Veamy

An extensible object-oriented C++ library
for the virtual element method

Veamy Primer
Version 3.0

Rev. ©
June 2018



Veamy Primer Veamy v3.0

Copyright and License

Veamy, Copyright © 2017-2019
by Catalina Alvarez, Nancy Hitschfeld-Kahler, Alejandro Ortiz-Bernardin
http://camlab.cl/software/veamy/

CEMCEN - Center for Modern Computational Engineering
Department of Computer Science

Department of Mechanical Engineering

Facultad de Ciencias Fisicas y Matematicas
Universidad de Chile

Av. Beauchef 851, Santiago 8370456, Chile

Your use or distribution of Veamy or any derivative code implies that you agree to
this License.

This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.



Veamy Primer Veamy v3.0

TABLE OF CONTENTS

1 New and updated features summary ........c..iiiiiiiiiiii ittt eennneeeennnnens 3
2 Features Of Veamy ...t iiiiiit ittt ieneeeteeenaeesonenessenenasssananessns 3
3 Y o U o of = o' T = PPt 4
4 Up and running with Veamy .... ...ttt iiiiteetennnneennnnnnns 4
5 Using a PolyMesher mesh and boundary conditions in Veamy ................ ... ... 10
6 Using a generic mesh file ...ttt itiiiiieieennneeennnnns 13
7 Additional eXamples ...ttt ittt ittt ettt ettt e 14

7.1 Perforated CoOk s MemMbrane .. ...vutiiiiniii i enneenoeeneennenns 14

7.2 N o0}V =D - 1117 2 16
8 Geometry definition and mesh generation......... ..ottt 18
9 Problem conditions: material definition, body/source terms, essential and natural
boundary Conditions. ... ..ttt osososoesosssssossssssssossoanananas 21
10 Setting precision for printing to output files........cciiiiiiiiiiiiiiiiinne, 25
11 Veamy’s WEDSI e . vttt ittt ittt it tnaettenanessoneaessssnasssannnns 25
APPENDIX A: General structure of the main setup file......coviiiiiiiiiinnnnnnnnnnns 26
A = o 1 s 0 = 26
A.2 POSt PrOCESSING i iiiiit ittt ieiteetteenaesesenaneseseaassossnasssannnnsns 28



Veamy Primer Veamy v3.0

1 New and updated features summary

From Veamy 2.1 to Veamy 3.0:
e New optimized version of Veamy’s polygonal mesh generator Delynoi.
e Optimize several computations in the Veamy library.

From Veamy v2.0 to Veamy 2.1:
e Add several test files for testing Feamy, the FEM module of Veamy.
e Fix some bugs.
e Update Veamy Primer: more details are added to sections devoted to using ex-
ternal mesh files (PolyMesher mesh and generic mesh files); Appendix A is add-
ed to explain the general structure of the main C++ setup file.

From Veamy v1.1.1 to Veamy 2.0:

e Add documentation to the source code.

e Implement VEM for the two-dimensional Poisson problem.

e Implement Feamy, a FEM module that uses three-node triangular finite elements
for the solution of the two dimensional linear elastostatic problem.

e Add methods to compute the L%-norm and H!-seminorm of the error.

e Improve the built-in polygonal mesh generator.

e Change to Eigen’s sparse solver for the solution of the system of linear equa-
tions.

e Add additional test files.

e New simplified methods to impose essential and Neumann boundary conditions.

e Fix several bugs.

From Veamy 1.0 to Veamy v1.1.1:
e Add documentation.
e Add method to include custom precision for printing output data.
e Add plane stress material formulation.
e Update installation instructions.
e Include more tests and mesh examples.
e Fix several bugs

2 Features of Veamy

Veamy is an open source C++ library that implements the virtual element method. The
current release of this 1library allows the solution of the two-dimensional 1linear
elastostatic problem and the two-dimensional Poisson problem. The two-dimensional
linear elastostatic problem can also be solved using the standard three-node finite
element triangle. For this, a module called Feamy is available within Veamy.

Features:

e TIncludes its own mesher based on the computation of the constrained Voronoi
diagram. The meshes can be created in arbitrary two-dimensional domains, with
or without holes, with procedurally generated points.

e Meshes can also be read from OFF-style text files.

e Allows easy input of boundary conditions by constraining domain segments and
nodes.

e The results of the computation can be either written into a file or used di-
rectly.



Veamy Primer Veamy v3.0

e PolyMesher meshes and boundary conditions can be read straightforwardly in
Veamy to solve problems using the VEM.

3 Source code

All the information related to Veamy and its source code is available on the web:

http://camlab.cl/software/veamy/

Download the code before proceeding with the rest of this primer.
4 Up and running with Veamy

Veamy has been tested on Linux and Mac OS machines only. First of all, make sure that
CMake is available in your machine. If it is not, install it before proceeding with
the rest of this primer. To install CMake on Ubuntu machines, on a terminal type and
execute:

sudo apt-get install cmake

Unpack the code to a folder of your choice. Fig. 1 shows the content of Veamy that
was unpacked to “/home/Software/”

< 4r Home e Veamy-2.1 L= I =
©®  Recent f |
o I e A 4 |
lib matlab test veamy CMakelLists  README.
[@ Desktop Ext md
(u]

Documents
Downloads
Music
Pictures

Videos

B i B & ¢

Trash

Other Locations

+

Fig. 1: Veamy source code.

Go inside “test” folder of Veamy’s root directory (see Fig. 2). This test folder is
where the main C++ setup file implementing a problem of interest must be placed. In
this example, a “cantilever beam subjected to a parabolic end load” will be solved in
Veamy. This problem is part of the numerical examples provided in:

A. Ortiz-Bernardin, C. Alvarez, N. Hitschfeld-Kahler, A. Russo, R. Silva, E. Olate-
Sanzana. Veamy: an extensible object-oriented C++ 1library for the virtual element
method. arXiv:1708.03438 [cs.MS]



Veamy Primer Veamy v3.0

The geometry and boundary conditions for this problem along with a detailed explana-
tion of the setup file is provided in Appendix A of this tutorial manual. Readers
that are interested in learning more about the general structure of the setup file
are referred to Appendix A. In the remainder of this section, we only refer to the
final main C++ setup file to run the example.

The implementation of the cantilever beam subjected to a parabolic end load is pro-
vided in the main C++ setup file named “ParabolicMain.cpp” (see Fig. 2).

< ¥ Home e Veamy-2.1 test L G [ =
©  Recent f = £ E E E
4 Home j 2 | P )| o | et
mesh test_files CMakelLists CookTestM CylinderTes Displaceme Equilibrium FeamyCylin FeamyDispl
@ Desktop examples xt ain.cpp tMain.cpp  ntPatchTes PatchTestM derTestMai acementPa
tMain.cpp ain.cpp n.cpp tchTestM...
@ Documents
Downkoeds S I - B - = =B =
Musie FeamyDispl FeamyEquil FeamyPara FeamyPara FeamyTest ParabolicM ParabolicM ParabolicM  PoissonPat
acementPa ibriumPatc  bolicMain. bolicMainN  MaininitFro ain.cpp ainVEM. ainVEMnor  chTestMain
Pictures tchTestm... hTestMai... cpp orms.cpp  mFile.cpp cpp ms.cpp .cpp

Videos = = = = =

et cre | cat |Lexs cr+
PoissonSou PoissonSou PoissonSou PolyMesher UnicornTes
rceTestMai  rceTestMai rceTestMai  Main.cpp  tMain.cpp
Other Locations n.cpp nCreateFro ninitFromFi

mFile.cpp le.cpp

Bl & B & <

Trash

+

Fig. 2: Veamy’s test folder. The main C++ setup file implementing a problem of inter-
est must be placed in this folder. Several main setup C++ files are shown. In this
part of the primer, the C++ file “ParabolicMain.cpp” will be used.

