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Abstract On using Noll’s theory of materially uniform but inhomogeneous bodies, a nonlinear finite

element method for treating a body with a continuous distribution of edge dislocations is presented.

To this end, we use the multiplicative decomposition of the deformation gradient, which is herein

referred to as the F∗ decomposition. The nonlinear finite element method is devised starting from a

hyperelastic-like strain energy as a function of F∗. By making a specific assumption for the uniform

reference, we model a bar with a continuous distribution of edge dislocations parallel to the plane that

defines a cross section of the bar and with the Burgers vector along the axial direction of the bar. This

body is subjected to pure tension along its axial direction and we examine how the presence of the

defects affects the elastic solution. The numerical results are juxtaposed with the analogous ones that

are obtained from the corresponding elastic material. It appears that the field of the defects affects

the nonlinearity in the stress-strain response in the sense that stresses grow “faster” pointwise in the
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dislocated body. Thus, if a definite yield limit exists it is approached faster by the dislocated model at

hand due to the presence of defects in the as-received body.

We also focus our attention in the case of only one dislocation and conclude that near the core

region our model predicts finite stresses. Finally, a close loop consisting of a screw and an edge segment

is treated within this theory. As expected, it appears that near the loop stresses are concentrated. Our

framework is valid for a body with a frozen distribution of dislocations, namely, the defects exist but

are not allowed to move. So, essentially, it models an elastic body with internal stresses resulting from

dislocations. Thus, our approach is assumed to be one step before the initiation of plasticity and we are

interested in how the field of the inhomogeneity that arises from a fixed distribution of defects affects

the elastic solution. This is the first attempt to apply the multiplicative decomposition to problems

with dislocations in the literature, thereby highlighting that Noll’s abstract approach can be put into

the perspective of standard engineering computations.

Keywords Materially uniform · Inhomogeneous body · Multiplicative decomposition · Nonlinear

finite elements

1 Introduction

The theory of materially uniform but inhomogeneous bodies has been presented by Noll [36] in a

seminal paper and expanded by Wang [50]. A recent monograph by Epstein and Elzanowski [18] (see

also Epstein [17]) describes in a thorough and apt way this theory while giving various extensions and

applications. The theory of materially uniform but inhomogeneous bodies attempts to describe a body

with a continuous distribution of dislocations.

This theory has attracted some attention in the dislocations literature among years. Bertram [7]

presented the theoretical guidelines for building up a continuum plasticity framework starting from

the notion of material isomorphism. He also extended this framework to the case when thermal effects

are taken into account (Bertram [8, 9]). The works of Svendsen [48, 49] are along the same direction.

Among other things, anisotropy effects are discussed as well as how hardening can be incorporated into

the theory. The role of plastic dissipation, material symmetry and Illyshin postulate have been tackled

by Gupta et al [25, 26] with a view towards the evolution of dislocations in the body. The important
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paper of Epstein and Maugin [21] highlights the role played by Eshelby’s stress tensor. A framework

for the geometrical structure of anelasticity has been given by the same authors (Epstein and Maugin

[22]). The constitutive character of plastic deformation has been the topic in the work of Cleja-Tigoiu

and Soos [12].

The geometrical literature related to this theory is vast. It starts with the seminal works of Kondo

[28], Bilby et al [10] and Kroner [30] in the mid of the previous century. In the recent literature, Epstein

and coworkers extended the theory of inhomogeneities to bodies with microstructure (Epstein [16])

as well as to Cosserat materials (Epstein and de Leon [19, 20]). Based on a variational framework,

Le and Stumpf [31, 33] gave a new set of field equations for the case where the field of the defects

varies with time, thereby producing plasticity. The determination of the intermediate configuration

when the elastic strain and the dislocation density are given has been also treated by Le and Stumpf

[32]. The approach of Steinmann [47] exploits the role of the kinematical necessary dislocations in the

positiveness of the plastic dissipation.

In the very recent literature, the work of Yavari and Goriely [53] uses the theory of Cartan’s moving

frames for constructing the intermediate configuration in dislocation theories. Also, the calculation of

the field of the internal stresses is one of the topics in Yavari and Goriely [53]. Our approach based on

Noll’s theory can be seen in Sfyris et al [46] and Sfyris [41, 43, 45, 42, 44].

On the other hand, one may propose a continuum theory of dislocations where the starting point

is the dislocations field and not the plastic deformation. In a series of papers, Acharya and cowork-

ers proposed a framework for giving a plasticity theory starting from the notion of dislocation. After

giving a complete system of equations for the fully dynamical problem (Acharya [1, 2, 3]) they solve

numerically many interesting cases in the linear regime (Roy and Acharya [39, 40]). An approach for

linking the continuum plasticity framework with the theory of dislocations is also given by averaging

the equations of dislocations mechanics and relation is made with the basic ingredients of continuum

plasticity (Acharya and Roy [5], Acharya and Chapman [4]). Earlier approaches that employ an evo-

lution equation for the dislocation density may be found in the works of Kosevich [29], Kroner [30],

Mura [35] and Willis [51].
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Within the linear continuum theory of dislocations, the finite element method, as well as an atom-

istic modeling, has been used in the works of Dluzewski et al [13, 15, 14]. The finite element method

using enrichment functions to model the dislocation as a line or surface of discontinuity is tackled in

the works of Gracie et al [23, 24] and Belytschko and Gracie [6]. Also, it is worth mentioning the work

of Y. Basar [52] in multilayer analysis as well as the work of Palmov [37] in viscoplasticity at large

deformations.

