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ABSTRACT

A Galerkin-based maximum-entropy meshfree method for linear and nonlinear elas-

tic media is developed. The standard displacement-based Galerkin formulation is used to

model compressible linear elastic solids, whereas the classical u-p mixed formulation for

near-incompressible linear elastic media is adopted to formulate a volume-averaged nodal

technique in which the pressure variable is eliminated from the analysis. This results in

a single-field formulation that is devoid of volumetric locking. A modified Gauss integra-

tion technique that alleviates integration errors in meshfree methods with guaranteed patch

test satisfaction to machine precision is devised. The performance of the maximum-entropy

meshfree method is assessed for problems in compressible and near-incompressible linear

elastic media using three-node triangular and four-node tetrahedral background meshes.

Both structured and unstructured meshes are considered to assess the accuracy, perfor-

mance and stability of the maximum-entropy meshfree method by means of various nu-

merical experiments, which include patch tests, bending dominated problem, combined

bending-shear problem, rigid indentation, Stokes flow and numerical stability tests.

An extension of the volume-averaged nodal technique is proposed for the analysis of

near-incompressible nonlinear elastic solids in two dimensions. In the nonlinear version, the

volume change ratio of the dilatational constraint, namely J , is volume-averaged around

nodes leading to a locking-free displacement-based formulation. The excellent performance

of the maximum-entropy meshfree method for problems in near-incompressible nonlinear

elastic solids is demonstrated via three standard two-dimensional numerical experiments—

a combined bending-shear problem, a plane strain compression of a rubber block and a

frictionless indentation problem. Three-node structured and unstructured triangular back-

ground meshes are employed and the results are compared to two finite element methods
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that use such meshes, namely, the linear displacement/constant pressure triangle and the

linear displacement/linear pressure triangle enriched with a displacement bubble node (MINI

element). The two-dimensional nonlinear simulations reveal that the maximum-entropy

meshfree method effectively improves the poor performance of linear triangular meshes in

the analysis of near-incompressible solids at finite strains.
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1

Chapter 1

Introduction

1.1 Background and Motivations

In the Finite Element Method (FEM), the numerical approximation is locally built by

means of shape functions that are defined over non-overlapping subdivisions (elements)

that divide a domain of interest. These subdivisions are connected together by a topolog-

ical map termed mesh. The foregoing features of FEM render it to be well-suited to solve

partial differential equations (PDEs): they lead to well-established formulas for the finite el-

ement shape functions, which makes computation of shape functions straightforward; finite

element shape functions are endowed with the so-called Kronecker-delta property, which

allows the imposition of essential boundary conditions in a direct and simple manner; and

very efficient and inexpensive computations are obtained since the final discrete system is

banded and sparse. Despite these striking advantages that arise in many practical applica-

tions, a number of shortcomings that emanate from the need of a mesh are present in the

finite element method. For instance, mesh distortions (especially in large deformation anal-

ysis) breakdown the simulation very early leading to inaccurate solutions; the accuracy of

finite element computations is strongly dependent on the quality of the mesh, which compli-

cates its generation, especially in three-dimensional settings with complex geometries; the

piece-wise continuous character of finite element shape functions induces mesh alignment
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sensitivity along shear band formations, which makes the numerical solution dependent on

the mesh structure and element edge orientation.

The above-mentioned drawbacks and many others (see for instance, Refs. [1,2]) provide

motivation for the development of alternative numerical procedures to improve the perfor-

mance of simulations that otherwise are intractable with standard finite elements. Meshfree

methods, whose approximations are not built using a mesh, are a promising alternative.

However, meshfree methods are not exempt from drawbacks either. For instance, meshfree

methods are prone to errors in the numerical integration of the weak form. As a means to

alleviate these errors, expensive numerical integration technique is usually needed, which

impacts the overall computational cost. For instance, Gauss integration with higher-order

accurate scheme on a background mesh of finite elements [3, 4] or the use of higher-order

quadrature rules on integration cells aligned with the support of shape functions [5, 6] are

typically adopted. Thus, an in-depth understanding of the numerical integration error in

meshfree methods, ways to control it, and the development of more efficient integration

techniques are necessary.

Standard displacement-based Galerkin formulations exhibit severe stiffening when mod-

eling near-incompressible materials. In elasticity theory, this occurs when the Poisson’s ratio

ν approaches 1/2, and is referred to as volumetric locking. In finite elements, some of the

approaches to alleviate locking are: reduced/selective integration [7], B-bar technique [8],

mixed formulations [9], and assumed strain methods [10]. All of these techniques are in

fact specific instances of mixed formulations. The equivalence between reduced/selective

integration and mixed formulation was demonstrated by Malkus and Hughes [9]. The B-

bar technique and assumed strain methods can be derived from the three-field Hu-Washizu

mixed formulation [11]. A recently developed B-bar technique for NURBS-based isogeo-

metric analysis [12] is obtained by an L2 projection of the dilatational strain onto the lower

order approximation space—typically, the pressure space in a mixed u-p formulation.

An important consideration in employing mixed formulations is the selection of the

approximation spaces since not all choices for them lead to stability. In particular, the
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stability of two-field mixed formulations, such as u-p, is characterized by the Ladyzhenskaya-

Babuška-Brezzi (LBB) inf-sup condition [13–15]. However, the analytical proof to establish

LBB-stability is either cumbersome [16] or impossible to accomplish for distorted finite

elements [17], which has led to the development of other approaches that by-pass the inf-

sup condition [18,19]. Alternatively, a numerical test to verify the inf-sup condition has been

developed [17], which can be readily performed over any finite element discretization. Finite

element spaces for the displacement and pressure that pass the numerical (Chapelle-Bathe)

inf-sup test are likely to satisfy its analytical counterpart [20]. Displacement-based Galerkin

meshfree methods [4,5,21–27] that are based on moving least squares approximants, natural

neighbor interpolants, or entropy approximants are also prone to locking. Huerta and

Fernández-Méndez [28] have conducted an in-depth study of volumetric locking in the

element-free Galerkin (EFG) method. Various remedies have been pursued in the literature

to overcome this deficiency—for instance, Dolbow and Belytschko [29] employed reduced

integration techniques within a mixed formulation of the EFG method; González et al. [30]

enriched the displacement approximation in a mixed natural element formulation; Vidal et

al. [31] used pseudo-divergence-free approximants in the EFG to satisfy the incompressibility

condition; and the B-bar and enhanced strain methods were introduced in the EFG by

Recio et al. [32]. In an effort to depart from background cell integration, stabilized nodal

integration [33–37] and stress-point integration schemes [38–40] have also been proposed

to overcome numerical integration errors and facilitate large deformation simulations with

meshfree methods. These approaches attempt to mimic reduced integration procedures,

and have had success in suppressing volumetric locking. Meshfree methods that are based

on mixed formulations are also subjected to stability requirements.

The finite element literature is replete with use of mixed formulations and their sta-

bility analysis for incompressible media problems (for example, see Refs. [41, 42]). The

performance and comparison among several stabilization procedures for finite elements is

provided in Ref. [43]. On the other hand, the study of stability in meshfree mixed formu-

lations is rendered difficult due to the rational form of meshfree basis functions and the
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absence of an element structure in the construction of the meshfree approximation. For

instance, Dolbow and Belytschko [29] and De and Bathe [44] emphasize the difficulty in

obtaining an analytical proof to the inf-sup condition and in passing the inf-sup test. A

stable meshfree formulation for incompressible media based on mixed formulations is, in

general, an outstanding issue in meshfree methods. A few instances of meshfree methods

that violate the LBB condition have also been developed within the framework of stabilized

methods [45–47].

In this dissertation, a new formulation for meshfree methods that provides a remedy

for volumetric locking in the incompressible limit is presented. A volume-averaged nodal

technique is proposed, which allows to solve for nodal pressure variables in the pressure

(divergence-free) constraint of a displacement/pressure formulation. As a result, the nodal

pressure variables are explicitly written in terms of the displacement field. The latter is

used to eliminate the pressure field from the analysis in the equilibrium constraint. A

displacement-based formulation is yielded. Even though the proposed approach shares

common features with the method proposed by Krysl and Zhu [48], there exist notable

differences. We use averages of strain matrices from the elements attached to a particular

node to satisfy the near-incompressibility constraint in the weak form, whereas in Ref. [48]

the averages are used to obtain a strain field that satisfies a kinematic constraint in a

displacement-based weak form. Additionally, Krysl and Zhu [48] formulate their method in

a nodal integration framework for finite elements, whereas in this work numerical integration

is tailored for meshfree basis functions using Gauss quadrature. Finally, the stability of the

proposed method is demonstrated via various inf-sup tests and optimal convergence in

energy- and L2-norms is established.

