uh dΩ +
1

λ

Ns∑
I=1

∫
Ω

ϕI(x)ϕI(x)pI dΩ = 0 (16b)

The above integration is performed over an integration cell Ωc to evaluate pressure field at
any node for example say node ‘c’ (see Figure 4) is given by

pc(x) = −λ
Ns∑
I=1

ϕI(x)

∫
Ωc

ϕc(x)∇.uh dΩ∫
Ωc

ϕc(x) dΩ

= −λ
Ns∑
I=1

ϕI(x)

∫
Ωc

ϕc(x)ε
vol
h dΩ∫

Ωc

ϕc(x) dΩ
(16c)

which is called the volume-averaged nodal pressure. The nodal pressure is evaluated as post
processing using only the standard node set N s. From Equation (16c), the bar operator (πc)
is given by

πc[.] =

∫
Ωc

ϕc(x)[.] dΩ∫
Ωc

ϕc(x) dΩ
(17)

The VANP operator denoted π[.] is evaluated by the linear combination over the bar operator
given as:

π[.] =
Ns∑
I=1

ϕI(x)πc[.] (18)

Thus, the projected dilatational strain ϵvolh is computed as follows:

εvolh = π[εvolh ] =
Ns∑
I=1

ϕI(x)πc[ε
vol
h ] =

Ns∑
I=1

ϕI(x)


∫
Ωc

ϕc(x)ε
vol
h dΩ∫

Ωc

ϕc(x) dΩ

 (19)
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2.4. Discrete equations

The domain Ω is partitioned into nel non-overlapping polygonal elements with straight
edges and polyhedral elements with planar/non-planar faces in two dimensions and three
dimensions, respectively. The proposed method is purely the displacement based method as
the pressure field is derived in terms of the volumetric strain. In order to ensure stability of
the solution, the displacement field is computed over the enhanced node set N+. As in finite
element the discrete strain relation is given by:

εh(uh) =
N+∑
I=1

BI(x)uI (20a)

εh(δuh) =
N+∑
I=1

BI(x)uI (20b)

εvolh (uh) =
Ns∑
I=1

ϕI(x)πc

[
mT

N+∑
I=1

BI

]
uI (20c)

εvolh (δuh) =
Ns∑
I=1

ϕI(x)πc

[
mT

N+∑
I=1

BI

]
δuI (20d)

where m is the linear operator and BI(x) is the strain displacement matrix for enhanced
node N+, given by:

m = [1 1 0]T (21a)

BI =

 ϕI,x 0
0 ϕI,y

ϕI,y ϕI,x

 (21b)

for two dimensions and in three dimensions

m = [1 1 1 0 0 0]T (22a)

BI =


ϕI,x 0 0
0 ϕI,y 0
0 0 ϕI,z

ϕI,y ϕI,x 0
ϕI,z 0 ϕI,x

0 ϕI,z ϕI,y

 (22b)

where ϕI,j(j = x, y, z) is the derivative of shape functions. The above strain is computed
over the displacement degrees of freedom i.e. over the enhanced node set. These discrete
quantities are substituted into weak form which leads to the following system of equations:(

Kdev +Kvol
)
u = f (23)
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where u is the column vector of nodal coefficients. The external force vector, f and the
stiffness matrix are given by:

Kdev =

∫
Ω

BTCµB dΩ (24a)

Kvol = λ

∫
Ω

BTm
Ns∑
I=1

ϕIπc

[
mTB

]
dΩ (24b)

f =

∫
Ω

ϕIb dΩ +

∫
Γt

ϕIt dΓ (24c)

and the constitutive matrix is given by:

Cµ =

 2µ 0 0
0 2µ 0
0 0 µ

 (25)

in two dimensions, and

Cµ =


2µ 0 0 0 0 0
0 2µ 0 0 0 0
0 0 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 (26)

in three dimensions. The nodal coefficients i.e. nodal displacements are obtained by solving
Equation (23).