The present paper is concerned with a nonlinear finite element analysis of a bar that is subjected

to uniaxial tension and that contains a continuous distribution of edge dislocations. Such dislocations

are modeled using Noll’s theory of materially uniform but inhomogeneous bodies (Noll [36]). The

field of the inhomogeneity is given a specific form that pertains to a continuous distribution of edge

dislocations (Sfyris et al [46]). We assume that the defects are not allowed to move with respect to

the material, therefore plasticity is not produced. Essentially, the effective uncoupling (Cleja-Tigoiu

and Soos [12]) of the elastic and the plastic deformation, inherent in the multiplicative decomposition,

enables to vary the elastic field without altering the field of the defects. The continuously dislocated

body is subjected to a tensional loading and we examine the role played by the field of the defects in

the elastic solution in the geometrically and materially nonlinear regime.

We formulate a nonlinear finite element method to tackle this problem. To this end, we use the

multiplicative decomposition of the deformation gradient, which is herein referred to as the F∗ de-

composition. In this approach, a hyperelastic-like strain energy is written in terms of F∗ and used to

develop the weak and linearized weak forms. As a result, a standard hyperelastic code can be used with

few changes to model dislocations under Noll’s framework with our method. The outcome is juxtaposed

with the corresponding purely elastic problem. The corresponding elastic material is defined in Sfyris

[43]. The energy of such a material equals to the energy of the dislocated material when the defects

are absent, namely, when the material uniformity is set equal to the unit tensor. The solution of the

elastic problem is compared with that of the corresponding dislocated problem. This way, we highlight

the role played by a fixed distribution of inhomogeneities (that arises from dislocations) in the elastic

solution of a bar under uniaxial tension.
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On using the F∗ decomposition finite element method, we find that due to the presence of defects

the nonlinearity in the stress-strain response is altered in the sense that for the dislocated model stresses

grow faster with strains. Thus, if a definite yield limit for the material exists this is approached faster

by the dislocated body. Of course, due to the inhomogeneity, the analysis is pointwise, so there are

other points (and regions) where the “velocity” of the nonlinearity is affected less. This change signifies

the localization of the deformation that occurs as an outcome of the defects presence—there are zones

where the dislocated bar arrives to the yield limit, while other regions remain at the elastic regime

when a homogeneous yield criterion is used.

From the numerical point of view, the field of defects is introduced by specifying the inhomogeneity

(which is treated as a given data) at every Gauss point of the finite element mesh. Thus, the boundary

conditions are not altered by the presence of the defects, to wit, the elastic and the dislocated problem

are having the same boundary conditions. Of course, the boundary nodes of the dislocated body are

affected more from the loading than their elastic counterparts are.

Attention is then focused to modeling of only one dislocation threading the bar in the prism of Noll’s

framework. The similar case of a single screw dislocation has been treated in the work of Rosakis and

Rosakis [38] with the fundamental difference that these authors model the defect as a line of singularity

in the elastic field. We emphasize that in our approach the elastic field remains smooth (i.e., it suffers

no jumps), whereas all the “bad properties” (Curl not free) that model the dislocation line are carried

by the uniform reference.

Also in the literature of single screw dislocations, Acharya [1], using notions from exterior calculus,

evaluates the internal stress field when a neo-Hookean material is considered. After constructing the

relaxed manifold based on Cartan’s frames, Yavari and Goriely [53] calculate the field of internal

stresses for a single screw dislocation. The basic difference between these approaches and our approach

relies in that in our method the external loading is taken into account in addition to the internal field

of stresses. Thus, not only the dislocations exist, but also the body is loaded. The solution is then

compared with the purely elastic one, namely, as if the defects were not present. Finally, we remark

that in our method the dislocations are not modelled using distributions, but rather Gauss points
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that discretely constitute a line are selected in the medium and the value of the uniform reference is

specified at these points.

Along the same lines a close loop is also treated. The loop consists of an edge and a screw segment.

The edge segment corresponds to a dislocation line parallel to the plane that defines a cross section of

the bar and with the Burgers vector along the axial direction of the bar. The screw segment is described

by a different map of the inhomogeneity (Sfyris et al [46]) and corresponds to a screw dislocation with

both the Burgers vector and the dislocation line along the axial direction of the bar. The screw part

is needed in order for the loop to be closed.

The paper is structured as follows. Section 2 starts by defining a materially uniform but inhomoge-

neous body following the ideas of Noll and continues by giving the weak formulation for the problem

at hand. Section 3 is devoted to the linearization of the weak form, whereas in Section 4 the corre-

sponding discretized equations are presented. Section 5 provides numerical examples using our method;

Subsection 5.1 treats the continuous distribution of dislocations, Subsection 5.2 tackles the problem

of only one edge dislocation threading the bar, and Subsection 5.3 treats the closed loop. The article

ends in Section 6 with some concluding remarks.