In traditional finite element methods, mesh topology is one of the key ingredients to-

wards an accurate solution. Ideally, metrics tolerances should be satisfied by the element

topology in order to be valid for a finite element computation [49]. Examples of metrics

are: relative size, element shape and maximum angle [50,51]. A mechanism that precludes

the ability of a mesh to comply with these metrics is called mesh distortion. Mesh dis-
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tortion can arise in several ways. One instance is related to the mesh generation itself in

which slivers, poor shapes or small element sizes appear. Another instance occurs when

the continuum undergoes large deformations. In the latter case, the elements distort too

much resulting in elements with high aspect ratio. Due to the maturity of mesh generators,

the aforementioned metrics are easily accomplished in two dimensions. However, in three

dimensions, especially in complex three-dimensional domains, some of these metrics are

still difficult to achieve and other techniques have to be employed in order to improve the

mesh quality such as mesh smoothing and mesh modification [49]. Due to the latter, it

has been recognized that the easiest way to generate a mesh in complicated geometries is

by means of an unstructured tessellation of triangles or tetrahedra, which has attracted

the attention of many researchers using techniques such as advancing front [52–54] and

Delaunay triangulation [55–58]. Moreover, low-order triangles or tetrahedra are preferred

because their simplicity facilitates remeshing either for mesh refinement or mesh improving

techniques [49].

An added difficulty for finite elements is the modeling of near-incompressible solids

that undergo large deformations. In this setting, finite elements must deal not only with

the volumetric locking issue but also with mesh distortions. Several procedures have been

devised to overcome the former difficulty in large deformation analysis and can be grouped

within mixed methods and displacement-based methods. Most popular techniques in the

former are mixed variational methods of Simo et al. [59], enhanced assumed strain methods

of Simo and Armero [60] and the mixed u-p formulation of Sussman and Bathe [61]. On the

other hand, a series of ‘improved’ displacement-based methods have also been developed.

Noteworthy methods in the latter category are the geometrically nonlinear version of B-bar

projection method [62] and the F -bar method of de Souza Neto et al. [63]. Recently, two

novel methods for near-incompressible analysis at finite strain have emerged. The first one

corresponds to a class of mixed finite elements that establishes a special topology called

diamond element [64] that in conjunction with a suitable choice of finite element spaces for

both displacement and pressure fields guarantees the satisfaction of the inf-sup condition
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with an optimal convergent solution. The second one is a projection method that was

devised for NURBS-based isogeometric analysis [12], which reveals superior accuracy in the

presence of extreme mesh distortions [65].

In the past few years, there has been great interest for using low-order finite element

meshes, particularly in three-dimensional analysis, because they facilitate the mesh gen-

eration of complex domains. However, it is well-known that low-order triangles or tetra-

hedra are not suitable for practical use due to their poor performance in instances such

as bending dominated problems, incompressible media and large deformations. In an

effort to cope with this poor performance of low-order tessellations, various techniques

have been developed especially in large deformation analysis of near-incompressible solids.

These techniques can be classified in four approaches: mixed-enhanced elements [66–68],

pressure stabilization [69–71], composite pressure fields [72–74], and average nodal pres-

sure/strains [48,75–79]. The last two approaches are broadly based on the idea of reducing

pressure (dilatational) constraints to alleviate volumetric locking.

Contrary to finite elements, meshfree methods are constructed based upon basis func-

tions that possess larger supports and do not rely on a mesh for their definition. This

confers meshfree methods some degree of insensitivity to mesh distortions. However, a

background mesh is still required in Galerkin meshfree methods to perform the numerical

integration of the weak form integrals. The mesh need not comply with the metrics pre-

viously discussed as long as enough neighbors (nodes) are contributing at a given Gauss

point evaluation as to reproduce the consistency of the approximation required by the weak

form—typically linear in a second-order partial differential equation [80]. In principle, any

kind of background mesh can be used. In the meshfree method that is developed herein,

a background mesh of three-node triangles in two dimensions and four-node tetrahedra in

three dimensions, is used.

In nonlinear solid mechanics, a meshfree method that has been utilized to exploit the

mesh insensitivity property of meshfree methods is the well-known reproducing kernel par-

ticle method (RPKM) [23]. Notwithstanding the many applications of the RPKM and
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other meshfree methods in compressible hyperelasticity [81–83], large deformation shear

banding [84] and metal forming analyzes [85, 86], most of the meshfree methods that ad-

dress near-incompressible solids do so by enlarging the support of the basis functions to

mimic under-integration [87–89]. However, enlarging supports leads to costly computa-

tional times and therefore this kind of technique is in practice avoided [90]. Others have

exploited the use of nodal integration [36, 91, 92], which decreases the numbers of Gauss

points substantially, hence producing a good balance between displacement degrees of free-

dom and number of dilatational constraints as to alleviate locking. On the other hand, few

applications have been documented in meshfree methods using methodologies that were

especially designed for finite elements. For instance, in Refs. [93, 94] mixed u-p formula-

tions were employed for near-incompressible hyperelasticity in the natural element method

(NEM) and the meshless local Petrov-Galerkin (MLPG) method, respectively, whereas in

Ref. [95] the F -bar method of de Souza Neto et al. [63] was adapted for the element-free

Galerkin (EFG) method. Among the existing meshfree methodologies, it appears that the

only attempt to exploit the meshfree character to design procedures that can efficiently

deal with the incompressibility constraint is the pressure projection method of Ref. [90].

However, the aforementioned method leads to a non-symmetric tangent stiffness matrix

which is not consistent with hyperelasticity theory—the continuum problem is symmetric

and we would like to preserve that symmetry. Additionally, a non-symmetric tangent stiff-

ness matrix in implicit solvers needs twice the memory and is twice slower than a solver

for symmetric matrices. Therefore, an effective meshfree methodology suitable not only for

large deformations but also for modeling incompressible media is at present an open topic.

In this dissertation, new methodologies for meshfree analysis of two-dimensional non-

linear elastic solids are presented with a two-fold aim: firstly, the development of a method

for large deformations analysis with low-order background (integration) meshes, namely,

three-node triangles; and secondly, the design of a numerical procedure where the meshfree

character is exploited to prevent volumetric locking in the near-incompressible limit. To

these ends, the nonlinear version of the volume-averaged nodal technique is developed. The
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formulation so devised leads to a displacement-based method that exhibits some common-

alities with the F -bar-Patch method of Ref. [96] and the isogeometric F -bar projection

method of Ref. [12], and as such, it can be regarded as an F -bar methodology for meshfree

methods.

Traditionally, numerical integration of the weak form in meshfree methods is carried out

using background cells—triangular or quadrilateral elements are typically adopted in two

dimensions [22]. Meshfree basis functions are non-polynomial and in addition the support of

the basis functions no longer coincides with the union of the background cells that are used

in the numerical integration. This leads to inaccuracies in the numerical integration of weak

form integrals, and the patch test is not passed to machine precision. In the EFG method,

Belytschko et al. [22] used higher-order Gauss quadrature in each background cell, and in

a subsequent study by Dolbow and Belytschko [3], integration cells that were aligned with

the support of the nodal basis functions were used. Griebel and Schweitzer [97] developed

a partition of unity meshfree method by formulating a hierarchical algorithm to construct

a nodal cover by partitioning the domain into overlapping hyperrectangular patches using

d-dimensional trees. Due to the overlapping nodal patches, a decomposition of the patches

into disjoint cells was performed, and these cells were used as the integration domains. A

sparse grid quadrature rule based on univariate Gauss-Patterson rules was employed [98].

As a departure from covers that are rectangular, Riker and Holzer [99] recently proposed

a partition-of-unity method in which the nodal cover is a combination of simplexes and

polygons.

Atluri et al. [100] proposed a methodology to integrate the weak form in the meshless

local Petrov-Galerkin method without the need for background cells by using the support

of the basis functions as the domain of integration. This approach was adopted and im-

proved upon in the work of De and Bathe [6]. Similar ideas have also been pursued in

Refs. [101–104]. With the aim of using anisotropic weight functions with reduced support

sizes, Balachandran et al. [105] developed a methodology that automatically confines the

basis functions to natural neighbor polygonal regions by means of the Schwarz-Christoffel
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mapping. The resulting basis functions are used within a MLS-based meshfree method.