3. Constant smoothing

In this paper, the constant smoothing method is used for computing the terms in Equa-
tion (23). For the purpose of numerical integration, the elements are divided into subcells
denoted by Ωs as shown in Figure 5. In this study, we use triangular subcells in the two di-
mensional space and tetrahedral subcells in the three dimensional space as shown in Figure 5.
The strain smoothing technique is then applied within each subcell to evaluate the modified
strain. For simplicity of the notation, the derivation of the smoothing scheme is given in
detail only for the two-dimensions. The Cartesian coordinate system is chosen, where for
convenience x ≡ x1 and y ≡ x2. In addition, nj (j = 1, 2) is the j-th component of the unit
outward normal to a cell edge in the Cartesian coordinate system. The discrete strain field
ε̃hij that yields the modified strain-displacement matrix B̃ that is used to build the stiffness
matrix is computed by a weighted average of the standard strain field εhij in each subcell Ωh

s ,
as follows:

ε̃hij =

∫
Ωh

s

εhij(x)f(x)dΩ, (27)
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where f(x) is a smoothing function. On writing Equation (27) at the basis functions deriva-
tives level, its right-hand side can be expressed in terms of the divergence theorem, as follows:∫

Ωh
s

ϕI,jf(x) dΩ =

∫
Γh
s

ϕIf(x)nj dΓ−
∫
Ωh

s

ϕIf,j(x) dΩ. (28)

where Ωs is the domain of the smoothing cell bounded by Γs and nj are the outward normals.
The ϕI are the Wachspress shape functions at the cartesian coordinates and ϕI,j are the
modified derivative to be evaluated for the element. The above Equation (28) was coined
as divergence consistency in Duan et al. [41], where it was introduced to correct integration
errors in second- and third-order meshfree approximations. This divergence consistency was
later used to correct integration errors in the meshfree method [42, 43]. The above Equa-
tion (28), originated by the so called “integration constraint” in Chen et al. [13] in the form
of divergence condition, was coined as divergence consistency in Duan et al. [41]. The exten-
sion of integration constraint to higher order meshfree approximation has been introduced
in [14, 42, 43]. In the constant smoothing method, the smoothing function is chosen to be a
constant, that is,

f(x) = 1 (29)

The divergence consistency equation reduces to,∫
Ωh

s

ϕI,j dΩ =

∫
Γh
s

ϕInj dΓ (30)

The above equation is the strain smoothing of the stabilized conforming nodal integration
(SCNI) [13] and can be used to obtain the modified derivative, ϕI,j. On numerical integration
of the above equation over Ωs. We get,

mg∑
m=1

WmϕI,j(xm) =
sl∑

s=1

gl∑
g=1

ϕI(xg)n
L
j Wg (31)

where mg and Wm are number of Gauss points and corresponding weights per smoothing
cell, respectively. Only one Gauss point (mg) is required for the numerical integration of the
smoothing cell as shown in Figure 5. Following the sub-domain stabilized conforming nodal
integration originally proposed in [15], only one Gauss point (mg) is required for the numerical
integration of the smoothing cell as shown in Figure 5. Similarly, gl and Wg are Gauss points
and corresponding weights along the boundary (edges) of the subcell, respectively. The Gauss
points required for the numerical integration along the boundaries of the smoothing cell are:
two (i.e. gl = 2) for two dimensions and three (i.e. gl = 3) for the three dimensions, as shown
in Figure 5. While sl represents the number of edges/faces. The modified derivatives of the
shape functions thus obtained using cell based smoothing technique are used to compute the
strain displacement matrix i.e BI as shown in Equations (21) and (22), respectively.