2 Weak form

Let BR be the reference configuration of a body, whereas the current configuration is denoted by BC .

The usual space of admissible deformations is considered:

D = {χ : Ω → R
3 | detF > 0, χ = χ̄ onΓχ}, (1)

where Ω ⊆ BR ∈ R
3 is an open bounded domain on the initial (reference) configuration with boundary

Γ , and χ is the mapping that defines the displacement of a particle from its initial position X in BR to

its current position x in BC , i.e., u = χ(X)−X = x−X. On the other hand, Γχ is the portion of the

boundary where the deformation χ̄ is prescribed. The vectors of external body forces f0 and external

surface forces t0 are assumed to be independent of the motion. As usual, the gradient of the mapping

χ, denoted by F, is the deformation gradient tensor given by

F =
∂χ

∂X
. (2)
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For an inhomogeneous body the elastic energy is a function of F and X, namely W̄ . According

to Noll [36], if there exists a function W̄U such that the elastic energy can be written as

W̄ (F,X) = W̄U (FK), (3)

then the material is called materially uniform. In this paper, the argument of W̄U in the right-hand

side of Eq. (3) is referred to as the F∗ (multiplicative) decomposition1, to wit,

F∗ = FK, (4)

where K describes inhomogeneities that arise due to a fixed distribution of dislocations (Sfyris et al

[46]). Thus, F∗ can be thought as a modified deformation gradient tensor. Due to its modified character,

the energy and quantities such as stresses and strains adopt a modified character as well. The finite

element derivations need to be elaborated in a manner that is consistent with these modifications.

Using standard invariance arguments, the energy can be expressed as (Marsden and Hughes [34])

W (C,X) = WU ((F
∗)TF∗) = WU (C

∗) ≡ W ∗

U , (5)

where C = FTF is the right Cauchy-Green deformation tensor and C∗ = F∗TF∗ is the modified right

Cauchy-Green deformation tensor. Accordingly, the modified second Piola-Kirchhoff stress tensor takes

the form

S(C∗) = 2
∂WU (C

∗)

∂C∗
=

∂W̃U (E
∗)

∂E∗
≡ S∗, (6)

where E∗ is the modified strain tensor produced by F∗, namely

E∗ =
1

2

[

(F∗)TF∗ − I
]

. (7)

The decisive answer to the existence or not of the dislocations is given by the field K. When K can

be written globally as a gradient, then dislocations are absent and the material is purely elastic (Noll

[36], Wang [50]). In the opposite case, where K cannot be written globally as the gradient of some

point mapping, then dislocations exist in the body and the material is called inhomogeneous. From the

physical point of view, Eq. (3) reveals that the inhomogeneity of the body is only through K, which

1 The F∗ deformation gradient tensor is decomposed into two parts, an elastic one and a dislocated one.
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BR BC

B U
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Fig. 1 Configurations that are used in the theory of materially uniform but inhomogeneous bodies.

describes the relaxation procedure from the internal stresses due to the presence of dislocations (Epstein

and Maugin [21]). The outcome of this relaxation procedure is a collection of small relaxed pieces,

denoted by BU .

The source of the dislocation density is the deviation of K from being Curl-free. The dislocation

density tensor is a measure of this deviation and is defined as (Kroner [30], Kosevich [29])

α̂Cα = ǫABCK
−1
αA,B (8)

for its two point expression, whereas for the fully material expression we have (Kroner [30], Kosevich

[29])

αDC = α̂DαK
T
αC . (9)

So, the field F describes the elastic part of the theory, whereas K describes the part related with

the defects. These quantities are assumed to be independent with respect to each other. The dependent

variable is F∗, which maps BU to BC (see Fig. 1). In our derivations, indicial capital Latin notation

stands for quantities in BR, whereas small case Latin indices are used for quantities in BC , and small

case Greek indices are used for quantities in BU . So, with respect to indices we have F ∗

iα = FiAKAα.

In the material (reference) configuration, the following modified potential energy functional arises:

Π∗(χ) =

∫

Ω

W̃U (E
∗(χ)) dΩ −

∫

Ω

f0 · χdΩ −

∫

Γt

t0 · χdΓ, (10)
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where W̃U (E
∗(χ)) is the modified strain energy function.