Liu and Tu [106] developed an adaptive procedure within individual background cells for

meshfree methods. One of the first theoretical studies on the influence of numerical quadra-

ture errors in meshfree methods was recently put forth by Babuška et al. [107]. Schembri

et al. [108] compare the performance of different meshfree approximation schemes in three-

dimensional computations.

In this dissertation, a new numerical integration scheme for Galerkin meshfree meth-

ods is proposed. On appealing to assumed strain methods [11] and nodal integration

techniques [34–36], a modified strain tensor is defined. Maximum-entropy basis func-

tions [27,109] are used in its discretization, and Gauss quadrature is adopted in the numeri-

cal integration. The procedure so devised alleviates numerical integration errors in meshfree

methods and ensures patch test satisfaction to within machine precision. An added feature

of the numerical integration scheme is that fewer number of Gauss points than in standard

Gauss quadrature are required to accurately compute the weak form integrals.

Parts of this dissertation are published. Chapter 4 has led to two articles. One is

already published [110] and the other one is to appear [111]. Ref. [112], which is based on

Chapter 5, is currently in preparation.

1.2 Original Contributions

Because mesh generation is eased in complex geometries, three-node triangle and four-node

tetrahedron, are highly desirable in finite element analysis. However, due to mesh distortion

issues and very ‘stiff’ solutions that are delivered when finite element shape functions are

used in the analysis of near-incompressible media, these type of meshes are rarely employed.

The formulation of an effective methodology for simulation of near-incompressible media

problems with low-order finite element meshes is one of the main contributions in this

dissertation. Although the elemental structure of the mesh is not used to construct the

meshfree approximation, it is used for computation of the numerical integration of the
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weak form in the meshfree method. Accurate solutions are obtained, which enable the

use of these low-order meshes in practical applications in near-incompressible elasticity at

small and finite strains. The meshfree method developed in this dissertation should allow

even larger deformations than those achieved by F -bar methodologies for finite elements.

However, this remains to be assessed.

Numerical integration errors are important issues in meshfree methods. As previously

discussed, many attempts have been made to improve the accuracy of the numerical in-

tegration in meshfree methods. However, very expensive techniques have resulted, which

impact the computational cost. The development of a numerical integration scheme that

alleviates integration errors in meshfree methods with minimal number of Gauss points

is another key contribution in this dissertation. A modified strain tensor is proposed to

obtain an accurate numerical integration technique. This results in a correction to the stiff-

ness matrix that alleviates integration errors in meshfree methods and patch test is met to

within machine precision. In this dissertation, maximum-entropy basis functions are used,

but the generality of the proposed numerical integration scheme renders it applicable to

any method, not necessarily meshfree, that is able to use a background mesh of triangles or

tetrahedra. For instance, the element-free Galerkin (EFG) method [22], the natural element

method (NEM) [4] and polygonal finite element interpolants [113] can be adopted.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows. In Chapter 2, a summary of

meshfree methods is presented. A historical background is provided. Distinct ways to con-

struct meshfree methods with their respective features are also presented. The remainder

of Chapter 2 is devoted to specific issues in meshfree methods.

Chapter 3 focuses on maximum-entropy approximation. A description of the principle

of maximum entropy and its link to the linear approximation problem are presented. De-

tails on the construction of maximum-entropy basis functions are elaborated in the rest of
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Chapter 3.

The formulation of the maximum-entropy meshfree method for linear elastic media is

presented in Chapter 4. It focuses on both compressible and near-incompressible behavior.

An accurate numerical integration scheme for meshfree methods is developed. A novel mesh-

free formulation for near-incompressible media along with theoretical background for nu-

merical stability is also presented. The accuracy and performance of the maximum-entropy

meshfree method is studied using two- and three-dimensional structured and unstructured

background meshes by means of various benchmark problems, which include problems with

homogeneous deformation (patch tests), bending dominated problems, rigid indentation,

Stokes flow and numerical stability tests. Wherever appropriate, the maximum-entropy

solutions are compared to analytical solutions and to a finite element solution.

Chapter 5 is devoted to the formulation of the maximum-entropy meshfree method for

near-incompressible nonlinear elasticity in two dimensions. A novel meshfree formulation

for near-incompressible elastic solids at finite strains is presented. The performance of the

maximum-entropy meshfree method in large deformation analysis with near-incompressible

behavior is investigated. Structured and unstructured triangular background meshes are

employed in three benchmark problems: nonlinear Cook’s membrane, plane strain com-

pression of a rubber block, and a frictionless indentation problem. In all the problems, the

maximum-entropy solution is compared to two finite element solutions that use a mesh of

three-node triangles.

In Chapter 6, a summary of the main results and findings of this dissertation are

presented, with some concluding remarks on the potential of maximum-entropy meshfree

method to solve incompressible media problems. Some thoughts on future work are also

provided.
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Chapter 2

Meshfree Methods in

Computational Mechanics

In this chapter, a summary of meshfree methods is provided. We start by presenting a

historical background on the evolution of meshfree methods since their inception to recent

developments. A discussion on distinct ways to construct meshfree methods along with

their respective features is then provided. We close this chapter discussing some of the

main issues of meshfree methods with remarks on possible cures that have been pursued.

2.1 Historical Background

Meshfree methods are relatively new numerical techniques compared to finite elements. In a

nutshell, what characterizes meshfree or meshless methods is that the construction of basis

(or shape) functions depends only on the nodal coordinates and no mesh definition is indeed

employed to this objective. The first recognized meshfree method was developed in 1977

under the name of smoothed particle hydrodynamics (SPH) [114,115] to model astrophysical

phenomena such as galaxy and star formation, stellar collision, and gravity currents [116–

121]. Over the years, SPH has gained increasing interest in a wide range of applications

such as metal impact [122–125], wave impact [126–128], steel penetration [125,129,130], and
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metal forming analysis [131, 132]. The success of SPH method in modeling astrophysical

phenomena without a explicit mesh has led to the development of several meshfree methods

with the aim of overcoming drawbacks of mesh-based methods. Some of the shortcomings of

mesh-based methods such as standard finite elements are encountered, for instance, in the

modeling of explosion and penetration problems. In this type of problems the continuum

is broken into small fragments which would imply breakage of finite elements or the use

of adaptive/refinement mesh techniques to accurately capture the transformation of the

continuum into small pieces. Either way is difficult since, on one hand, a discontinuity can

not be embedded in a standard finite element, and on the other hand, adaptive/refinement

mesh techniques, apart from being a formidable task in complicated geometries, imply

mapping of states variables from one mesh to another, which introduces numerical error in

the solution. Another problem that presents difficulties for finite elements is the modeling

of phenomena that require higher-order interpolation fields, which is the case for plates and

shells simulations, and gradient theory of plasticity. The applicability of finite elements is

limited in this type of problems since constructing C1 finite element interpolants is non-

trivial [7]. One of the main applications in which meshfree methods have shown promise

over finite elements is in the modeling of phenomena involving large deformations [81–85,

87–90, 93–95]. Distorted finite elements have a tendency to breakdown the computation

very early with the accuracy of the solution being lost, whereas meshfree basis functions

do not depend on the mesh and as such are less sensitive to mesh distortions.

In the realm of difficulties for finite elements, meshfree methods have therefore emerged

as an alternative to finite elements. Although after the invention of SPH method other

meshfree methods such as generalized finite difference method (GFDM) [133] and meshfree

collocation method (MCM) [134] have been devised, it has been recognized that most of

the advances in meshfree methods were done in the 1990s with the introduction of the

diffuse element method (DEM) [21] in 1992 and a posterior improvement, which was termed

as element-free Galerkin method (EFG) in the seminal work of Belytschko et al. [22] in

1994. The list began to increase with the introduction of other meshfree methods such
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as the reproducing kernel particle method (RKPM) [23] and the natural element method

(NEM) [135] in 1995; the partition of unity method (PUM) [136, 137], the finite point

method (FPM) [138] and the h-p cloud method [139] in 1996; the meshless local Petrov-

Galerkin (MLPG) method [5] in 1998; the method of finite spheres (MFS) [26] in 2000, and

so on. This list is by no means exhaustive. A detailed overview of meshfree methods is

provided in Refs. [2, 140, 141]. Due to the mesh-independence of meshfree basis functions,

greater flexibility for constructing meshfree methods is realized. Meshfree methods can be

formulated starting from a strong form or starting from a weak form, or from a combination

of both.