Open “ParabolicMain.cpp” file. If you are interested, browse the code in this file to
realize how a problem implementation is setup in Veamy. To run this problem is im-
portant to update the folder where the output files will be stored. In order to spec-
ify the output folder, check the instructions that are provided as comments in “Para-
bolicMain.cpp” (see Fig. 3). Modify accordingly, save and close the setup file.



Veamy Primer Veamy v3.0

File Edit View Projects Bookmarks Sessions Tools Settings Help
ParabolicMain.cpp ®

w double uY(double x, double y){
double P = 1000-
double Ebar = 1e7/(1 - std::pow(0.3,2));
double vBar = 0.3/(1 - 0.3);
double D = 4;
double L = 8;
double I = std::pow(D,3)/12;
return P/(G6*Ebar*I)*(3*vBar*std::pow(y,2)*(L-X) + (3*L-x)}*std::pow(x,2));

]
]
7]
E
3
=]
[=]
=

}
w int main{){
// Set preci to output files:
instance()->setPreci s1 'T:PI’D('117 s:precision: :mid)"

// OPTION 1:

// use "smal ] mid" for 10 digits; its.

// OPTION 2: set the desired precision, for 5t

// VeamyConfig::instance()->setPre ( s. Change "12" by Ihn rlm red precision.
;‘f OPTION 3: Omit any instruction " :instance()-=setPrecision(.

/ from this file. In this case, the 2T a cision, which is 6 digits, -.-.'Lll be used.
VeamyConfig rinstance() >setPreclsion[Precision :precision::mid);

/ DEFINING PATH FOR THE QUTPUT FILES:

/ If the path for the output files is not given, they are written to /home directory by default.
/ Otherwise, include the path. For _Lnst-m e, for /home/user/Documents/Veamy/output.txt , the path
/ must be "Documents/Veamy/output.txt

/ the path must exists either be

/ by Veamy's configuration files. For ins

// one can save the out| ut flles to "/
// since "/mycustom folder
std: :string meshFileName arabollc beam mesh txt”
std::string dispFileName = "parabolic beam dlsplacements txt";

ause it is already in your system or becuase it is creat M
ce, Veamy creates the 'fo'dm /test" inside "/buil
folls\ but not to fn.;d_, test/mycustom folde ‘,
'S LUhf guration files.

std::cout << "*** Starting Veamy ***" << std::endl;

std::cout << "--> Test: Cantilever beam subjected to a parabolic end load <--" << std::endl;
std::cout << "..." << std::endl;
std::cout << "+ Defining the domain ... "

std: :vector<Point> rectangledx8 points = {Pomt() -2), Point(8, -2), Point(8, 2), Point(®, 2)};
Region rectangledx8(rectangledx8 points);

std::cout << "done" << std::endl;

std::cout << "+ Generating polygonal mesh ... *;

rectangledx8.generateSeedPoints(PointGenerator(functions::constantAlternating(), functions::constant()),

std: :vector<Point> seeds = rectangled4x8.getSeedPoints();
TriangleVoronoiGenerator meshGenerator (seeds, rectangledx8);
Mesh<Polygon> mesh = meshGenerator.getMesh();

std::cout << "done" << std::endl;

std::cout << "+ Printing mesh to a file ... ";
mesh.printInFile(meshFileName);

std::cout << "done" << std::endl;

std::cout << "+ Defining linear elastic material ... ";
Material* material = new MaterialPlaneStrain (le/, 0.3);
linearFlacticitulConditinng* ronditinng = new | inearFlasticitulonditinncimateriall:

24, 12);

Fig. 3: Main C++ setup file for the cantilever beam subjected to a parabolic end

load.

Now, the test folder contains a file named “CMakelists.txt”. This file is important

because it controls which main C++ setup file will be processed in Veamy.
inside “test” folder is shown in Fig. 4.

kest Q =l

o — = 5-'.'=_ =.-:=_._
mesh test_files [@YE[REEY CookTestM CylinderTes Displaceme Equmbnum FeamyCylin
Ext

Desktop examples ain.cpp tMain.cpp  ntPatchTes PatchTestM derTestMai
tMain.cpp ain.cpp n.cpp

A
1

cent

o + |Lex+

DM ep o

Documents

Downloads

cr+ |

| L cit < et | |+
Music FeamyDispl FeamyEquil FeamyPara FeamyPara FeamyTest ParabolicM Parabolch ParabolicM
. acementPa ibriumPatc  bolicMain. bolicMainN  MainlnitFro ain.cpp ainVEM. ainVEMnor
Pictures tchTestm...  hTestMai... cpp orms.cpp  mFile.cpp cpp ms.cpp

Videos = = = =

ct+ e | e+ | Lexs cr+
PoissonSou PoissonSou PoissonSou PolyMesher UnicornTes
rceTestMai  rceTestMai  rceTestMai Main.cpp tMain.cpp
Other Locations n.cpp nCreateFro ninitFromFi

mFile.cpp le.cpp

Trash

-
dd
(o
L
)

ct

The file

e+t
FeamyDispl
acementPa

tchTestMm...

crt

PoissonPat

chTestMain
-cpp

Fig. 4: CMakelLists.txt is located in test folder and controls which main C++ setup

file is processed in Veamy.



Veamy Primer Veamy v3.0

Open “CMakelists.txt” and on the highlighted zone, write the name of the main C++
setup problem file, in this case, “ParabolicMain.cpp,” as shown in Fig. 5. Save and
close the file.

ile Edit View Projects Bookmarks Sessjons Tools Settings Help
= CMakeLists.txt ®
set (CMAKE CXX FLAGS "${CMAKE CXX FLAGS} -std=gnu++11")
set (SOURCE FILES

add_executable(Test ${SOURCE FILES})
target_link_libraries(Test libutilities libdelynoi libveamy)

Im
&

[ Documents

Fig. 5: Open “CMakelLists.txt” and on the highlighted zone, write the name of the main
C++ setup problem file.

Go back to the Veamy’s root folder and there create a folder “build” (Fig. 6).

vare  Veamy-2.1 Lo I [ S
Recent 1 -
home al O - |
docs lib matlab test veamy CMakelLists  README.

bxt md

Desktop

Documents
Downloads
Music
Pictures
Videos

Trash

Other Locations

Fig. 6: In Veamy’s root folder create the folder “build”.