The virtual variation of Eq. (10) in the arbitrary direction v ∈ V = {v:Ω → R
3 | v = 0 onΓχ}

yields

δΠ∗ = DΠ∗[v] =

∫

Ω

∂W̃U (E
∗)

∂E∗
:δE∗ dΩ −

∫

Ω

f0 · v dΩ −

∫

Γt

t0 · v dΓ

=

∫

Ω

S∗:δE∗ dΩ −

∫

Ω

f0 · v dΩ −

∫

Γt

t0 · v dΓ. (11)

In Eq. (11), the tensor E∗ written with respect to indices has the form

E∗

βα =
1

2

[

KT
βAF

T
AjFjBKBα − δβα

]

. (12)

On taking the variation in Eq. (12) leads to

δE∗

βα = DE∗

βα[v] =
1

2

[

KT
βADFT

Aj [v]FjBKBα +KT
βAF

T
AjDFjB [v]KBα

]

, (13)

since the field of the defects does not alter, namely DK[v] = 0. This assumption is crucial and rests

on the effective uncoupling of the elastic and the plastic parts (Cleja-Tigoiu and Soos [12]). It signifies

that dislocations are fixed within the material, thus no further plasticity is produced. For the variation

of the elastic field (see for instance Bonet and Wood [11]) we have

DFiA[v] = ∇Avi. (14)

So, collectively the variation of the strain renders

δE∗

βα = DE∗

βα[v] =
1

2

[

KT
βA(∇Avj)

TFjBKBα +KT
βAF

T
Aj∇BvjKBα

]

=
1

2

[

KT
βA

{

(∇Avj)
TFjB + FT

Aj∇Bvj
}

KBα

]

= KT
βA

{

FT
Aj∇Bvj

}

sym
KBα, (15)

where the tensor within curly brackets in the last equality is symmetric with respect to the indices A

and B, and corresponds to the variation of the strain used in pure elasticity problems.

With the help of Eq. (15), the first integrand of the variation in Eq. (11) takes the form

S∗

αβ :δE
∗

βα = S∗

αβ:
[

KT
βA

{

FT
Aj∇Bvj

}

sym
KBα

]

=
[

KAβS
∗

αβK
T
αB

]

:
{

FT
Aj∇Bvj

}

sym
. (16)
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In the last equality, the following operation between tensors of second order has been used twice (Gurtin

[27]):

R:(ST) = (STR):T = (RTT):S. (17)

A careful look at Eq. (16) reveals that the production of virtual power is done by the second Piola-

Kirchhoff stress tensor, which is computed as follows:

S = KS∗KT. (18)

This is reasonable since the dislocations are not allowed to move, so there are only elastic variations.

Thus, on collecting terms the virtual variation becomes

δΠ∗ =

∫

Ω

S:
{

FT∇v
}

sym
dΩ −

∫

Ω

f0 · v dΩ −

∫

Γt

t0 · v dΓ. (19)

The last equation reveals the simplicity of the method: the standard virtual work is obtained and the

only change that needs to be taken into account for the finite element implementation is the operation

given in Eq. (18). This operation also affect the linearization of the weak form. This is dealt with in

the next section.

3 Linearized weak form

The linearized weak form in the direction of the displacement increment ∆u is given by

DΠ∗[v] +D2Π∗[v, ∆u] = 0. (20)

The directional derivative in the direction ∆u (namely, the second variation of Π∗) renders after some

calculations

D2Π∗[v, ∆u] =

∫

Ω

δE:C:DE[∆u] dΩ +

∫

Ω

S:DδE[∆u] dΩ, (21)

where the fourth order tensor C denotes the elasticity of the dislocated material defined as (Sfyris

[41, 43])

C = (K⊗K) :
∂2W̃U (E

∗)

∂E∗∂E∗
: (KT ⊗KT) = (K⊗K) : C(E∗) : (KT ⊗KT)

= (K⊗K) : C∗ : (KT ⊗KT). (22)
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The last equation in indicial notation reads:

CABCD = KαAKβB

(

∂2W̃U (E
∗)

∂E∗∂E∗

)

αβγδ

KT
γCK

T
δD. (23)

The above developments reveal that the finite element implementation is straightforward. In fact, a

standard hyperelastic code can be used with few changes, namely, the second Piola-Kirchhoff stress

is replaced with the one given in Eq. (18) and the material elasticity tensor is replaced with the one

given in Eq. (22).

4 Discrete Linearized Weak Form

The discretization of the linearized weak form Eq. (20) leads to the following Newton-Raphson scheme:

t+∆t (Kmat + Kgeo)
(i−1) ∆u

(i) = t+∆t
F− t+∆t

T
(i−1) = t+∆t

R
(i−1), (24)

where Kmat and Kgeo are the material and geometric global tangent stiffness matrices, respectively; F

and T are the external and internal global nodal force column vectors, respectively; R is the residual

global nodal force column vector; and ∆u is the column vector that contains all the displacement

degrees of freedom of the finite element mesh. On the other hand, t + ∆t denotes the incremental

approach where a solution is known at discrete time t and the solution at discrete time t + ∆t is

sought; the increment ∆t corresponds to the load step or load increment. Finally, i stands for the

equilibrium iterations within an increment.