2.2 Strong-Form Meshfree Methods

Strong-form meshfree methods are formulated starting from a boundary-value problem.

Since in a boundary-value problem only derivatives appear, there is no need for numer-

ical integration. However, the consistency of the approximation is ‘strong’ in the sense

that it must satisfy up to the order of the highest derivative—second-order consistency for

solid mechanics. A strong-form numerical approximation implies that the boundary value

problem is satisfied only at the nodes of a domain of discretization, which is refer to as col-

location. One of the drawback of meshfree collocation techniques is that they suffer from

instabilities due to the ill-conditioned moment matrix that arises in the process of func-

tion approximation and the need to satisfy the derivative boundary conditions of the PDE.

Additionally, they usually lead to unsymmetric matrices. However, they are easier to im-

plement than meshfree methods obtained from a weak form. Some examples of strong-form

meshfree methods are the generalized finite difference method (GFDM) [133], the smoothed

particle hydrodynamics (SPH) [114,115], the meshfree collocation method (MCM) [134] and

the finite point method (FPM) [138].
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2.3 Weak-Form Meshfree Methods

Weak-form meshfree methods are obtained by ‘weakening’ the consistency imposed by the

strong form over the approximation. To this end, the PDE is satisfied in an average sense

by converting it to an integral form using a variational principle or a weighted residual

method. This leads to two function definitions. The trial function, which describes the

approximation, and the test function, which acts as the weighting function in the integral

form. If a weighted residual method is used, integration by parts needs to be done in order

to obtain the final weak form expression. In contrast to strong forms, the surface integral

that appears in the weak form provides a natural way to satisfy the derivative boundary

conditions at no additional cost.

Since integrals are present in a weak form, numerical integration is required. Thus, in

meshfree methods that are formulated from weak forms, a quadrature mesh (also referred

to as background mesh) is needed to compute the weak form integrals. However, the basis

function definition does not depend on the quadrature mesh. In other words, the mesh is

only used to sample the basis functions at the integration points. As long as the numerical

integration is done accurately and the space for the approximation is correctly chosen,

weak-form meshfree methods (and also finite elements) are stable formulations. However,

due to the need for numerical integration, the implementation is more involved than in

strong-form meshfree methods.

Weak forms offer many attractive ways to formulate numerical procedures depending

on the selection of the trial and test functions. For instance, if trial and test functions are

chosen to be the same, Galerkin methods are obtained. Most meshfree methods are based

on a Galerkin method. Some examples of Galerkin-based meshfree methods are the element

free Galerkin method (EFG) [22], the reproducing kernel particle method (RKPM) [23], the

natural element method (NEM) [4], and the method of finite spheres (MFS) [26]. The

method developed in this dissertation belongs to this category. On the other hand, if

trial and test functions are chosen differently, Petrov-Galerkin methods are obtained. The
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meshless local Petrov-Galerkin (MLPG) method [5] is a representative one in this category.

2.4 Weak-Strong Form Meshfree Methods

As the name suggests, weak-strong form meshfree methods are obtained from a combination

of weak and strong forms. In this type of methods, the strong form formulation is used

everywhere except at those nodes that are on or near boundaries with derivative boundary

conditions. Instead, a weak form formulation is used at those nodes. The latter choice is to

prevent instabilities stemming from derivatives boundary conditions. Since the weak form

is employed in a limited region of the domain, the use of background cells for numerical

integration is minimal. Weak-Strong form were introduced by Liu and Gu [142] for problems

in two-dimensional solids and further extended to incompressible fluids [143].

2.5 Issues in Meshfree Methods

As previously pointed out, meshfree methods are an attractive alternative to overcome

issues that are related to the dependency of the finite element interpolation on a well defined

element topology. However, meshfree methods have their shortcomings. The understanding

of these shortcomings combined with the understanding of possibilities that strong forms

and weak forms offer for the development of meshfree formulations are of vital importance

in the success of a meshfree methodology. The main shortcomings are summarized next.

2.5.1 Issues in Strong-Form Meshfree Methods

The instability of the discrete equations is the main issue related to strong-form meshfree

methods. The instability stems from two sources. The singularity of the moment matrix

that arises from the function approximation and the large errors introduced by the deriva-

tive boundary condition. The former occurs when the nodes that are selected to construct

the approximation of a function (usually a field variable) at a given point in the domain



2.5. Issues in Meshfree Methods 17

are not correctly chosen or are not sufficient in number. For instance, the polynomial basis

p = {a0, a1x, a2y} provides a linearly-independent basis for a first-order approximation in

two dimensions. In order to find the unknown coefficients a0, a1 and a2, three conditions are

exactly needed. One can provide these three conditions by approximating a field variable u

at three nodes of the discretized domain. Proceeding likewise results in the linear system of

equations un = a0+a1xn+a2yn (n=1,2,3), where the coefficients represent nodal field vari-

ables and (xn, yn) are the coordinates of node n. The singularity in this system of equations

can appear in two ways. Firstly, the procedure to find the three nodes might not actually

find all of them, resulting in an undetermined system of equations. Secondly, the three

nodes selected might not produce a linearly-independent system of equations. For instance,

the latter might occur if two nodes are collinear, again resulting in an undetermined system

of equations. However, this source of instability is a minor issue since there are efficient

methods to overcome it. For instance, the use of weighted least square method [144], the use

of radial basis functions [134] and the use of the matrix triangularization algorithm [145],

are frequently adopted in the formulation of strong-form meshfree methods. The use of

maximum-entropy basis functions would also provide a way to overcome this issue if a pro-

cedure to construct higher-order maximum-entropy basis functions is developed. On the

other hand, the derivative boundary condition is the critical issue in strong-form mesh-

free methods [146], since differentiation is a roughening operator that magnifies errors in

the approximation. Therefore, any error in the numerical approximation of the derivative

boundary conditions might introduce large numerical error in the discrete equations result-

ing in an ill-conditioned system that needs some form of stabilization to be usable. Ways

for stabilization have been studied in strong-form meshfree methods. For instance, the use

of additional derivative variables to enforce the derivative boundary conditions [147], the

addition of higher-order differential terms in the strong form equations [148, 149] and the

use of weak-strong form meshfree methods [142, 143], are usually employed to formulate

stable strong-form meshfree methods.
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2.5.2 Issues in Weak-Form Meshfree Methods

Two main issues are present in weak-form meshfree methods. The non-zero contribution of

basis functions of interior nodes on the boundary and the errors in the numerical integration.

The former emanates from the fact that most meshfree basis functions lack the Kronecker-

delta property, and therefore they do not interpolate the field variables. Moreover, it has

a direct impact on the imposition of essential boundary conditions since the weak form

demands their exact satisfaction by requiring basis functions to vanish on the boundary.

The consequence in violating this is that essential boundary conditions can not be imposed

directly at the nodes as in finite elements1, and special techniques have to be considered

to impose them. Among techniques to impose essential boundary conditions, Nitsche’s

method and blending technique of Huerta and Fernández-Méndez [150] are most efficient.

Maximum-entropy basis functions offer an elegant means to solve this problem since by

construction the vanishing property is readily obtained on convex boundaries, which is

sufficient to impose essential boundary condition directly at the nodes [27]. However, this

property is lost in non-convex domains. Radial point interpolation basis functions [151]

provide another means to directly impose essential boundary conditions at the nodes. On

the other hand, numerical integration errors is the critical issue in weak-form meshfree

methods, which is understood as follows. Meshfree basis functions are non-polynomial

and in addition the support of basis functions does not coincide with the union of the

background cells that are employed in the numerical integration—triangular or quadrilateral

elements are typically adopted in two dimensions [22]. This leads to inaccuracies in the

numerical integration of weak form integrals, and patch test is not passed to machine

precision. Whether or not to pass the patch test exactly is not an issue per se. However,

the importance of ensuring sufficient accuracy in the numerical integration is that its error

is not larger than the error of the approximation. This can be evidenced in the patch test.