4. Numerical Examples

In this section, we demonstrate the accuracy and the convergence properties of the pro-
posed VANPmethod with constant smoothing over arbitrary polytopes for nearly-incompressible
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�a) �b)

Polygonal/Polyhedral �nite elements (�e)

Smoothing cell (�s)

Field Nodes

Centriod of the element/Bubble node

Centriod of the element face

Centriod of the smoothing cell

Integration points on the edge/face of the elements

Figure 5: Schematic representation of the integration points within the domain shown by the centroid of the
smoothing cell and on the edges/faces of the subcell Ωs shown by the cross for constant smoothing, where
the filled square node (i.e the centroid of the element) is to discretize the element into the smoothing cells.

problems in two and three dimensions. The discretization is based on centroid Voronoi tes-
sellation. The two dimensional region is discretized with polygons using Polymesher [3], a
MATLAB based meshing tool. For three dimensional problems, we employ the approach
proposed in [19] to generate polyhedral meshes. The results from the proposed method are
compared with MINI [44] and analytical solutions where available. The relative error in
L2 norm and H1 seminorm is used to assess the accuracy and the convergence rates of the
proposed framework. Whilst discussing the results, the following convention is adopted:

• VANP-CS- for the proposed VANP method with constant smoothing over arbitrary
polytopes.

• VANP- for the VANP method over arbitrary polytopes.

• PFEM- for the conventional polygonal finite element method.
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• MINI- for the triangular and tetrahedral finite element.

4.1. Applications to two dimensional problems

We first study the convergence and the accuracy properties of the proposed VANP-CS
over arbitrary polytopes in two dimensions. Three problems are considered: (a) patch test,
(b) cantilever beam with end shear load and (c) driven cavity flow.

Patch test. In the first example, the convergence and the accuracy properties are demon-
strated with a linear patch test and the results are compared with the classical PFEM. For
this, consider a unit square, Ω ∈ (0, 1)2 subjected to the following conditions on the boundary,
Γu: (

u(x, y)
v(x, y)

)
=

(
x

x+ y

)
(32)

(a) (b)

(c) (d)

Figure 6: Square domain: the sample meshes showing domain discretization with polygonal element.

Figure 6 shows four different polygonal meshes employed for this study. A state of plane
strain condition is assumed with the following material properties: Young’s modulus E =
3×107 MPa and Poisson’s ratio ν = 0.499 [45]. The relative error in the L2 norm and H1

seminorm are given in Table 1. It can be inferred from the results that the patch test is
satisfied up-to machine precision for the nearly incompressible material behavior with the
proposed VANP-CS method over the arbitrary polygons in two dimensions.
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Table 1: Relative error in the L2 norm and H1 seminorm for the two-dimensional linear patch test.

Mesh PFEM VANP-CS

L2 H1 L2 H1

(a) 1.24×10−06 6.20×10−06 4.67×10−15 1.89×10−14

(b) 1.94×10−06 7.26×10−06 1.62×10−14 2.95×10−14

(c) 1.54×10−05 7.71×10−05 2.61×10−14 7.81×10−14

(d) 3.47×10−05 1.10×10−04 2.91×10−14 1.10×10−13

Cantilever beam. In this two dimensional problem, consider a cantilever beam of length L =
8 m and height D = 4 m, subjected to a parabolic shear load, P = 250 N at the free end as
shown in Figure 7(a).

D

L

P

�

y L�� L��
A

A

(a)

(b) (c)

Figure 7: Cantilever beam: (a) geometry and boundary conditions, (b-c) representative triangular (901
elements) and polygonal mesh (320 elements), respectively.
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The exact solution for this problem is given by [46]:

u(x, y) =
Py

6EI

[
(6L− 3x)x+ (2 + ν)

(
y2 − D2

4

)]
v(x, y) = − P

6EI

[
3νy2(L− x) + (4 + 5ν)

D2x

4
+ (3L− x)x2

]
(33)

where I =
D3

12
is the moment of inertia, E = E/(1 − ν2), ν = ν/(1 − ν) for plane strain

condition. Figure 7(c) shows a representative polygonal mesh employed in this example.
The convergence of the relative error in the L2 norm and H1 seminorm with mesh refinement
with the proposed framework is shown in Figure 8 and the values are tabulated in Table 2.
The influence of different Poisson’s ratio (ν = 0.3, 0.45, 0.4999999) is also shown. It can be
inferred that the proposed framework yields accurate results for all values of Poisson’s ratio
and converges at the optimal convergence rate. It can be further opined that the VANP-CS
suppresses the volumetric locking.
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Figure 8: Cantilever beam: Convergence rate for the L2 norm and H1 seminorm using polygonal element is
optimal and accurate with VANP-CS for different Poisson’s ratio i.e for both the compressible and nearly-
incompressible problem.