The global tangent stiffness matrices as well as the global nodal force column vectors are obtained

by assembly of nodal contributions of the finite elements. The following finite element interpolations

in the material (reference) configuration of a 8-node hexahedron are considered:

∆uh(X) =

8
∑

a=1

Na(X)∆ua, (25a)

for the trial function, and

vh(X) =

8
∑

a=1

Na(X)va, (25b)
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for the test function. In Eq. (25), Na is the finite element shape function. Thus, after invoking the

arbitrariness of nodal variations, the discretization using Eq. (25) yields

(R)a =

∫

Ω

Naf0 dΩ +

∫

Γ

Nat0 dΓ −

∫

Ω

(

B
0
a

)T
S dΩ (26)

for the nodal contribution of the residual nodal force vector,

(Kmat)ab =

∫

Ω

(

B
0
a

)T
CB

0
b dΩ (27)

for the nodal contribution of the material tangent stiffness matrix, and

(Kgeo)ab = I

∫

Ω

(∇0Na)
TS(∇0Nb) dΩ (28)

for the nodal contribution of the geometric tangent stiffness matrix. In the preceding equations,

C =





































C1111 C1122 C1133 C1112 C1113 C1123

C1122 C2222 C2233 C2212 C2213 C2223

C1133 C2233 C3333 C3312 C3313 C3323

C1112 C2212 C3312 C1212 C1213 C1223

C1113 C2213 C3313 C1213 C1313 C1323

C1123 C2223 C3323 C1223 C1323 C2323





































(29)

is the symmetric form of C using Voigt notation,

S =

(

S11 S22 S33 S12 S13 S23

)T

(30)

is the symmetric form of S using Voigt notation, whereas I is the identity tensor. Finally,

B0
a =





































F11Na,X F21Na,X F31Na,X

F12Na,Y F22Na,Y F32Na,Y

F13Na,Z F23Na,Z F33Na,Z

F13Na,Y + F12Na,Z F23Na,Y + F22Na,Z F33Na,Y + F32Na,Z

F13Na,X + F11Na,Z F23Na,X + F21Na,Z F33Na,X + F31Na,Z

F12Na,X + F11Na,Y F22Na,X + F21Na,Y F32Na,X + F31Na,Y





































. (31)

Usually, the finite element shape functions are given in terms of the isoparametric coordinates ξ =

{ξ1, ξ2, ξ3}, which are defined locally in a reference element. This permits the numerical integration of
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the linearized weak form integrals using Gauss quadrature. The derivatives with respect to the material

coordinates are then found by

∂Na(X)

∂X
=

(

∂X

∂ξ

)

−T
∂Na(ξ)

∂ξ
;

∂X

∂ξ
=

8
∑

a=1

Xa ⊗
∂Na(ξ)

∂ξ
. (32)

Accordingly, the differential volume in the linearized weak form integrals is computed as

dΩ = Jξ
0 dξ1dξ2dξ3, (33)

where Jξ
0 = det (∂X/∂ξ). Similarly, the differential surface (dΓ ) is found by using the two-dimensional

form of Eq. (33).

5 Numerical examples

The F∗ decomposition method proposed in this paper for modeling materially uniform but inhomo-

geneous bodies is assessed via a pure tension problem. The problem definition and the finite element

mesh used are depicted in Fig. 2, where the pressure on the top of the bar is p = 100 MPa. The

following modified strain energy function is used:

WU (C
∗) =

1

2
µ0(trC

∗ − 3)− µ0 ln J
∗ +

λ0

2
(ln J∗)2, (34)

with material parameters µ0 = 37.50937734 MPa and λ0 = 74.79414764 MPa. The function WU (C
∗)

defines the dislocated body in our framework when K is explicitly specified. The corresponding elastic

material is obtained by setting K = I, which indicates the absence of defects, thereby leading to the

expression

W (C) =
1

2
µ0(trC− 3)− µ0 ln J +

λ0

2
(ln J)2. (35)

In the numerical calculations, when the elastic body, material or solution is referred we mean the

outcome of the numerical solution based on Eq. (35) with the same values for the material parameters

used in Eq. (34).

In the numerical examples, we use the Cauchy stress tensor, the principal stresses, the princi-

pal stretches and the von Mises stress to analyze the numerical results. The Cauchy stress tensor is

computed as

σ = (1/J)FSFT = (1/J)FKS∗KTFT. (36)
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Fig. 2 Tension problem. (a) Geometry and boundary conditions, and (b) mesh of 8-node hexahedra.

The components of the Cauchy stress tensor are used to compute the principal stresses and the von

Mises stress. On the other hand, the principal stretches are obtained from

Li =
√

λ∗

i , (37)

where λ∗

i is an eigenvalue of the modified right Cauchy-Green deformation tensor C∗.

5.1 Fully dislocated bar

For the uniform reference field we select (Sfyris et al [46])

K =















1 0 0

0 1 0

0 0.016Z2 1















−1

. (38)

This choice models continuous distribution of edge dislocations with dislocated lines along the X

direction and the Burgers vectors parallel to the Z direction, since the only non vanishing component
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(a) (b)

(c) (d)

Fig. 3 Contour plots for the purely nonlinear elastic bar and the fully dislocated bar. (a) Magnitude of

displacement for the purely nonlinear elastic bar, (b) magnitude of displacement for the fully dislocated bar,

(c) von Mises stress for the purely nonlinear elastic bar, and (d) von Mises stress for the fully dislocated bar.

of the dislocation density tensor has the form

α13 = 0.032Z. (39)

So, we speak about dislocations distributed linearly in the medium. For inserting the field of defects

in the code, the value of the uniform reference is specified at every Gauss point.