Many attempts have been pursued in order to reduce the integration error in weak-from

1Finite element shape functions meet the vanishing requirement very easily since they possess Kronecker-
delta property which automatically implies vanishing of interior basis functions on the boundary.
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meshfree methods. The adoption of higher-order Gauss quadrature rule has been suggested

to overcome this issue partially [3]. Another option that has been pursued by many is the

construction of background cells that coincide with the support of the basis functions [3,5,6,

152]. Neither procedure is efficient since considerable number of Gauss points to achieve an

adequate accuracy is implied, especially in three-dimensional computations. In an attempt

to reduce the burden of adopting many Gauss points, nodal integration techniques that use

the nodes as the Gauss points have been devised [34, 36]. However, numerical instabilities

are present in these methods, which require further attention. A promising technique

that uses smoothing operators in the construction of the strain field is proposed in this

dissertation.
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Chapter 3

Maximum-Entropy Approximation

This chapter focuses on maximum-entropy approximation. We start by providing some in-

sights on the linear completeness concept along with standard ways of constructing linearly-

complete meshfree approximations. A description of the principle of maximum entropy is

provided and its link to the linear approximation problem is presented. Details on the

construction of maximum-entropy basis functions are elaborated towards the end of this

chapter.

3.1 Linear Completeness

Linear completeness is the ability of an approximant to exactly reproduce constant and lin-

ear field variables (also known as zeroth and firth-order consistency, respectively). In order

for a numerical method that is based on the weak form of a second-order partial differen-

tial equation to converge, approximants that possess linear completeness are sufficient [80].

Meshfree basis functions are sought such that completeness is obtained by construction.

A standard procedure to construct basis functions with a desired completeness order was

briefly described in Section 2.5.1. More details are presented here. Consider a continuous

field function u(x) defined in a domain Ω, which is represented by a set of field nodes. The

approximation of the field variable u(x) at a point with coordinates x = {x, y} in Ω, is
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obtained as follows:

u(x) =
m
∑

i=1

pi(x)ai =

[

p1(x) p2(x) . . . pm(x)

]
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= pTa, (3.1)

where pi(x) is a monomial of a polynomial basis, and ai is the coefficient for pi(x). In two

dimensions, a linear polynomial basis is

pT =

[

1 x y

]

. (3.2)

If the approximation (3.1) is required to pass through n nodes of the domain Ω with the

polynomial basis (3.2) being used, the following system of equations is obtained:
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= Pma. (3.3)

It is evident that if n = 3 in (3.3), the system is square and, provided is not singular, a

unique set of nodal coefficients ai can be obtained as a result of the linear approximation

procedure as

a = P−1
m u. (3.4)

The basis functions φi (i = {1, 2, ..., n}) are then computed on substituting (3.4) back

into (3.1) as follows:

u(x) = pTP−1
m u ≡

n
∑

i=1

φiui = ΦT(x)u. (3.5)

However, if n > 3, the system (3.3) is undetermined with non-unique solution. Some mesh-

free methods construct basis functions imposing that n = m such that a square system

is obtained. Doing that has the shortcoming, however, that the nodes entering the ap-
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proximation procedure have to be correctly selected as to obtain a non-singular system

(see Section 2.5.1). Procedures that are related to optimization theory can be adopted to

compute basis functions when n > m. Among these procedures, moving least squares [144]

and the principle of maximum entropy [153] are two possibilities.

In order to interpret the linear approximation problem under the maximum entropy

formalism to be introduced in the next section, the linear approximation problem in two

dimensions is rewritten as
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, (3.6)

where the basis functions φi (i = {1, 2, ..., n}) are now directly obtained as the solution

of (3.6). Note that similar to (3.3), the system (3.6) is also undetermined if n > 3.

3.2 Principle of Maximum Entropy

In this section, the construction of linearly-complete basis functions is linked to the prin-

ciple of maximum entropy. Consider a set of n discrete events {x1, . . . , xn}. The pos-

sibility of each event is pa = p(xa) ∈ [0, 1] with uncertainty − ln pa. The Shannon-

entropy [154] H(p) = −∑n
a=1 pa ln pa is the amount of uncertainty represented by the

distribution {p1, . . . , pn}. Based on the Shannon-entropy, Jaynes [153] postulated that

solving the optimization problem (principle of maximum entropy):

max
p∈Rn

+

−
n
∑

a=1

pa ln pa, (3.7a)
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subject to the constraints:

n
∑

a=1

pa = 1,

n
∑

a=1

pagr(xa) =< gr(x) >, (3.7b)

yields the least-biased probability distribution and the one that has the most likelihood

to occur. In (3.7), Rn
+ is the non-negative orthant and < gr(x) > is the expectation of

the function gr(x). On considering the constraints of the max-ent problem as the only

information available for a set of n discrete probabilities (n usually larger than the number

of constraints), the principle of maximum entropy provides a rationale means for least-

biased statistical inference when insufficient information is available.

The optimization problem (3.7) assigns probabilities to every pa in the set. Assume

now that the probability pa has an initial guess wa known as a prior, which reduces its

uncertainty to − ln pa+lnwa = − ln(pa/wa). An alternative problem can be formulated on

using this prior in (3.7) (principle of minimum relative entropy [155,156]):

max
p∈Rn

+

−
n
∑

a=1

pa ln

(

pa
wa

)

, (3.8a)

subject to the constraints:

n
∑

a=1

pa = 1,
n
∑

a=1

pagr(xa) =< gr(x) > . (3.8b)

Depending upon the prior employed, the optimization problem (3.8) may assign probabili-

ties to a selected number of pa in the set. It can be easily seen that if the prior is constant,

the Shannon-Jaynes entropy functional (3.7) is recovered as a particular case. The max-ent

approach is demonstrated next by means of two dice experiments.

Example 3.2.1. A fair dice is thrown. The set of possible outcomes are the events

{1, 2, 3, 4, 5, 6}. Since the dice is fair, we infer that all the events have equal possibility
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Figure 3.1: Throwing a fair dice. If the dice is fair, max-ent assigns equal possibilities to
all events.

1/6 of being the outcome. Taking the expectation of the outcome yields:

E =
1

6
· 1 + 1

6
· 2 + 1

6
· 3 + 1

6
· 4 + 1

6
· 5 + 1

6
· 6 = 3.5.

If this expectation is viewed as the constraint in the max-ent problem (3.7), the set of

possibilities previously inferred is exactly predicted by max-ent. The result is shown in

Fig. 3.1.

Example 3.2.2. A biased dice is thrown. The set of possible outcomes are the events

{1, 2, 3, 4, 5, 6}. A guess is made on each outcome via the following set of prior possibilities

w = {0.1, 0.1, 0.1, 0.1, 0.5, 0.1}. On considering these priors, the expectation of the outcome

yields:

E = 0.1 · 1 + 0.1 · 2 + 0.1 · 3 + 0.1 · 4 + 0.5 · 5 + 0.1 · 6 = 4.1.

If this expectation is viewed as the constraint in the max-ent problem (3.8), the set of ‘most

honest’ possibilities assigned by max-ent is p = {0.1, 0.1, 0.1, 0.1, 0.5, 0.1}, which is exactly

the guess, as expected. The result is depicted in Fig. 3.2.

The connection between the principle of maximum entropy and the construction of
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Figure 3.2: Throwing a biased dice. If the dice is biased, max-ent assigns the most probable
possibility to each event.

linearly-complete basis functions is now evident: the discrete probabilities and the con-

straints of the max-ent problem are interpreted as the basis functions and the linear repro-

ducing conditions given in the system (3.6), respectively.

3.3 Maximum-Entropy Basis Functions

As already stated in Section 3.2, basis functions are viewed as discrete probabilities satis-

fying the max-ent constraints. The connection between maximum-entropy basis functions

and linearly-complete approximations was established by Sukumar [157]. In Ref. [157], the

principle of maximum entropy was employed to obtain linearly-complete interpolants on

polygonal domains. Arroyo and Ortiz [27] realized a meshfree approximation using a mod-

ified entropy functional—with emphasis on establishing a smooth transition between finite

element and meshfree methods. Sukumar and Wright [109] generalized the construction

of max-ent meshfree basis functions by using the relative (Shannon-Jaynes) entropy func-

tional with a prior [155, 156]. On using compactly-supported prior functions that are at

least C0, compactly-supported max-ent basis functions are realized. In particular, when a

Gaussian prior is employed the approach of Arroyo and Ortiz [27] is recovered. Maximum-
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entropy basis functions are obtained from a convex optimization problem and are endowed

with the following attributes [27]: variation diminishing property; positive-definite mass

matrices and weak Kronecker-delta property on the boundary. The last property is note-

worthy since it enables the direct imposition of essential boundary conditions as in finite

elements1. Recently, new applications of max-ent meshfree basis functions have emerged:

barycentric coordinates for arbitrary polytopes are developed in Ref. [158], co-rotational

formulation is presented in Ref. [159], second-order max-ent approximants are proposed

in Refs. [160, 161], fluid and plastic flows are studied in Ref. [162], and stable meshfree

methods for fluid mechanics are developed in Refs. [163,164].