Next, the convergence and the accuracy of the proposed VANP-CS is demonstrated by
comparing the results with conventional PFEM2 and with MINI element. For comparison

2without nodal projection (i.e. PFEM) and without strain smoothing (i.e., VANP) to compute the terms
in the bilinear/lienar form
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Table 2: The convergence of the VANP-CS method with mesh refinement for different Poisson’s ratio.

Element size
h

L2 norm H1 seminorm
ν = 0.3 ν = 0.45 ν = 0.4999999 ν = 0.3 ν = 0.45 ν = 0.4999999

0.1030 0.0144 0.0120 0.0087 0.0412 0.0309 0.0270
0.0668 0.0069 0.0058 0.0043 0.0295 0.0223 0.0198
0.0554 0.0037 0.0034 0.0028 0.0219 0.0168 0.0152
0.0347 0.0017 0.0014 0.0011 0.0149 0.0118 0.0108
0.0261 0.0008 0.0006 0.0005 0.0101 0.0082 0.0075

with the MINI element, the domain is discretized with triangular elements (see Figure 7(b)
for a representative mesh). Figure 9(a) shows the relative error in the L2 norm as a function
of Poisson’s ratio for different approaches for a mesh of 160 polygonal elements and 217 trian-
gular elements. For comparison, the dofs are kept almost the same for comparison. It is clear
that the conventional PFEM suffers from volumetric locking in the near incompressibility
limit, whilst all other approaches are free from locking. Note that VANP over polygons and
VANP-CS both alleviate locking syndrome, however, VANP over polygons requires ‘many’
integration points to compute the bilinear and linear form. The strain smoothing on the other
hand, reduces the computational burden. The convergenece of the relative error in the L2

norm and H1 seminorm with mesh refinement for different approaches for the Poisson’s ratio
ν = 0.4999999 is shown in Figure 9. It can be opined that the proposed framework VANP
with and without strain smoothing alleviates volumetric locking, yields accurate results and
converges at optimal convergence rate. Figure 10 shows the pressure contour for the cantilever
beam when meshed with triangular and poylgonal elements. From Figures 10(a)-10(b), it can
be seen that the nodal pressure solution does not show any osciallation. Figure 10(c) shows
the pressure profile through the thickness of the beam at x = 4 for conventional PFEM,
MINI and VANP-CS. The conventional PFEM shows pressure oscillations, whilst MINI and
VANP-CS does not show any pressure oscillations for same degrees of freedom, as expected.
Moreover, we can observe that the performance of coarser polygonal meshes is similar to the
performance of the simplest finite element (i.e. triangular elements).

Poiseuille flow problem. Next, we consider Poiseuille flow problem. For this example, we
consider a two dimensional unit square domain under plane strain condition with a nearly
incompressible limit. Figure 11(a) shows the geometry and the boundary conditions employed
in this study. The analytical solution for the displacement and the pressure is given by:

u = 4y(1− y); v = 0; P = 8(1− x). (34)