The contour plots of the displacement field are given in Figs. 3(a) and 3(b). Fig. 3(a) corresponds

to the elastic problem, whereas Fig. 3(b) to the corresponding dislocated one. The presence of defects

is reflected mainly on the top surface of the bar, where the dislocated body is much more displaced.

This is expected since at higher points of the bar the inhomogeneity is greater due to the specific

expression of K−1. The contour plots of the von Mises stress are given in Fig. 3(c) and 3(d). Fig. 3(c)

corresponds to the purely elastic problem, whereas Fig. 3(d) to the dislocated counterpart. Stresses

are concentrated near the boundary surface of the bar lying on plane ZX, whereas on the opposite side

of the bar the stresses appear to have lower values.
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Fig. 4 Locations of the measure points for the fully dislocated bar. Edge defined by point A and C is used

to measure stress and displacement along the length of the bar; points B, D and E are used to measure the

evolution of the stress with the number of load steps and to measure the stress versus stretch response curve;

and point C is used to measure the evolution of the displacement with the number of load steps.

For highlighting the way the axial displacement and the principal stress are distributed along the

bar, the line AC shown in Fig. 4 is chosen. Fig. 5(a) shows the way the axial displacement drifts

from the elastic solution as higher points are reached along the line AC, where the inhomogeneity

increases. The dashed line corresponds to the purely elastic problem, whereas the continuous curve

to the dislocated one. Fig. 5(b) shows the way the axial displacement changes with the load steps at

point B. The dislocated body results in axial displacement that grows faster with the load steps for

this point. So, it is apparent that the difference between the displacement solutions of the dislocated

and the elastic problems becomes more intense as the upper part of the bar is reached, where the

inhomogeneity is larger.
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Fig. 5 Displacement response curves for the purely nonlinear elastic bar and the fully dislocated bar. (a)

Axial displacement along the length of the bar (edge AC), and (b) evolution of the axial displacement with

the number of load steps at point B.
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Fig. 6 Principal stress response curves for the purely nonlinear elastic bar and the fully dislocated bar. (a)

Principal stress along the length of the bar (edge AC), and (b) evolution of the principal stress with the number

of load steps at point B.

For the way the principal stress varies with the distance along the line AC, we refer to Fig. 6(a).

Up to the height of approximately 0.35m in the bar, there are small differences between the elastic and

the dislocated solution. But at higher locations, the differences become significant. Fig. 6(b) shows the

way the principal stress is altered with the load steps for the point B of the bar. The dislocated body

results in larger stresses than its elastic counterpart and this difference increases with the load steps.
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Fig. 7 Principal stress versus principal stretch response curves at point B for the purely nonlinear elastic bar

and the fully dislocated bar. The first point on the left of each curve corresponds to the first load increment,

whereas the last point on the right of each curve to the last load increment.

The principal stress versus principal stretch response diagram at point B is given in Fig. 7. The

curve is constructed as a function of the load steps, namely, the first point on the left of each curve

corresponds to the pair (stress,stretch) that results from the mechanical response at the first load

increment, whereas the last point on the right of each curve corresponds to the pair (stress, stretch)

that results at the last load increment. It is observed that the presence of the defects does not alter

the form of the nonlinearity, but in the dislocated body the location of the pair (stress, stretch) on

the curve is ahead from the corresponding pair of the purely elastic body. So, if a definite yield limit

exists it signifies that the initiation of plasticity is approached faster by the dislocated model.

Of course, due to the inhomogeneity of the model every point of the bar should be examined

separately. We present a pictorial akin to the one in Fig. 7 for the arbitrarily chosen points D and E

of the dislocated bar. The principal stress versus principal stretch response curve for these points is

depicted in Fig. 8, where the elastic solution is not present. It is noted that the location of the pair

(stress, stretch) on the curve of point B is ahead from the corresponding pair on the curves of points

D and E. So, if a definite homogeneous yield limit for the whole body exists, this would be approached

faster at point B of the bar highlighting the localization zones that occur due to the presence of

the internal stresses on the as-received body. The latter can be explained for this particular case by
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Fig. 8 Principal stress versus principal stretch response curves at points B, D, E for the purely nonlinear

elastic bar and the fully dislocated bar. The first point on the left of each curve corresponds to the first load

increment, whereas the last point on the right of each curve to the last load increment.

observing the nonuniformity of the stretch field in Fig. 9, where the location of point E is surrounded

by smaller stretches than for point D. On the other hand, point B is located near the region that

exhibits the largest stretches, thereby explaining the order of the data for points B, D and E in Fig. 8.