The approach in Ref. [109] is now followed to present expressions for max-ent basis

functions and their derivatives. To this end, let the prior function be denoted by wa(x).

The set of max-ent basis functions {φa(x) ≥ 0}na=1 is obtained via the solution of the

following optimization problem:

max
φ∈R

n

+

−
n
∑

a=1

φa(x) ln

(

φa(x)

wa(x)

)

, (3.9a)

subject to the linear reproducing conditions:

n
∑

a=1

φa(x) = 1,

n
∑

a=1

φa(x)x̃a = 0, (3.9b)

where x̃a = xa − x are shifted nodal coordinates and R
n
+ is the non-negative orthant. If

wa(x) is a constant for all a, then the Shannon-Jaynes entropy functional, −∑a φa lnφa,

is recovered. In practice, any prior function that is compactly-supported and at least

C0-continuous may be used. Typical prior functions are smooth Gaussian radial basis

functions [27]

wa(x) = exp(−βa‖xa − x‖2), (3.10a)

1Most available meshfree basis functions would typically not vanish on the boundary and as such special
procedures are needed to enforce essential boundary conditions [140,141,150].
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and C2 quartic polynomials [159]

wa(q) =











1− 6q2 + 8q3 − 3q4 0 ≤ q ≤ 1,

0 q > 1.
(3.10b)

In (3.10a), βa = γ/h2a; γ is a parameter that controls the support-width of the basis function

at node a; and ha is a characteristic nodal spacing that may be distinct for each node a. In n

dimensions, ha is set as the distance to the n-nearest neighbor from node a. For the quartic

polynomial, q = ‖xa − x‖/ρa and ρa = γha is the radius of the basis function support

at node a. In a recent study on max-ent meshfree methods [165], it has been shown that

substantial improvements in accuracy are realized by letting the support-width parameters

as unknowns and solving for them through the variational structure (minimizing principle)

of the continuum problem.

On using the procedure of Lagrange multipliers, the solution of the variational state-

ment (3.9) is [109]:

φa(x) =
Za(x;λ

∗)

Z(x;λ∗)
, Za(x;λ

∗) = wa(x) exp(−λ∗ · x̃a), (3.11)

where the partition function Z(x;λ∗) =
∑

b Zb(x;λ
∗), and in three dimensions x̃a =

[x̃a ỹa z̃a]
T and λ∗ = [λ∗

1 λ∗

2 λ∗

3]
T. In (3.11), the Lagrange multiplier vector λ∗ is the

minimizer of the dual of the optimization problem posed in (3.9)

λ∗ = arg min
λ∈R3

lnZ(x;λ), (3.12)

which gives rise to the following system of nonlinear equations:

r(x;λ) = ∇λ lnZ(x;λ) = −
n
∑

a

φa(x)x̃a = 0, (3.13)

where ∇λ stands for the gradient with respect to λ.
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The gradient of max-ent basis functions is needed to complete the derivation. To this

end, we use the converged value of λ∗ and rewrite (3.11) as follows:

φa(x) =
exp [fa(x;λ

∗)]
∑

b exp [fb(x;λ
∗)]

, fa(x;λ
∗) = lnwa(x)− λ∗ · x̃a. (3.14)

Taking the gradient of φa in the above expression yields

∇φa = φa

(

∇fa −
n
∑

b=1

φb∇fb

)

. (3.15)

Next, we use fa given in (3.14) and take its gradient to obtain

∇fa =
∇wa

wa
+ λ∗ − x̃a · ∇λ∗, (3.16)

which needs the gradient of λ∗. In order to find the latter, we take the total derivative

of (3.13), which vanishes for λ∗:

Dr = ∇r+∇λr · ∇λ∗ = 0, (3.17)

where ∇r is the gradient of r taken with λ fixed. Proceeding likewise in (3.13) and noting

that ∇λr is the Hessian of lnZ, (3.17) leads to

∇λ∗ = H−1 (A− I) , H =

n
∑

b=1

φbx̃b ⊗ x̃b, A =

n
∑

b=1

φbx̃b ⊗
∇wb

wb
, (3.18)

and therefore ∇fa in (3.16) becomes

∇fa =
∇wa

wa
+ λ∗ + x̃a ·

[

(H)−1 − (H)−1 ·A
]

. (3.19)

Using the above expression for ∇fa in (3.15) yields the final expression for the gradient of
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(a) (b) (c)

Figure 3.3: Plots of a maximum-entropy basis function computed with a Gaussian prior
for three values of γ. Note that the locality of the basis function is affected but it always
vanishes on the boundary. (a) γ = 1; (b) γ = 2; and (c) γ = 3.

φa [159]:

∇φa = φa

{

x̃a ·
[

(H)−1 − (H)−1 ·A
]

+
∇wa

wa
−

n
∑

b=1

φb
∇wb

wb

}

. (3.20)

In Fig. 3.3, plots of a max-ent basis function computed with a Gaussian prior for various

support-width parameter γ are illustrated for two dimensions. For γ = 2, plots of the

Gaussian prior and the corresponding max-ent basis function along with their derivatives

are shown in Fig. 3.4. For the Gaussian prior, (3.20a) reduces to [27]

∇φa = φaH
−1 · x̃a. (3.21)
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Plots of Gaussian prior (γ = 2) and maximum-entropy basis function and their
derivatives for node a. Note that wa(xa) = 1, but φa(xa) 6= 1, and hence the interior basis
function φa does not satisfy the Kronecker-delta property. The smoothness of the basis
function and its derivatives are inherited from the Gaussian prior. (a) Gaussian prior, wa;
(b) ∂wa/∂x; (c) ∂wa/∂y; (d) φa; (e) ∂φa/∂x; and (f) ∂φa/∂y.
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Chapter 4

Maximum-Entropy Meshfree

Method for Linear Elastic Media

In this chapter, the formulation of the maximum-entropy meshfree method for linear elastic

media is presented. Both compressible and near-incompressible behavior are considered. A

novel meshfree formulation for near-incompressible media along with theoretical background

for its numerical stability is presented. The development of an accurate numerical integra-

tion technique for meshfree methods that alleviates integration errors with guaranteed patch

test satisfaction is also presented. The accuracy and performance of the maximum-entropy

meshfree method is studied using two- and three-dimensional structured and unstructured

background meshes by means of various benchmark problems, which include patch tests,

bending dominated problem, combined bending-shear problem, rigid indentation, Stokes

flow and numerical stability tests.
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4.1 Governing Equations and Variational Formulation

4.1.1 Strong Form

Consider a body defined by an open bounded domain Ω ⊂ R
n (n = {2, 3}) with boundary Γ

such that Γ = Γu∪Γt and Γu∩Γt = ∅. A nearly-incompressible isotropic linear elastic solid

or fluid under static loads and no body force is governed by the following equations [7]:

∇ · σ = 0 in Ω, (4.1a)

∇ · u+
p

η
= 0 in Ω, (4.1b)

and the following essential (displacement or velocity) and natural (traction) boundary con-

ditions imposed on Γu and Γt, respectively:

u = ū on Γu, (4.1c)

σ · n = t̄ on Γt, (4.1d)

where the Cauchy stress tensor σ is related to the strain tensor ε and the pressure parameter

p by the following isotropic linear elastic constitutive relation:

σ(u, p) = −pI+ 2µε(u). (4.1e)

In (4.1) η and µ are identified with the first and second Lamé parameters of the solid:

η = λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
, (4.2)

respectively, where ν is the Poisson’s ratio and E is the Young’s modulus of the material.

If the continuum is a fluid, the Lamé parameters in (4.2) stand for a penalty parameter and

the dynamic viscosity, respectively. The penalty parameter is usually taken as η ∼ 107µ [7].