The analytical displacements are prescribed on the boundary of the domain and the left
bottom corner is subjected to zero pressure condition (see Figure 11(a). A representative
polygonal mesh used is shown in Figure 11(b). Figure 12 shows the convergence of the
relative error in the displacement and the pressure with mesh refinement. It can be inferred
that the method yields accurate results and converges at optimal convergence rate in both
the displacement and pressure. Figure 13 shows the displacement contours along the x
direction and displacement profile along the section B-B. It is seen that the proposed method
is accurate even on a coarser grid.
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Figure 9: Cantilever beam: (a) Relative error in the L2 norm for different Poisson’s ratio using polygonal
elements (PFEM, VANP, VANP-CS) (160 polygonal elements with 638 degrees of freedom) and triangular
elements (MINI) (217 triangular elements with 678 degrees of freedom). (b) Convergence rate for the relative
error in L2 norm and H1 seminorm for ν = 0.4999999 using different methods.
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Figure 10: Cantilever beam discretized with triangular and polygonal elements with 11274 degrees of freedom
for both the elements: (a) nodal pressure for 1890 polygonal elements (b) nodal pressure for 3724 triangular
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Figure 13: Poiseuille flow: (a) Displacement in x direction contour plot, (b) Nodal pressure (Pa) profile using
polygonal elements, (c) Displacement in x direction along section B-B, for different polygonal discretization
and (d) Pressure along section A-A, for different polygonal discretization.

The pressure profile for this problem is shown in Figure 13(b) for the finest mesh. This
shows the stability of pressure within the domain for nearly incompressibility limit of ν =
0.4999999. The stability in the pressure is also examined by evaluating pressure at section
A-A for different mesh discretization, see Figure 11(a). Figure 13(d) illustrates the stability
in the pressure with mesh refinement along a section A-A. Further, the numerical inf-sup
value evaluated with mesh refinement is presented in Table 3, where, γh =

√
λk and λk is the

smallest non-zero eigenvalue. The details of the numerical inf-sup can be found in [47]. It
can be inferred from Table 3 that the numerical inf-sup test value converges to a value that
is bounded away from zero with mesh refinement. Therefore, the VANP method passes the
numerical inf-sup test and is stable.
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Table 3: Values of γh in the numerical inf-sup tests. The domain is discretized with arbitrary polytopes

Number

of elements h γh

40 0.25 0.4087

80 0.18 0.4214

160 0.12 0.4192

320 0.08 0.4222

4.2. Applications to three dimensional problems

Next, we study the convergence properties of the proposed framework over star convex
polytopes in three dimensions. Two problems are considered: (a) Cook’s membrane problem
and (b) the short cantilever problem. As both these problems do not have analytical solu-
tions, an overkill finite element solution is used as a reference solution. The finite element
solution is computed using the commercial software Abaqus, with the domain discretized
with tetrahedral elements (C3D10H) or hexahedral elements (C3D8H).

Cook’s membrane. Consider the standard bending dominated Cook’s membrane. The geom-
etry and the boundary conditions are shown in Figure 14(a). The right end of the membrane
is subjected to an in-plane shear load, P = 1 N and the left end is fixed in all the three
directions, resulting in a deformation that is dominated by bending. A sample mesh used in
the study is shown in Figure 14(b). The material properties are: Young’s modulus E = 1 Pa
and Poisson ratio ν = 0.4999999. The reference solution is obtained with a mesh consisting of
12,500 hexahedral elements and the vertical tip displacement at point ‘A’ is 24.213 mm and
the total strain energy is 12.12 Pa. The convergence of the vertical displacement at point ‘A’
and the convergence of the total strain energy solution is shown in Figures 15(a) and 15(b),
respectively. The results from the present formulation is also compared with tetrahedral el-
ements. It can be inferred that the both polyhedral elements and tetrahedral elements yield
accurate result and converges to the reference solution asymptotically. The nodal pressure
solution is shown in Figure 16(a) for polyhedral elements using VANP-CS and Figure 16(b)
for tetrahedral elements using MINI, respectively. It is observed that the nodal pressure is
stable within the domain for both the MINI and the proposed method.