Go inside the “build” folder and on a terminal, type and execute:

cmake ..

to create the makefiles. Then, to compile the program, on a terminal type and exe-
cute:

make

Several files are created. Also, another folder called “test” is created inside
“build”. The executable of the test problem is stored in this “test” folder and is

called “Test”. Go inside “build/test/” folder (Fig. 7) and, on a terminal, type and
execute:

./Test



Veamy Primer Veamy v3.0

w21 build Eest Q = =
©  Recent
fr Home J o .
CMakeFiles CTestTestfil Makefile Test
[ Desktop e.cmake
[0 Documents

Downloads

alejandro@mentor-ubuntu: ~/Software/Veamy-2.1/build/test
Music
File Edit View Search Terminal Help

[

Pictures
Videos

Trash

P
(0]
Ha
@

Other Locations

+

Linking CXX static library liblibveamy.a
Built target libveamy

] Linking CXX ecutable Test

] Built target T

andro@mentor-ubunt = $ cd test
alejandro@mentor-ubuntu: twa - L S ./Test

Fig. 7: Go inside “build/test/” folder and on a terminal type and execute ./Test

While running, Veamy prints out some messages on the screen indicating the progress
of the simulation, as shown in Fig. 8.

Recent

Home . -
CTestTestfil ~ Makefile Test
Desktop i e.cmake

Documents

DWW P O

Downloads
e alejandro@mentor-ubuntu: ~/Software/Veamy-2.1/build/test
usic
File Edit view Search Terminal Help

Pictures [ 99%]
[1e0%] Linking CXX ecutable Test

] Built target T
Trash andro@mentor-ubunt
alejandro@mentor-ubuntu:
*** Starting Veamy ***
--> Test: Cantilever beam subjected to a parabolic end load <--

Videos

B i B & ¢

Other Locations

+

Defining the domain ... done
Generating polygonal mesh ... done
Printing mesh to a file ... done

Defining Dirichlet and Neumann boundary conditions ...
Preparing the simulation ... done
Simulating ... done
Elapsed simulation time: 0.869765 s
+ Printing nodal displacement solutien to a file ...
+ Problem finished successfully

+
+
+
+ Defining linear elastic material ... done
+
+
+

Check output files:
/home/alejandro/parabolic_beam_mesh.txt
[home/alejandro/parabolic_beam_displacements.txt
*%* Veamy has ended ***

alejandr ntor-ubuntu:

Fig. 8: Veamy prints out some messages while running the simulation.

The last lines of the printed out messages indicate the location of the output fold-
ers. The output files contain the mesh and the nodal displacement solution. The mesh



Veamy Primer Veamy v3.0

can be visualized using the MATLAB function “plotPolyMesh.m” that is inside the fold-
er “Veamy-3.0/matplots/” or if you want to visualize both the mesh and the nodal so-
lution, use the MATLAB function “plotPolyMeshDisplacements.m” for the elasticity
problem or “plotPolyMeshScalarField.m” for the Poisson problem that are also availa-
ble in the “matplots” folder (see Fig. 9). The plots for the beam subjected to a par-
abolic end load are shown in Fig. 10. If the MATLAB functions are in the same direc-
tory where the output files are, the contour plots (Fig. 10) of the displacements
with the mesh overlaid are obtained as follows in the MATLAB command line:

[points,polygons,displacements] = ...
plotPolyMeshDisplacements('parabolic_beam_mesh.txt',...

'parabolic_beam_displacements.txt',...

"$u_x$$', '$Pu_y$s', '$$\|u\[$$", 'yes');

and to get the contour plots without the mesh replace ‘yes’ with ‘no’ in the last
argument of the function above. And a plot of the mesh can be obtained as

[points,polygons] = plotPolyMesh('parabolic_beam _mesh.txt');

{ ¥ Home Software Veamy-2.1 matlab Q =

1

Recent

Home L
plotPolyme plotPolyMe plotPolyMe PolyMesher
Desktop sh.m shDisplace  shScalarFie 2Veamy.m
ments.m ld.m

Documents

Downloads

Music

Pictures

Videos

Trash

Other Locations

Fig. 9: Use “plotPolyMesh.m” to visualize the mesh, or “plotPolyMeshDisplacements.m”
or “plotPolyMeshScalarField.m” to visualize both the mesh and the nodal solution.
These files are located inside the folder “Veamy-3.0/matplots/”.

;3 ‘ 3

[Je

Yy
A b b LN o o v won

o
Yy
N R - S SR I

0 2 4 6 8 0 2 é_ 6 8 0 2 4 6 8
z z
Fig. 1@0: Mesh and nodal displacements for the beam problem are plotted using the
“plotPolyMeshDisplacements.m” MATLAB function.



Veamy Primer Veamy v3.0

5 Using a PolyMesher mesh and boundary conditions in Veamy

Now, we show how to use a mesh and boundary conditions obtained from PolyMesher. This
primer assumes that the user knows how to use PolyMesher. This problem is part of the
numerical examples provided in:

Ortiz-Bernardin, A., Alvarez, C., Hitschfeld-Kahler, N., Russo, A., Silva-
Valenzuela, R., Olate-Sanzana, E. Numerical Algorithms (2019).
https://doi.org/10.1007/s11075-018-00651-0

You may consult the details of the geometry and boundary conditions therein as in
this primer we only refer to the final main C++ setup file to run the example.

The procedure is straightforward. In PolyMesher add a call to the MATLAB function
“PolyMesher2Veamy.m” to translate a mesh created in PolyMesher to a format that is
readable by Veamy. This function is located in “Veamy-3.0/matplots/”, as shown in
Fig. 11. The call to this function is done on the last line of the “PolyMesher.m”
function, as shown in Fig. 12. After defining a model and boundary conditions, and
performing the meshing procedure in  PolyMesher, copy the <created file
“polymesher2veamy.txt” to a folder of your choice to be used in Veamy. In the source
code of Veamy, the example file containing the translated PolyMesher mesh and bounda-
ry conditions is located inside the folder “Veamy-3.0/test/test_files/”.

NOTE: The boundary conditions in PolyMesher are indicated by numbers: © (free) and 1
(fixed). See the translated example file “polymesher2veamy.txt” that is located in-
side the folder “Veamy-3.0/test/test_files/”.

The implementation of the main C++ setup file that uses the translated PolyMesher
mesh and boundary condition is provided as the file named “PolyMesherMain.cpp” (see
Fig. 13). This setup file as usual is inside the folder “Veamy-3.0/test/”. Go to this
folder and open “PolyMesherMain.cpp” (see Fig. 13). Explore this file to see details
about its implementation. The function that reads the PolyMesher mesh and boundary
conditions is “initProblemFromFile”. You will have to provide the path to the folder
where the PolyMesher mesh and boundary conditions are located. Update the output
folders (check the instructions that are provided as comments). Modify the paths ac-
cordingly, save and close the setup file.

NOTE: It is also possible to use a PolyMesher mesh without boundary conditions in
Veamy. This provides a means to apply more general boundary conditions. We simply
create the mesh with the boundary conditions (we will delete the boundary conditions
later, so it is not important how they are defined) as stated above. Then, we open
the created file “polymesher2veamy.txt” that contains the translated mesh and delete
the boundary conditions from it. We save the file and proceed as instructed in Sec-
tion 6 of this manual.

10




Veamy Primer Veamy v3.0

< e V y-2.1 matlab Le 0 |0l B
@  Recent
4 Home | |
plotPolyMe plotPolyme plotPolyme
@ Desktop sh.m shDisplace shScalarFie
ments.m ld.m
[}

Documents
Downloads
Music
Pictures

Videos

M
dd
[0
Ha
@

Trash

+

Other Locations

Fig. 11: The MATLAB function “PolyMesher2Veamy.m” is located in folder
2.1/matplots/”.