The kinematic relation between the strain tensor ε and the displacement or velocity vector
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u is:

ε =
1

2
[u⊗∇+∇⊗ u] . (4.3)

4.1.2 Weak Form

For Galerkin-based mixed formulations with u,v as the trial and test displacement (or

velocity) functions, and p, q as the trial and test hydrostatic pressure functions, the weak

form of (4.1) (with (4.1e) substituted) reads [7]:

Find u ∈ U and p ∈ P such that

a(u,v) − b(p,v) = (t,v) ∀v ∈ V , (4.4a)

b(q,u) +
1

η
(p, q) = 0 ∀q ∈ P, (4.4b)

where U ⊂ H1(Ω) is the Sobolev space of functions with square-integrable first derivatives

in Ω, V ≡ H1
0(Ω) is the Sobolev space of functions with square-integrable first derivatives

in Ω and vanishing values on the essential boundary Γu, and P ≡ H
0
0(Ω) = L2

0(Ω) is the

Sobolev space of square-integrable functions with zero mean. The bilinear forms a(·, ·) and

b(·, ·) are given by

a(u,v) = 2µ

∫

Ω
ε(u) : ε(v) dΩ, (4.4c)

b(q,v) =

∫

Ω
q∇ · v dΩ, (4.4d)

whereas the linear form (t, ·) is

(t,v) =

∫

Γt

t · v dΓ. (4.4e)
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4.2 Modified Gauss Integration

As in finite element methods, numerical integration is used in meshfree methods to evaluate

the weak form integrals that appear in (4.4). Typically, the support of meshfree basis func-

tions is greater than the support of finite element basis functions, which lends flexibility

to meshfree methods and often leads to improved accuracy. However, this has its conse-

quences: with polynomial finite element basis functions whose support includes the union

of triangles or tetrahedra, appropriate Gauss quadrature rules can be selected to ensure

accurate and optimally convergent finite element solutions. In meshfree methods, these

properties are lost, and hence use of standard Gauss quadrature to evaluate (4.4) leads to

errors in the numerical integration. The integration issue in meshfree methods that use

background cells for integration is well-documented in Ref. [3]. It can be understood due

to the following characteristic of meshfree basis functions. Meshfree basis functions are

rational (non-polynomial) functions and their support do not coincide with the union of

background cells that are employed in the numerical integration. When performing nu-

merical integration of the weak form, a multiplication of the form BT
aCBb

1 arises. This in

turn leads to multiplication between basis function derivatives (for instance, φa,xφb,y) whose

support is the intersection of the support of φa and φb and as such can differ appreciably

from the union of the cells used in the numerical integration. As a consequence, significant

numerical errors can be expected from the numerical integration using the standard strain

tensor. To overcome this deficiency in existing meshfree methods, a numerical integra-

tion scheme that alleviates the aforementioned errors and ensures patch test satisfaction to

within machine precision, is devised. To this end, the following modification to the strain

tensor in a certain background finite element cell is proposed:

ε̂ = ε− ε̄+ ¯̄ε, (4.5)

1
Ba is the nodal strain matrix and C is the matrix stemming from the material constitutive relation.
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where ε̂ bears resemblance to an assumed strain [11], which is referred to as the modified

strain. The rest of the terms in (4.5) are defined next. ε is the standard small strain

tensor, ε̄ is the volume average strain tensor over the background cell, and ¯̄ε corresponds to

ε̄ written as a surface integral by means of Green’s theorem. The corresponding equations

are

ε =
1

2
[u⊗∇+∇⊗ u] , (4.6a)

ε̄ =
1

V e

∫

Ωe

ε dΩ, (4.6b)

¯̄ε =
1

V e

∫

Γe

1

2
[u⊗ n+ n⊗ u] dΓ. (4.6c)

In the numerical examples that are presented in this dissertation, the integral in (4.6b) is

referred to as the volume integral and the integral in (4.6c) as the surface integral. When

linearly complete finite elements are used, (4.6b) and (4.6c) yield the same result with ε̄ = ¯̄ε,

and the small strain tensor is recovered. However, for meshfree basis functions ε̄ 6= ¯̄ε, in

general. The latter observation allows one to see ε̄ − ¯̄ε as a correction that is introduced

into the stiffness matrix such that the integration error is reduced when the same Gauss

quadrature rule is employed to integrate ε as well as ε̄. It is pertinent to mention here that

the strain in the form of (4.6b) and (4.6c) has been previously used in nodal integration

schemes [34–36], which in part has motivated the definition of the modified strain via (4.5).

On using n-point Gauss quadrature in the numerical integration of the weak form inte-

grals, the evaluation of ε̂ will be required at each of these Gauss points xk, namely

ε̂(xk) = ε(xk)− ε̄(xk) + ¯̄ε(xk). (4.7)

Since ε̄ and ¯̄ε are integral expressions over the background cell where numerical integration

is carried out, it follows that for each xk of the n-point evaluations, these integrals must

also be computed using numerical integration2.

2Note that ε̄ and ¯̄ε are constants within each background cell, and hence are pre-computed.
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A further step that will be useful for later discretization of the weak form (4.4) is to dis-

cretize the modified strain (4.5). For this, the following discretization for the displacement

(or velocity) over a background mesh of triangles or tetrahedra is considered:

uh(x) =

N
∑

a=1

φa(x)ua, (4.8)

where N = {3, 4}, uh ∈ Uh ∈ U ; φa are max-ent basis functions. On substituting (4.8)

into (4.5) leads to the following strain matrices:

B̂a(x) = Ba(x)− B̄a +
¯̄Ba, (4.9a)

where in two dimensions

Ba(x) =













φa,x 0

0 φa,y

φa,y φa,x













, (4.9b)

or in three dimensions

Ba(x) =

































φa,x 0 0

0 φa,y 0

0 0 φa,z

φa,y φa,x 0

φa,z 0 φa,x

0 φa,z φa,y

































. (4.9c)

is the standard strain matrix. In two and three dimensions

B̄a =

n
∑

p=1

Ba(xp)wp, (4.9d)
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whereas in two dimensions

¯̄Ba =
1

Ae

3
∑

L=1

{

m
∑

r=1

¯̄Na(ξr)|J(ξr)|wr

}

, (4.9e)

¯̄Na(ξr) =













φanx 0

0 φany

φany φanx













, (4.9f)

or in three dimensions

¯̄Ba =
1

V e

4
∑

L=1

{

m
∑

r=1

¯̄Na(xr)wr

}

AL, (4.9g)

¯̄Na(xp) =

































φanx 0 0

0 φany 0

0 0 φanz

φany φanx 0

φanz 0 φanx

0 φanz φany

































. (4.9h)

In two as well as three dimensions, ¯̄Na is evaluated along the boundary of the element with

ni (i = {x, y, z}) as the i-component of the unit outward normal to the cell’s edge. Note

that when B̄a − ¯̄Ba = 0, the standard strain matrix Ba is recovered.

As a last remark on the modified Gauss integration scheme, we point out that the

integration order is preserved and the integration error is minimized when the same Gauss

quadrature rule is used to integrate ε as well as ε̄. When the strain is a constant, which

occurs in the patch test, machine precision accuracy is realized. To prove the foregoing, it

suffices to show that the nodal forces at all interior nodes (whose basis function support
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vanish on the boundary) are identically equal to zero for a uniform stress field σ = σc, i.e.,

fa =
∑

e

∫

Ωe

B̂T
aσ

c dΩ = 0 (4.10)

is to be established, where the assembly is over all elements e that have a non-zero inter-

section with the support of φa. The proof follows.

Proof. On using (4.9), fa can be expressed as

fa =
∑

e

∫

Ωe



BT
a (x)−

n
∑

p=1

BT
a (xp)wp +

¯̄BT
a



σc dΩ.

On performing numerical integration using n-point Gauss quadrature within the element,

the following is obtained:

fa =
∑

e

n
∑

q=1



BT
a (xq)wq −





n
∑

p=1

BT
a (xp)wp



wq +
¯̄BT
awq



Aeσc,

which simplifies to

fa =
∑

e

n
∑

q=1

¯̄BT
aA

ewqσ
c,

since the first two terms cancel because
∑n

q=1wq = 1 (Gauss weights sum to unity). For

the sake of simplicity, the two-dimensional expression for ¯̄Ba given in (4.9e) are used to

write

fa =
∑

e

n
∑

q=1

3
∑

L=1

{

m
∑

r=1

¯̄NT
a (ξr)|J(ξr)|wr

}

wqσ
c.