So, a homogeneous yield condition of the form

σ1 = W,

where σ1 is the principal stress and W is a limiting value, fails to identify the regions where localization

is to occur after yielding. It predicts yielding, but not where yielding occurs. Thus, the main outcome

from the previous numerical results is that the presence of the defects induces changes in the way

that principal stresses change with principal strains pointwise. So, if there is a definite homogeneous

yield limit for the material this is approached faster by the dislocated model. This is due to the

presence of internal stresses as the result of dislocations on the as-received body. Also, it appears that

a homogeneous yield limit is approached faster by some points (and therefore regions) of the material,

while other points remain in the elastic regime. This way plastic zones would only appear in those parts

of the material that reached the yield limit. Even though our framework does not allow passage to the

plastic regime (motion of dislocations), the present analysis exhibits how plastic zones and localization
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Fig. 9 Depiction of the nonuniformity of the principal stretch field in the fully dislocated bar. The location of

point E is surrounded by smaller stretches than for point D. Point B is located near the region that exhibits

the largest stretches.

of deformation occur at the initiation of yielding. We underline that the localization of the kind meant

above is due to internal stresses on the as-received body due to pre-existing dislocations.

5.2 Bar with a single edge dislocation

For modeling only one dislocation we specify the uniform reference field only to a set of Gauss points

that discretely constitute a line threading the medium. So, by using the expression

K =















1 0 0

0 1 0

0 0.08Z2 1















−1

, (40)

we model one edge dislocation in the X direction with the Burgers vector parallel to the Z direction.

The dislocated line is the line AB shown in Fig. 10. The non trivial component of the dislocation

density tensor is

α13 = 0.016Z. (41)
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Fig. 10 Edge dislocation defined by AB for the single edge dislocated bar problem. Lines ab and cd are used

to measure the principal stress.

Theoretically, the modeling of only one dislocation under Noll’s framework would require the use

of distributions in the components of the uniform reference. We by-pass the use of distributions by

specifying the uniform reference to every Gauss point that discretely constitutes the edge dislocation.

This is strictly needed due to numerics since the weak form integrals of the finite element method are

computed numerically using Gauss quadrature. The location of the end points of the dislocated line

are A = (0, 0.8486, 3.7236) and B = (1, 0.8486, 3.7236).

A convergence analysis is provided to validate the finite element mesh depicted in Fig. 2(b), which

is the mesh used in the present numerical examples. To this end, the dislocated line is kept fixed while

the mesh is refined. Since an analytical solution is not available for the problem at hand, the results

of one mesh are compared with those of the previous mesh. Thus, a refined mesh is deemed to be

converged if its associated results do not differ much from those of the previous refinement. Fig. 11
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Fig. 11 Convergence study for the single edge dislocated bar. (a) Principal stress along the edge dislocation

AB, and (b) principal stress along the line cd.

presents the convergence analysis for the principal stress measured along the dislocated line AB and

along the line cd. A mesh of 3321 nodes, which corresponds to the mesh depicted in Fig. 2(b), proves

to be sufficient in terms of convergence. The stress analyses follow.

Fig. 12 shows the contour plots for the purely nonlinear elastic bar and its dislocated analog. The

stress contours are provided at a cut through the plane that contains the dislocation. Of course, for

the purely elastic problem there is no dislocation but the plane is the same for comparison purposes.

By measuring the von Mises stress we conclude that stresses are concentrated at the vicinity of the

dislocated line, while at the same time there are regions where the stresses are smaller than those of

the corresponding elastic problem.

The fact that along the dislocated line stresses are concentrated is also depicted in Fig. 13(a). The

continuous line corresponds to the dislocated solution, whereas the dashed one to the elastic solution.

For the dislocated bar, stresses of approximately 290 MPa are obtained, whereas for the elastic bar

somewhat less than 220 MPa.

The principal stress along the line ab is presented in Fig. 13(b). The present method predicts finite

values for the stresses nearby the dislocated line. The principal stress along the line cd is depicted in

Fig. 14, where again bounded stresses are predicted near the dislocated line.



A finite element formulation for stressed bodies with continuous distribution of edge dislocations 23

(a) (b)

Fig. 12 Contour plots for the purely nonlinear elastic bar and the single edge dislocated bar. The figure shows

a cut through the plane that contains the edge dislocation. (a) von Mises stress for the purely nonlinear elastic

bar, and (b) von Mises stress for the single edge dislocated bar.
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Fig. 13 Principal stress response curves for the purely nonlinear elastic bar and the single edge dislocated

bar. (a) Principal stress along the edge dislocation AB, and (b) principal stress along the line ab.

It is worth mentioning that the case of a single screw dislocation in a neo-Hookean body has been

examined by Rosakis and Rosakis [38], Acharya [1], Yavari and Goriely [53]. The work of Rosakis and

Rosakis [38] model the defect as a line where the displacement suffers a jump. In our framework, by

contrast, the elastic displacement is smooth throughout the body. The field of defects is introduced

through the inhomogeneous Curl-not-free expression for K−1. Acharya [1], using notions from exterior

calculus, evaluates the field of internal stresses in a neo-Hookean material with a single screw disloca-

tion. Yavari and Goriely [53], after constructing the relaxed manifold of a material with a single screw
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Fig. 14 Principal stress along the line cd.

dislocation, calculate the field of internal stresses. It is emphasized that in our framework an initially

dislocated body is subjected to a tensional loading and the outcome is compared with the purely elastic

solution. Thus, our approach differs from that of Acharya [1] and Yavari and Goriely [53] in the sense

that the dislocated body is stressed externally.