PolyMesher.m |

* elements written in Matlab”, Struct Multidisc Optim, 2812, %
* DOI 16.1867/s88158-011-8786-z *
¥ X
% Ref2: A Pereira, C Talischi, GH Paulino, IFM Menezes, MS Carvalho, 1
* "Implementation of fluid flow topology optimization in PolyTop”, %
* Struct Multidisc Optim, 2813, DOT 0. X000C 00000000 X00(-X *
B o o #

function [Node,Element,Supp,Lead,P] = PolyMesher(Domain,NElem,MaxIter,P)
if ~exist('P','var'), P=PolyMshr_ RndPtSet(NElem,Domain}; end
MElem = size(P,1);
Tol=5e-6; It=8; Err=1; c=1.5;
BdBox = Domain('BdBox'); PFix = Domain('PFix'};
Area = (BdBox(2)-BdBox(1))*(BdBox(4)-BdBox(3));
Pc = P; figure;
while(It<=MaxIter &% Err>Tol)
Alpha = c*sqri(Area/NElem);
P = Pc; %Lloyd's update
R_P = PolyMshr Rflct(P,NElem,Domain,Alpha); #Generate the reflections
[P,R_P] = PolyMshr_FixedPoints(P,R_P,PFix); ¥ Fixed Points
[Node,Element] = woronocin([P;R_P]); #Construct Veronol diagram
[Pc,A] = PolyMshr_CntrdPly(Element,Node,NElem);
Area = sum(abs(A));
Err = sqrit(sum((A.*2).*sum({ (Pc-P).*(Pc-P),2)))*NElem/Area™l.5;
fprintf('It: ¥3d Error: ¥l.3e\n',It,Err); It=It+l;
if NElem<=2@@2, PolyMshr_PlotMsh(Node,Element,NElem); end;
end
[Nede,Element] = PolyMshr_ExtrNds(NElem,Node,Element); #Extract node list
[Node,Element] = PolyMshr_CllpsEdgs(Node,Element,®.1); %Remove small edges

[Node,Element] = PolyMshr_Rsqshds(Node,Element); ¥#Reoder Nodes

BC=Domain('BC', {Node,Element}); Supp=BC{1}; Load=BC{2}; ¥Recover BC arrays
PolyMshr_PlotMsh(Node,Element,NElem, Supp,Load); #Plot mesh and BCs
PolyMesher2Veamy (Node, Element,NElem, Supp,Load); ¥Plot mesh to a Veamy mesh format
et ettt GENERATE RANDOM POINTSET

“Veamy -

Fig. 12: Call to “PolyMesher2Veamy.m” in “PolyMesher.m” is done on its last line.

11



Veamy Primer Veamy v3.0

File Edit View Projects Bookmarks Sessjons Tools Settings Help
PolyMesherMain.cpp ®

¥include <veamy/Veamer.h>

#include <veamy, s/materials/MaterialPlaneStrain.h>

#include x\ean{,(o]f g/VeamyConfig.

#include <veamy/physics/conditions/LinearElasticityConditions.h>

#include <veamy/problems/VeamylLinearElasticityDiscretization.h>

[ Documents

w int mqin(){

ing to output
:instance()->
"mid" for 10 0
precision, for instan

sired precision.

v
case, the \t’—"

/ k I i be used.
VeamyConfig: :instance()- >setPrec151on[Prec151on H

/ DEFINING PATH FOR THE H'Iill LlLtS

n, they are written to /h
- /home/user/Documents/\

directory by
Joutput.txt ,

y in your system or becuase it is created
ac the folder " inside "/build
ot to " ycustom fold

olymesher testhmesh txt ;
‘polymesher_test dlsplacements txt"

/ 2 "/my
std: stang meshFlleName
std::string dispFileName

ry conditions. Use Matlab function
file is incl d inside the folde

ﬂ(sl and bcw 1da
le

"test/test files/"

/
1 ] 'Software” is located inside "/home/user/" and "Ve is Veamy's root folder
std..strlng polyMesherMeshFlleName = "Software/Veamy/test/test files/polymesher2veamy.txt";

rreout << "*F* Starting Veamy ***" << std::endl;
cout << "--> Test: Using a PolyMesher mesh and boundary conditions <--" << std::endl;
rrcout =< "..." =< std::endl;

std::cout << "+ Defining linear elastic material ... ";
Material* material = new MaterialPlaneStrain(le7, ©.3);
LinearElasticityConditions* conditions = new LinearElasticityConditions(material);
std::cout << "done" << std::endl;

std::cout << "+ Preparing the simulation from a PolyMesher mesh and boundary conditions ...
VeamyLinearElasticityDiscretization®* problem = new VeamyLlnearElastlc1tyDlscretlzatlan(condltlons),

Veamer v(problem);

Mesh<Polygon> mesh = v.initProblemFromFile(polyMesherMeshFileName);
std::cout << "done" << std::endl;

std::cout << "+ Printing mesh to a file ... ";
mesh.printInFile(meshFileName);

std::cout << "done" << std::endl;

std::cout << "+ Simulating ... "
Finen: VWertnrXd x = v 'ﬂmlﬂa‘rnfmf:qh\

Fig. 13: Main C++ setup file for the PolyMesher mesh and boundary condition example.
From now on, the procedure to run the PolyMesher problem in Veamy is identical to the
one performed for the beam problem.

Go inside the “Veamy-3.0/build/” folder and on a terminal, type and execute to update
the makefiles:

cmake ..

Then, to compile the program, on a terminal type and execute:

make

If this procedure has been done several times before, many of the libraries are like-
ly to be already compiled, so the compilation procedure is quite short in comparison
with the first time compilation. The executable of the test problem is stored in the
“build/test/” folder and is called “Test”. Go inside “build/test/” folder and, on a
terminal, type and execute:

./Test

The output screen for the PolyMesher problem is shown in Fig. 14. The last lines of
the printed out messages indicate the location of the output folders. The output
files contain the mesh and the nodal displacement solution. The mesh can be visual-
ized using the MATLAB function “plotPolyMesh.m” that is inside folder “Veamy-
3.0/matplots/” or if you want to visualize both the mesh and the nodal displacement

12



Veamy Primer Veamy v3.0

solution, use the MATLAB function “plotPolyMeshDisplacements.m” that is also availa-
ble in the “matplots” folder. The mesh and the nodal displacements for the PolyMesher
example are shown in Fig. 15.

~

ware Veamy-2.1  matlab Q  i= =

Recent

| |
plotPolyme plotPolyMe plotPolyMe PolyMesher
Desktop sh.m shDisplace shScalarFie 2Veamy.m
ments.m Id.m

Home

DN B O

Documents
Downloads
Music
Pictures

Videos

B & B & <

Trash

+

Other Locations

Fig. 14: Output screen for the PolyMesher example. Use “plotPolyMesh.m” to visualize
the mesh or “plotPolyMeshDisplacements.m” to visualize both the mesh and the nodal
displacement solution. Both MATLAB files are 1located inside folder “Veamy-
3.0/matplots/”.

3 ¥
Uy x10° , 0*
25
3 3 01 3 10

&

-0.2
-0.3
-04
-0.5
-0.6
-05 07

4 1 4 08 A
15 09

Fig. 15: Nodal displacements for the PolyMesher example are plotted using the “plot-
PolyMeshDisplacements.m” MATLAB function.