Short cantilever. As a last example, consider a three dimensional short cantilever subjected
to a uniform pressure on its upper face. The displacements (in all three directions) on the
adjacent vertical face (hatched region in Figure 17(a) is constrained. The geometry and the
boundary conditions of the problem are shown in Figure 17(a). A representative polyhedral
mesh used in the study is shown in Figure 17(b). As approximate strain energy of 0.950930
MPa is taken as the reference solution, as reported in [48] and the reference solution for the
vertical displacement at point ‘A’ (see Figure 17(a)) is taken as 3.312 mm as reported in
[49]. This is for a Poisson’s ratio ν = 0.25 and Young’s modulus, E = 1 MPa. The vertical
displacement at point ‘A’ is estimated using Abaqus with 20,675 tetrahedral elements as 3.3
mm, 3.513 mm and 3.32 mm for different Poisson’s ratio (i.e ν = 0.25, 0.45, 0.4999999).
Similarly, the strain energy is estimated as 0.9438 MPa, 1.0031 MPa and 0.9518 MPa for
different Poisson’s ratio. The convergence of the vertical displacement at point ’A’ and the
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Figure 14: Cooks membrane: (a) geometry and boundary conditions (b) a sample polyhedral mesh.

total strain energy is shown in Figure 18. It can be seen that the proposed framework
converges to the reference solution asymptotically.

5. Concluding Remarks

In this work, we extended the MINI element over triangles to arbitrary polytopes by
employing the VANP method. The computational burden is reduced by using the strain
smoothing technique. It is noted that both were originally proposed for meshfree methods.
The framework presented alleviates volumetric locking and leads to a purely displacement
based formulation with the nodal pressure computed at the post-processing stage. The
constant strain smoothing technique is used to compute the terms in the bilinear and linear
form, which significantly reduces the computational burden, without compromising accuracy.
It is noted that the VANP over classical simplex element is the well known MINI element.
From the numerical study, it can be inferred that the proposed framework does not suffer from
volumetric locking phenomenon. The proposed method also preserves optimal convergence
rates in both the L2 norm and in the H1 seminorm for both two and three dimensional
problems.
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Figure 15: 3D Cooks membrane - convergence of the (a) vertical displacement (uy) at point A and (b) total
strain energy with mesh refinement for Poisson’s ratio ν = 0.4999999 to the reference solution.
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Figure 16: Cooks membrane discretized with tetrahedral and polyhedral elements, respectively (a) nodal
pressure for 224 polyhedral elements with 306 degrees of freedom (b) nodal pressure for 554 tetrahedral
elements with 669 degrees of freedom.
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Figure 17: Short cantilever: (a) Geometry and boundary conditions (b) a sample polyhedral mesh.
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Figure 18: Short cantilever: (a) Convergence of the vertical deflection (uy) at point ‘A’ and (b) convergence of
the total strain energy with the mesh refinement for different Poisson’s ratio i.e ν = 0.25, 0.45 and 0.4999999.
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[7] B. Lévy, Robustness and efficiency of geometric programs: The predicate construction
kit (PCK), Computer-Aided Design 72 (2016) 3–12.

[8] A. R. Khoei, R. Yasbolaghi, S. Biabanaki, A polygonal finite element method for mod-
eling crack propogation with minimum remeshing, International Journal of Fracture 194
(2015) 123–148.

[9] C. Talischi, G. H. Paulino, Addressing integration error for polygonal finite elements
through polynomial projections: A patch test connection, Mathematical Models and
Methods in Applied Sciences 24 (2014) 1701–1727.

[10] H. Chi, C. Talischi, O. Lopez-Pamies, G. H. Paulino, A paradigm for higher-order
polygonal elements in finite elasticity using a gradient correction scheme, Computer
Methods in Applied Mechanics and Engineering 306 (2016) 216–251.

[11] C. Talischi, A. Pereira, G. H. Paulino, I. F. M. Menezes, M. S. Carvalho, Polygonal finite
elements for incompressible fluid flow, International Journal for Numerical Methods in
Fluids 74 (2014) 134–151.

[12] C. Talischi, A. Pereira, I. F. Menezes, G. H. Paulino, Gradient correction for polyg-
onal and polyhedral finite elements, International Journal for Numerical Methods in
Engineering 102 (2015) 728–747.

[13] J. S. Chen, C. Wu, S. Yoon, Y. You, A stabilized conforming nodal integration for
galerkin mesh-free methods, International Journal for Numerical Methods in Engineering
50 (2001) 435–466.

27
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