Remark 1 We should mention that there are calculations for the stress field of an edge dislocation

in an isotropic medium in the existing literature (Roy and Acharya [39], p. 143, Fig. 2). There, the

authors calculate the stress field produced by an edge dislocation in an isotropic medium without any

external loading; essentially, these are the stresses necessary for the generation of the dislocation from

an otherwise perfect body. In our approach, the field of the defects is assumed to exist and we calculate

how it interacts with the external loading. Even though a direct comparison is not possible, there is

one qualitative result that is worth mentioning: the model in our approach predicts finite stresses as

the dislocation line is approached. This is in line with Roy and Acharya [39], who also calculate a finite

field of stresses near the dislocation, and in contrast to the theoretical results that predict an infinite

stress field.

Remark 2 We remark that in the approach pursued in this paper, the dislocation is introduced as a

line of inhomogeneity in the continuum. This makes the definition of the core region of the dislocation
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line unusual. There are no topological changes since the atoms are not displaced due to the presence

of the defect; the defect is modeled as an inhomogeneity in the existing topology of the body.

5.3 Bar with a square dislocation loop

In this subsection, a closed square dislocation loop inside the bar is treated. The loop consists of edge

segments (lines bc and da in Fig. 15) and screw segments (lines ab and cd in Fig. 15). The screw

segment is used in order for the loop to be closed. For the edge dislocations (lines bc and da) in the X

direction with the Burgers vectors parallel to the Z direction, the choice for the uniform reference is

K =















1 0 0

0 1 0

0 0.08Z2 1















−1

. (42)

On the other hand, for the screw segment (lines ab and cd), the uniform reference is selected as (Sfyris

et al [46])

K =















1 0 0

0 1 0

0.08Y 2 1 1















−1

. (43)

This choice corresponds to a screw dislocation with both the Burgers vector and the edge dislocation

along the Z direction since the only non-vanishing component of the dislocation density is

α33 = 0.016Y. (44)

In analogy with the approach of Subsection 5.2, the needed choices of the uniform reference are dis-

cretely specified at the Gauss points where the dislocation is assumed to be.

Fig. 16 shows the contour plots for the principal stretch. Fig. 16(a) shows the outcome for the

purely elastic material and Fig. 16(b) for the body with the loop. It is observed that the stretch on

the edge segments is larger than the stretch at the same location in the pure elastic bar, whereas near

the screw segments the differences between both models are not significant. Essentially, the upper part

of the edge segment gives larger stretches. A similar observation can be made for the principal stress

along the loop (see Fig. 17).
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Fig. 15 Schematic picture of the square dislocation loop. The loop is defined by the segment abcd.

(a) (b)

Fig. 16 Principal stretch contour plots for the bar with a square dislocation loop. (a) Principal stretch for the

purely elastic problem, and (b) principal stretch for the bar with the loop.
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(a) (b)

Fig. 17 Principal stress contour plots for the bar with a square dislocation loop. (a) Principal stress for the

purely elastic problem, and (b) principal stress for the bar with the dislocation loop.
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Fig. 18 Plot of the principal stress along the loop. The loop starts and ends at point a.

A plot of the principal stress along the dislocation loop is pictured in Fig. 18. The dashed line

corresponds to the elastic case, whereas the continuous line to the dislocated case. In general, it is seen

that the presence of the defects is accompanied with larger principal stresses. The measurement of the

distance along the loop starts at point a on the loop (see Fig. 15). In Fig. 18, the largest stresses occur

on the edge segment bc, followed by the stresses on da as it is readily seen in Fig. 17(b).
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6 Concluding remarks

The purpose of the present paper is to highlight the role played by a field of continuous distribution

of dislocations in the elastic solution of a bar under tension. Essentially, we examine how a field

of internal stresses that stems from dislocations affects the response of the body. For a continuous

distribution of edge dislocations, it turns out that the principal stress grows faster in the dislocated

body than in the elastic one. So, if a definite yield limit exists for both elastic and dislocated materials,

it will be approached faster by the dislocated body. The source of this phenomenon is the presence of

the internal stresses on the as-received body due to dislocations. Thus, for the problem at hand, the

existence of a frozen field of dislocations results in larger stresses distributed in the body than in its

elastic counterpart.

The distribution of these stresses is inherently inhomogeneous, which means there are zones where

stresses are concentrated, while other zones are less affected by the presence of defects. So, by assuming

the existence of a homogeneous yield limit for the body, there will be zones in the body where plasticity

will start to develop, while other regions will remain in the elastic regime. For the discrete cases that

were considered herein, the latter appears to be valid—the presence of the inhomogeneities leads to a

concentration of stresses in the region near the defect. For the model at hand, the predicted stresses

are finite.

The whole framework presented is valid for the case where the defects exist but are not allowed to

move. The next step would be to consider the case where the dislocations on the as-received body are

allowed to move with respect to the material, thereby producing plasticity. This issue would require

the simultaneous solution of an equation that describes the evolution of the uniform reference and it

is a work in progress.
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