6 Using a generic mesh file

Reading a generic mesh file is very similar to the process of reading a PolyMesher
mesh. The only difference is that boundary conditions are not provided in the mesh
file. That is, the mesh file contains only the mesh information. To read this mesh
file, we use the function “createFromFile”. The boundary conditions must be defined
in Veamy similarly as done, for instance, in the cantilever beam problem that is im-
plemented in the main C++ setup file “ParabolicMain.cpp” (see Appendix A, where this
setup file is explained in detail). An example of the use of a generic mesh file is
provided in the main C++ setup file “EquilibriumPatchTestMain.cpp”, where the generic

13



Veamy Primer Veamy v3.0

mesh, “Veamy-3.0/test/test_files/equilibriumTest_mesh.txt”, is read by the function
“createFromFile”:

std::string externalMeshFileName =
"Software/Veamy-3.0/test/test_files/equilibriumTest_mesh.txt";

Mesh<Polygon> mesh;

mesh.createFromFile(externalMeshFileName);

As you can confirm by exploring the generic mesh file “equilibriumTest_mesh.txt”, it
contains the nodal coordinates of the mesh and the element connectivity in the fol-
lowing format:

First line: number_of_nodes_in_the_mesh

Following lines: x-nodal-coordinates y-nodal-coordinates

One line: number_of_elements_in_the_mesh

Following lines: number_of nodes_per_element(N) nodel node2 ... nodeN

7 Additional examples

These additional examples require the user to have read the previous sections of this
primer.

7.1 Perforated Cook”s membrane

The implementation of the perforated Cook’s membrane is provided in the main C++ set-
up file named “CookTestMain.cpp”. This setup file as wusual is inside “Veamy-
3.0/test/” folder. Go to this folder and open “CookTestMain.cpp” (see Fig. 16). Ex-
plore this file to understand its implementation. Be sure you update the path to the
output files. The important lines of code are highlighted. They provide the infor-
mation for the four points that define the geometry and three circular holes on it.

This problem is part of the numerical examples provided in:
Ortiz-Bernardin, A., Alvarez, C., Hitschfeld-Kahler, N., Russo, A., Silva-
Valenzuela, Rog Olate-Sanzana, Ef Numerical Algorithms (2019).

https://doi.org/10.1007/5s11075-018-00651-0

You may consult the details of the geometry and boundary conditions therein as in
this primer we only refer to the final main C++ setup file to run the example.

14



Veamy Primer Veamy v3.0

File Edit View Projects Bookmarks Sessions Tools Settings Help
CookTestMain.cpp ®

#include <vector>

#include <delynoi/models/basic/Point.h>

#include <delynoi/models/Region.h>

#include <delynoi/models/hole/CircularHole.h>

#include <delynoi/models/generator/functions/functions.h>

#include <delynoi/voronoi/TriangleVoronoiGenerator.h>

#include <veamy/Veamer.h>

#include <chrono>

#include <veamy/models/constraints/values/Constant.h>

#include <utilities/utilities.h>

#include <veamy/physics/materials/MaterialPlaneStrain.h>

#include <veamy/config/VeamyConfig.h=

#include <veamy/physics/conditions/LinearElasticityConditions.h=

#include <veamy/problems/VeamylLinearElasticityDiscretization.h=>

[l: Documents

wint maln(){

:precision: :mid)"

precision,
) ->setPreci des

red precision.

// from this file. In this 5 : tﬂ£ defaul
VeamyConfig::instance()- >5etPrec1slun(Prec1510n 'prec151on mld),

/
/
/
/f T
I UP“]QH 3: U
/
e

DEFINING PATH FOR THE OUTPUT FILES:
If +I pa h for the 3uL|u* files is
1 th. For instan
y/output. txt”
exists either b

Nttty

Ratathuty

wWon 1 be create \

std--strlng meshFlleName = "cook membrane mesh txt
std::string dispFileName = couk_membrane_dlsplacements.txt";
std::string geoFileName = "cook_membrane_geometry.txt";

ricout << "F** Starting Veamy ***" << std::endl;
:rcout << "--> Test: Cook's membrane <--" << std::endl;
std::cout << "..." << std::endl;

std::cout << "+ Defining the domain ... "
std::vector<Point> TBeam_points = {Polnt(D 9), Point(48,44), Point(48,64), Point(0,44)};
Region TBeam(TBeam points);

Hole holel = CircularHole(Point(8,30
Hole hole2 = CircularHole(Point(2
Hole hole3 = CircularHole(Point(
TBeam.addHole (holel);
TBeam.addHole (hole2);

TBeam. addHole (hole3);

std::cout << "done" << std::endl;

std::cout << "+ Printing geometry to a file ... *;
TReam nrintTnFilelnenFileName)

Fig. 16: Main C++ setup file for the perforated Cook’s membrane example.

In order to run the test, follow the same steps described in the previous examples.
Once you have compiled the problem, go inside “build/test/” folder and, on a termi-
nal, type and execute:

./Test

The output files are visualized, as in the previous examples, using the MATLAB func-
tion “plotPolyMeshDisplacements.m”. The plots are shown in Fig. 17.

15

© b W o &bk o L

Fig. 17: Nodal displacements for the perforated Cook’s membrane problem are plotted
using the “plotPolyMeshDisplacements.m” MATLAB function.

15



Veamy Primer Veamy v3.0

7.2 A toy example

In this example, a Unicorn loaded on its back and fixed at its feet is solved using
Veamy. This problem is part of the numerical examples provided in:

Ortiz-Bernardin, A., Alvarez, C., Hitschfeld-Kahler, N., Russo, A., Silva-
Valenzuela, R., Olate-Sanzana, E. Numerical Algorithms (2019).
https://doi.org/10.1007/s11075-018-00651-0

You may consult the details of the geometry and boundary conditions therein as in
this primer we only refer to the final main C++ setup file to run the example.

The implementation of the Unicorn problem is provided in the main C++ setup file
named “UnicornTestMain.cpp”. This setup file as usual is inside “Veamy-3.0/test/”
folder. Go to this folder and open “UnicornTestMain.cpp” (see Fig. 18). Be sure you
update the path to the output files. The important lines of code are highlighted.
They provide the information for the points that define the boundary of the Unicorn.

Eile Edit View Projects Bookmarks Sessions Tools Settings Help
UnicoraTestMain.cpp ®

#include < ynoi/models/basic/Point.h>
#include
#include <
#include
#include <
#include <chrono>

#1nclude <veamy/models/constraints/values/Constant.h>
#include |f-|.w:-(bf|ct ials/MaterialPlaneStrain. h=
#include <utili Jutilities.h>
#include <veamy/paysi 'S/ru-h:,r:a'l’
#include < "H’,‘ fconTig/VeamyConfi
#include < sics/condition M’L' earElasticityConditions.h>
#include - blems/VeamylinezrElasticityDiscretization.h>

unctions_h>

ynoi/voronci
my/Veaner . h>

|- Documents In

r Ld\l{:lk\lu\ onoib

faterialPlaneStrain.h>

w int maini){
/g
1/

fo

r:_.ng mnsthsName “unicorn mesh X
::string dispFileName = "unicorn dlsplccemmts 3
11string geoFileName = “unicorn_geometry.txt”

cout << "*** Starting Veamy ***" << std::
cout << "-.> Test: Unicorn <--" << std::el
ricout << "..." << std::endl:

cout << "+ Defining the dcmain ... "
vector<Polnt> unicorn_poirts = {Polnt() o) ), Foint(3.5,2), Polnt(4,4), Polnt(6,4), Poilnt(€.5,4),
Pu‘ut[lﬁ,:‘,‘), Point(1€.5,0.5), Pclnt( 1.2,2.5

8.75), Point{11.8,11.5), Peint(13.5,11}), Punt( 4.5,11.2),

1 13), Pel”nt[l;,h 5), Peint(14,16.5], Point(15,19.5), Point(15.2,20),
Pmnt( 14.5,19.7), Point(11.8,18.2), Peint(10.5,18.3}, Point (16,15 ]‘ Pom‘c(q 16},
Point(7.3,15.3), PnJ.'lt[ 3), Point(6 ﬁ 11 :] Po1nt(* 3,11 3), Poi n‘t( ,10.,5),

Point (0. .,S 8), Point(0.3 8), Point(0.4,4), Point(0.8,2.1), Point(l. A4

12), Point(1

900

Region unicorn(unicern points);
std:icout << "done" << std::endl;

std::cout << "+ Printing geometry to a file ...
unicorn.printInFile(geoFileName) ;
std::cout << "done" << std::endl;

Fig. 18: Main C++ setup file for the Unicorn example.

In order to run the test, follow the same steps described in the previous examples.
Once you have compiled the problem, go inside “build/test/” folder and, on a termi-
nal, type and execute:

./Test

The output files are visualized, as in the previous examples, using the MATLAB func-
tion “plotPolyMeshDisplacements.m”. The plots are shown in Fig. 19.

16



Veamy Primer Veamy v3.0

lla*|

25 0

20 -05

20 25

20 25

Fig. 19: Nodal displacements for the Unicorn problem are plotted using the “plot-
PolyMeshDisplacements.m” MATLAB function.

17



Veamy Primer Veamy v3.0

8 Geometry definition and mesh generation

Geometry definition and polygonal mesh generation in Veamy are handled using Delynoi,
an object oriented C++ library for the generation of polygonal meshes that is based
on the constrained Voronoi diagram. Delynoi depends on two external open source 1li-
braries, whose code is included in the repository:

e Triangle - A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.
e Clipper - an open source freeware library for clipping and offsetting lines
and polygons.

All the information related to Delynoi and its source code is available on the web:

http://camlab.cl/research/software/delynoi/

Nevertheless, few examples are presented in what follows.

Example: Perforated Cook’s membrane
707
601
501
40
30
20

107

-10 0 10 20 30 40 50 60 70

Define the corner points of the Cook’s membrane
std::vector<Point> TBeam_points = {Point(@,0), Point(48,44), Point(48,64), Point(0,44)};

Define the region formed by the points
Region TBeam(TBeam_points);

Define holes
Hole holel = CircularHole(Point(8,30), 5); Hole hole2 = CircularHole(Point(24,40), 4);
Hole hole3 = CircularHole(Point(40,50), 3);

Add holes to the region
TBeam.addHole(holel); TBeam.addHole(hole2); TBeam.addHole(hole3);

Generate seeds points in the region

TBeam.generateSeedPoints (PointGenerator(functions::constantAlternating(),
functions::constant()), 16, 16);

std::vector<Point> seeds = TBeam.getSeedPoints();

Compute the polygonal mesh using the constrained Voronoi diagram
TriangleVoronoiGenerator g(seeds, TBeam);
Mesh<Polygon> mesh = g.getMesh();

18




Veamy Primer Veamy v3.0

Example: Unicorn

-2 0 2 4 6 8 10 12 14 16 18 20

Define the points of the Unicorn boundary

std: :vector<Point> unicorn_points = {Point(2,0), Point(3,0.5), Point(3.5,2), Point(4,4),
Point(6,4), Point(8.5,4), Point(9,2), Point(9.5,0.5), Point(10,0), Point(10.5,0.5),
Point(11.2,2.5), Point(11.5,4.5), Point(11.8,8.75), Point(11.8,11.5), Point(13.5,11),
Point(14.5,11.2), Point(15,12), Point(15,13), Point(15,14.5), Point(14,16.5), Point(15,19.5),
Point(15.2,208), Point(14.5,19.7), Point(11.8,18.2), Point(10.5,18.3), Point(10,18),
Point(8,16), Point(7.3,15.3), Point(7,13.8), Point(6.7,11.5), Point(3.3,11.3), Point(1,10.5),
Point(@.4,8.8), Point(0.3,6.8), Point(0.4,4), Point(0.8,2.1), Point(1.3,0.4)};

Define the region formed by the points
Region unicorn(unicorn_points);

Generate seeds points in the region

unicorn.generateSeedPoints(PointGenerator(functions::constantAlternating(),
functions::constantAlternating()), 20, 25);

std::vector<Point> seeds = unicorn.getSeedPoints();

Compute the polygonal mesh using the constrained Voronoi diagram
TriangleVoronoiGenerator g(seeds, unicorn);
Mesh<Polygon> mesh = g.getMesh();

19




Veamy Primer Veamy v3.0

Example: Cantilever beam subjected to a parabolic end load

y

»

A

Py

[

~

Define the corner points of the beam
std::vector<Point> rectangle4x8_points={Point(@, -2), Point(8, -2), Point(8, 2), Point(@, 2)};

Define the region formed by the points
Region rectangle4x8(rectangle4x8 points);

Generate seeds points in the region

rectangle4x8.generateSeedPoints(PointGenerator(functions::constantAlternating(),
functions::constant()), 24, 12);

std::vector<Point> seeds = rectangle4x8.getSeedPoints();

Compute the polygonal mesh using the constrained Voronoi diagram
TriangleVoronoiGenerator g(seeds, rectangle4x8);
Mesh<Polygon> mesh = g.getMesh();

20




Veamy Primer Veamy v3.0

9 Problem conditions: material definition, body/source terms,
essential and natural boundary conditions

The material, body/source terms and boundary conditions are declared as part of an
object of a class pertaining to the type of problem (linear elasticity or Poisson).
Available materials are isotropic linear elastic (plane strain and plane stress).
Boundary conditions are assigned by constraining domain segments and nodes. Some ex-
amples follow.

Example: Perforated Cook’s membrane
707
601
501
40
30
20

107

Elastic Material
Material* material = new MaterialPlaneStrain(24@, 0.3); // Also available: MaterialPlaneStress
LinearElasticityConditions* conditions = new LinearElasticityConditions(material);

Essential boundary conditions on the left edge:
PointSegment leftSide(Point(@,0), Point(0,44));
SegmentConstraint left(leftSide, mesh.getPoints(), new Constant(0));

Natural boundary condition on the right edge:
PointSegment rightSide(Point(48,44), Point(48,64));
SegmentConstraint right(rightSide, mesh.getPoints(), new Constant(6.25));

Add boundary conditions to the model:
conditions->addEssentialConstraint(left, mesh.getPoints(), elastic-
ty_constraints::Direction::Total);
conditions->addNaturalConstraint(right, mesh.getPoints(), elastic-
ty_constraints::Direction::Vertical);

21



Veamy Primer Veamy v3.0

Example: Unicorn

-2 0 2 4 6 8 10 12 14 16 18 20

Elastic Material
Material* material = new MaterialPlaneStrain(le4, ©0.25); // Also available: MaterialPlaneStress
LinearElasticityConditions* conditions = new LinearElasticityConditions(material);

Essential boundary conditions at Unicorn’s feet:
Point leftFoot(2,0);

PointConstraint left(leftFoot, new Constant(9));

Point rightFoot(10,0);

PointConstraint right(rightFoot, new Constant(®));

Natural boundary condition on Unicorn’s back:
PointSegment backSegment(Point(6.7,11.5), Point(3.3,11.3));
SegmentConstraint back (backSegment, mesh.getPoints(), new Constant(-200));

Add boundary conditions to the model:

conditions->addEssentialConstraint(left, elasticity_constraints::Direction::Total);
conditions->addEssentialConstraint(right, elasticity constraints::Direction::Total);
conditions->addNaturalConstraint(back, mesh.getPoints(), elastic-
ty_constraints::Direction::Total);

22




Veamy Primer Veamy v3.0

Example: Cantilever beam subjected to a parabolic end load

y

»

A

Py

5

N

1y

~

User defined functions:

double tangencial(double x, double y){
double P = -1000; double D = 4;
double I = std::pow(D,3)/12; double value = std::pow(D,2)/4-std::pow(y,2);
return P/(2*I)*value;

¥
double uX(double x, double y){
double P = -1000; double Ebar = 1e7/(1 - std::pow(0.3,2));
double vBar = 0.3/(1 - 0.3); double D = 4;
double L = 8; double I = std::pow(D,3)/12;
return -P*y/(6*Ebar*I)*((6*L - 3*x)*x + (2+vBar)*std::pow(y,2) -
3*std::pow(D,2)/2*(1+vBar));

¥
double uY(double x, double y){

double P = -1000; double Ebar = 1e7/(1 - std::pow(0.3,2));

double vBar = ©.3/(1 - 0.3); double D = 4;

double L = 8; double I = std::pow(D,3)/12;

return P/(6*Ebar*I)*(3*vBar*std: :pow(y,2)*(L-x) + (3*L-x)*std::pow(x,2));
}

Elastic Material
Material* material = new MaterialPlaneStrain(le7, ©.3); // Also available: MaterialPlaneStress
LinearElasticityConditions* conditions = new LinearElasticityConditions(material);

Essential boundary conditions on the left edge:

Function* uXConstraint = new Function(uX);

Function* uYConstraint = new Function(uY);

PointSegment leftSide(Point(®@,-2), Point(0,2));

SegmentConstraint constl (leftSide, mesh.getPoints(), uXConstraint);
SegmentConstraint const2 (leftSide, mesh.getPoints(), uYConstraint);

Natural boundary condition on the right edge:

Function* tangenciallLoad = new Function(tangencial);

PointSegment rightSide(Point(8,-2), Point(8,2));

SegmentConstraint const3 (rightSide, mesh.getPoints(), tangenciallLoad);

Add boundary conditions to the model:
conditions->addEssentialConstraint(constl, mesh.getPoints(), elastic-
ty_constraints::Direction::Horizontal);
conditions->addEssentialConstraint(const2, mesh.getPoints(), elastic-
ty_constraints::Direction::Vertical);
conditions->addNaturalConstraint(const3, mesh.getPoints(), elastic-
ty_constraints::Direction::Vertical);

23




Veamy Primer Veamy v3.0

Example: Poisson problem with a non constant source term (f=32y(1-y)+32x(1-x))

(0.1) (L.1)

(1,0

User defined functions:

double sourceTerm(double x, double y){
return (32*y*(1-y) + 32*x*(1-x));

}

std::vector<double> exactScalarField(double x, double y){
return {16*x*y*(1-x)*(1-y)};

std::vector<double> exactGradScalarField(double x, double y){
return {16*y*(1-y)*(1-2*x),16*x*(1-x)*(1-2*y)};
¥

Body/Source term
BodyForce* f = new BodyForce(sourceTerm);
PoissonConditions* conditions = new PoissonConditions(f);

Essential boundary conditions on the left edge:
PointSegment leftSide(Point(©,0), Point(0,1));
SegmentConstraint left (leftSide, mesh.getPoints(), new Constant(@)); // u=e;

Essential boundary conditions on the bottom edge:
PointSegment downSide(Point(©,0), Point(1,0));
SegmentConstraint down (downSide, mesh.getPoints(), new Constant(®)); // u=e;

Essential boundary conditions on the right edge:
PointSegment rightSide(Point(1,0), Point(1, 1));
SegmentConstraint right (rightSide, mesh.getPoints(), new Constant(®)); // u=0;

Essential boundary conditions on the top edge:
PointSegment topSide(Point(®, 1), Point(1, 1));
SegmentConstraint top (topSide, mesh.getPoints(), new Constant(@)); // u=e;

Add boundary conditions to the model:
conditions->addEssentialConstraint(left, mesh.getPoints());
conditions->addEssentialConstraint(down, mesh.getPoints());
conditions->addEssentialConstraint(right, mesh.getPoints());
conditions->addEssentialConstraint(top, mesh.getPoints());

24




Veamy Primer Veamy v3.0

10 Setting precision for printing to output files

In order to set the decimal precision for the floating-point values that are written
to output files, one of the following instructions can be added to the lines of code
in the main C++ setup file:
For predefined 6 decimals use:

VeamyConfig: :instance()->setPrecision(Precision: :precision::small);
For predefined 10 decimals use:

VeamyConfig: :instance()->setPrecision(Precision: :precision::mid);
For predefined 16 decimals use:

VeamyConfig: :instance()->setPrecision(Precision::precision::large);

There is also a way to directly set the number of decimals. For instance, to set 12
decimals use:

VeamyConfig: :instance()->setPrecision(12)

e If these instructions are omitted, the default number of decimals used to write
the output files is 6.

e The example files that are located in the “test” folder of Veamy’s root directory
use the foregoing instructions for setting the precision. See these example files
for more details.

11 Veamy’s website

Check Veamy’s website for newer versions:

http://camlab.cl/software/veamy/

25



Veamy Primer Veamy v3.0

APPENDIX A: General structure of the main setup file

In this appendix, the general structure of the setup file for solving a problem using
Veamy is explained by means of a problem consisting in a cantilever beam that is sub-
jected to a parabolic end load P. Fig. A.1 illustrates the geometry and boundary con-
ditions. Plane strain state is assumed. The essential boundary conditions on the
clamped edge are applied according to the analytical solution given by

a2
Uy = _ﬁgif ((GL —3x)z+ 2+ 7)) — %(l —I—T/)) ,
P .
Uy = —— (37%(L — ) + (3L — x)z?),
v = ggyg B —a) + )z?)

where Ey = Ev/ (1 - v ) with the Young’s modulus set to Ey = 1 x 10 psi, and v = v/ (1
- v) with the Poisson’s ratio set to v = ©.3; L = 8 in. is the length of the beam, D
= 4 in. is the height of the beam, and I is the second-area moment of the beam
section. The total load on the traction boundary is P = -1000 1lbf.

-
-

D

- -

: L

Fig. A.1: Model geometry and boundary conditions for the cantilever beam problem.

A.1 Setup file

A main C++ file is written to setup the problem. As there are different aspects to
consider, we divide the setup file in several blocks and explain each of them. Herein
only the main parts of this setup file are described. The complete setup instructions
for this problem are provided in the file “ParabolicMain.cpp” that is located in the
folder “Veamy-3.0/test/.”

Listing 1 shows the definition of the problem domain, the generation of base points
for the Voronoi diagram, and the computation of the polygonal mesh.

std::vector<Point> rectangle_peints = {Peint(0, -2), Point(8, -2), Point(8, 2), Point(0, 2)};
2 Region rectangle(rectangle_points);
rectangle.generateSeedPoints(PointGenerator(functions: :constantAlternating(), functions::constant()), 24,
12);
std: :vector<Point> seeds = rectangle.getSeedPoints();
TriangleVoronoiGenerator meshGenerator (seeds, rectangle);
&  Mesh<Polygon> mesh = meshGenerator.getMesh();

Listing 1: Domain definition and mesh generation for the beam subjected to a para-
bolic end load.

We proceed to initialize all the structures needed to represent the conditions of the
problem at hand. In first place, an object of the Material class is created and used
to initialize an object of the class LinearElasticityConditions. This is shown in
Listing 2.

26



Veamy Primer Veamy v3.0

Material#* material = new MaterialPlaneStrain (1e7, 0.3);
LinearElasticityConditions* conditions = new LinearElasticityConditions(material);

Listing 2: Definition of the elastic material and initialization of the problem con-
ditions.

We create a constraint that represents the essential boundary condition that is imposed
on the left side of the beam, including the segment it affects, the value of the con-
straint and the direction (in the Cartesian coordinate system) in which the constraint
is imposed. This implementation is shown in Listing 3.

double uX(double x, double y){
2 double P = -1000;
3 double Ebar = 1e7/(1 - std::pow(0.3,2));
double wBar = 0.3/(1 - 0.3);
5 double D = 4; double L = 8; double I = std::pow(D,3)/12;
6 return -P*y/(6+Ebar*I)*((6+L - 3+x)*x + (2+vBar)=std::pow(y,2) - 3xstd::pow(D,2)/2+(1+vBar));

9 double uY(double x, double y){
0 double P = -1000;
double Ebar = 1e7/(1 - std::pow(0.3,2));
2 double wBar = 0.3/(1 - 0.3);
3 double D = 4; double L = 8; double I = std::pow(D,3)/12;
1 return P/ (6#Ebar=I)*(3*vBar*std: :pow(y,2)*(L-x) + (3*L-x)=std::pow(x,2));
i
6 Function* ufConstraint = new Function(uX);
7 Function* uYConstraint = new Function(uY);
PointSegment leftSide(Point(0,-2), Point(0,2));
10 SegmentConstraint constl (leftSide, mesh.getPoints(), uXConstraint);
20  SegmentConstraint const2 (leftSide, mesh.getPoints(), uY¥Constraint);
21 conditions->addEssentialConstraint(constl, mesh.getPoints(), elasticity_constraints::Direction::Horizontal);
conditions->addEssentialConstraint(const2, mesh.getPoints(), elasticity_constraints::Direction::Vertical);

Listing 3: Definition of the essential boundary condition on the left side of the
beam.

Listing 4 presents the implementation of the natural boundary condition (the parabolic
load) that is applied on the right side of the beam. The parabolic load is construct-
ed using a function called tangential.

double tangencial(double x, double y){
2 double P = -1000; double D = 4;
3 double I = std::pow(D,3)/12;
double value = std::pow(D,2)/4-std: :pow(y,2);
5 return P/ (2*I)*value;
6 )
7 Function* tangencialload = new Function(tangencial);
= PointSegment rightSide(Point(8,-2), Point(8,2));
o  BegmentConstraint const3 (rightSide, mesh.getPoints(), tangencialload);
0 conditions->addNaturalConstraint(const3, mesh.getPoints(), elasticity_constraints::Direction::Vertical);

L15t1ng 4: Definition of the natural boundary condition on the right side of the
beam.

The linear elastostatic problem is initialized with the problem conditions previously
defined by creating an object of the class VeamylLinearElasticityDiscretization. And
the latter along with the mesh is used to initiate a Veamer instance that represents
the system. Finally, to obtain the nodal displacements solution the simulate method is
invoked. These instructions are presented in Listing 5.

1 VeamyLinearElasticityDiscretization* problem = new VeamyLinearElasticityDiscretization(conditions);
2  Veamer v(problem);
3 v.initProblem(mesh);

Eigen: :VectorXd displacements = v.simulate(mesh);

Llstlng 5: Initialization of the system that represents the beam subjected to a para-
bolic end load and start of the simulation.

The output of the simulate method is a column vector that contains the nodal displace-
ments solution. To print the nodal displacements solution to an output file, the
writeDisplacements method is called after the simulate method. This is shown in List-
ing 6. The resulting text file is named as the string stored in displacementsFile-
Name. The text file contains the computed displacements in the following format: nodal
index, x-displacement and y-displacement. An extract of the output file generated for
the beam subjected to a parabolic end load is shown in Listing 7.

27



Veamy Primer Veamy v3.0

v.writeDisplacements(displacementsFileName, displacements);

Listing 6: Printing of nodal displacements solution to an output file.

0 9.38002e-005 -0.000100889
2 1 0.000137003 -0.000101589
2 9.30384e-005 -0.000115664

Listing 7: Extract of the output file for the beam subjected to a parabolic end
load.

The output file contains no information about the geometry of the problem. The geome-
try information is kept in the Mesh instance created at the beginning of the example.
Mesh includes a method to print its geometrical data to a text file with a single line
of code, as shown in Listing 8.

mesh.printInFile(meshFileName) ;

Listing 8: Printing of mesh data to a text file.

The text file containing the mesh information is named as the string stored in mesh-
FileName and is arranged in the following format:

e First line: number of nodal points in the polygonal mesh.

e Following lines: x-coordinate y-coordinate for each nodal point in the mesh.

e One line: number of element edges in the polygonal mesh.

e Following lines: index-of-start-point index-of-end-point for each element edge in
the polygonal mesh.

e One line: number of elements in the polygonal mesh.

e Following lines: number-of-element-nodes list-of-nodal-indexes centroid-x-
coordinate centroid- y-coordinate for each polygon in the mesh.

A.2 Post processing

Veamy does not provide a post processing interface. The user may opt for a post pro-
cessing inter- face of their choice. Here we visualize the displacement results using a
MATLAB function written for this purpose. This MATLAB function is provided in the
folder “Veamy-3.0/matplots/” as the file “plotPolyMeshDisplacements.m.” In addition,
a file named “plotPolyMesh.m” that serves for plotting the mesh is provided in the
same folder. Fig. A.2 presents the polygonal mesh used and the VEM solutions.

28



Veamy Primer Veamy v3.0

N ) ) ) ) ) _ Uy, %10

oG
eegacas
S
-
-

TN

0

A - 5
2 2 4 6 8

&

0 2 4 6 8
T

(a) (b)

2 %1073
3
1
= 0 12
=1 1
-2
0

(c) (d)
Fig. A.2: Solution for the cantilever beam subjected to a parabolic end load using

Veamy. (a) Polygonal mesh, (b) VEM horizontal displacement, (c) VEM vertical dis-
placement, (d) norm of the VEM displacement.

--- THE END ---

29