Now, closer inspection of the above equation and the expression for ¯̄Na given in (4.9f)

reveals that contribution along an interior edge L will arise from two adjacent triangles with

common edge L. However, since the normal vector on the edge will assume equal magnitude

but opposite signs for the two cases, the two contributions cancel each other. Proceeding

likewise, the net contribution to fa from all interior edges vanishes, and hence (4.10) is



4.3. Discrete System and MEM implementation 39

satisfied.

4.3 Discrete System and MEM implementation

In the derivations of this section, the strain matrices resulted from the modified strain

already developed in Section 4.2 are employed.

4.3.1 Discrete Weak Form

The objective is to obtain a formulation solely in terms of the primary variable u. To this

end, the pressure field is written in terms of nodal pressure values that are obtained by

volume-averaging of the divergence-free constraint in a neighborhood of a given node. This

procedure has been previously adopted in finite element and meshfree studies [48,75,76,78].

Consider the following discretizations for the displacement (or velocity) and pressure (trial

and test functions) over a background mesh of triangles or tetrahedra:

uh(x) =
N
∑

a=1

φa(x)ua, vh(x) =
N
∑

a=1

φa(x)va, (4.11a)

ph(x) =

N
∑

a=1

Na(x)pa, qh(x) =

N
∑

a=1

Na(x)qa, (4.11b)

where N = {3, 4}, uh ∈ Uh ∈ U and ph ∈ Ph ∈ P; φa are max-ent basis functions

and Na are standard finite element shape functions3. In order to ensure stability of the

solution [7], the displacement approximation is enhanced with an extra displacement node

in the interior of each triangle or tetrahedra. This approach is similar to the use of nodal

bubble shape functions in finite element methods [166,167], even though in the present case

the max-ent basis function of the interior node does not necessarily vanish on the boundary

of the element. See Ref. [168] for a related study on meshfree methods involving bubble

functions. On substituting (4.11) into the weak form (4.4b) and relying on the arbitrariness

3Note that since the derivative of the pressure does not appear in the weak form, there is no need to use
meshfree basis functions and hence finite element shape functions are adopted in the discretization of the
pressure.
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a

Figure 4.1: Mesh to compute volume-averaged nodal pressure around a representative node
a. Filled black circles represent displacement or velocity nodes and open circles are for
pressure nodes.

of nodal pressure test functions yields

N
∑

b=1

∫

Ω
Nam

TB̂bub dΩ +
1

η

N
∑

b=1

∫

Ω
NaNbpb dΩ = 0, (4.12)

and performing row-sum in the pressure term leads to

N
∑

b=1

{∫

Ω
Nam

TB̂b dΩ

}

ub +

{

1

η

∫

Ω
Na dΩ

}

pa = 0. (4.13)

Now, solving for pa in (4.13), the following volume-averaged nodal pressure is obtained:

pa = −η
N
∑

b=1

{

∫

Ω̄Nam
TB̂b dΩ

∫

Ω̄ Na dΩ

}

ub, (4.14)

where mT = [1 1 0] in two dimensions or mT = [1 1 1 0 0 0] in three dimensions. For the

purpose of computation of integrals in (4.14), Ω̄ is the union of all the elements attached

to node a, i.e., Ω̄ = ∪Ωe
a. A reference mesh for the method developed in this dissertation

is illustrated in Fig. 4.1. In three dimensions, the 3-node triangle is replaced by a 4-node

tetrahedron.
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Even though the approach here devised shares common features with the method pro-

posed by Krysl and Zhu [48], there exist notable differences. We use averages of strain ma-

trices from the elements attached to a particular node to satisfy the near-incompressibility

constraint in the weak form (4.4), whereas in Ref. [48] the averages are used to obtain a

strain field that satisfies a kinematic constraint in a displacement-based weak form within

a nodal integration scheme.

4.3.2 Discrete System

On substituting (4.11) along with the nodal pressure expression (4.14) into the weak

form (4.4a), and appealing to the arbitrariness of nodal test functions, the following discrete

system of equations is obtained:

Kd = f , (4.15a)

where d is the vector of nodal coefficients and

Kab =

∫

Ω
B̂T

a C̄B̂b dΩ−
∫

Ω
B̂T

am

{

3
∑

c=1

NcQcb

}

dΩ, (4.15b)

fa =

∫

Γt

φat̄ dΓ (4.15c)

with

C̄ =













2µ 0 0

0 2µ 0

0 0 µ













(4.15d)
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for plane strain or

C̄ =

































2µ 0 0 0 0 0

0 2µ 0 0 0 0

0 0 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ

































(4.15e)

in three dimensions and

Qcb = −η

{

∫

Ω̄Ncm
TB̂b dΩ

∫

Ω̄Nc dΩ

}

. (4.15f)

Note that only unknowns related to u appear in the system given in (4.15). The pres-

sure field p can be computed a posteriori from the u field through (4.14). The numerical

evaluation of the integrals appearing in (4.15) is performed over the background mesh of

triangles or tetrahedra using Gauss integration with the modified strain matrix B̂a that

was developed in Section (4.2).

4.3.3 Numerical Integration of the Stiffness Matrix and the External

Force Vector

In (4.15), matrix Kab now appears corrected in terms of the modified strain matrix B̂a, and

is numerically integrated using n-point Gauss quadrature rule. Recall that the same Gauss

quadrature rule is used in (4.6b). In particular, for a three-node triangular background cell,

the numerical integration of the stiffness matrix disregarding the pressure part is computed

as follows:

Kab =

n
∑

k=1

B̂T
a (xk)C̄B̂b(xk)A

etwk, (4.16)
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where Ae is the area of the three-node triangle and t its thickness. In (4.16), indices a and

b range over the nodes covered by the intersection of the support of the basis functions

contained in B̂a and B̂b. Numerical integration of the external force vector is done as usual

with an n-point Gauss quadrature rule.

4.3.4 On the Selection of the Appropriate Gauss Quadrature Rule

The weak form integrals appearing in (4.15) need to be computed with sufficient accuracy to

preclude under integration or a rank-deficient stiffness matrix. Due to the interior displace-

ment node that is added inside the triangle or tetrahedra for stability, at least second-order

accurate Gauss rule is needed to compute the volume integrals, which is confirmed by the

numerical experiments presented in Section 4.5. Using first-order accurate Gauss rule will

lead to a rank-deficient stiffness matrix. On the other hand, the computation of the sur-

face integral is not a significant issue since it does not involve basis function derivatives;

a second-order accurate scheme is used on each edge. The above-mentioned quadrature

rules suffice to pass the patch test to machine precision and to ensure optimal rates of

convergence in the energy norm for the proposed meshfree method.

4.4 Inf-Sup Condition and Numerical Inf-Sup Test

Consider the bilinear forms appearing in the weak form (4.4). The optimality and stability

of the mixed formulation is guaranteed if the consistency of the approximation, the ellip-

ticity of a(·, ·) on the null space of b(·, ·) and the LBB inf-sup condition [13–15] on b(·, ·)

are satisfied [20]. By construction, max-ent basis functions satisfy the linear consistency

required by the weak form (4.4). On the other hand, if numerical integration is accu-

rate enough—which is the case herein (see Section 4.2), the ellipticity condition is always

met by displacement or velocity-pressure mixed formulations [169]. What remains to be

established for the stability of the meshfree formulation is the satisfaction of the inf-sup
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condition [13–15]:

inf
qh∈H0(Ω)

sup
vh∈H

1
0
(Ω)

∫

Ω
|qh∇ · vh| dΩ

‖qh‖0‖vh‖1
= αh ≥ α > 0 (4.17)

holds with α a positive constant independent of h. Since in the formulation proposed in this

dissertation the pressure field is eliminated by writing it as a function of the displacement

(or velocity) field, i.e., qh ≡ qh(wh), the following equivalent form of the inf-sup condition

is useful:

inf
wh∈H

1
0
(Ω)

sup
vh∈H

1
0
(Ω)

∫

Ω
|qh(wh)∇ · vh| dΩ

‖qh(wh)‖0‖vh‖1
= αh ≥ α > 0. (4.18)

An analytical proof to condition in (4.18) is difficult for meshfree methods [29,44]. Instead,

it is commonly verified through the numerical inf-sup test [17, 20]. To this end, let us

consider the matrix (numerical) form of (4.18), namely

inf
Wh

sup
Vh

WT
hG

hVh
√

WT
hG

hWh

√

VT
hS

hVh

= αh ≥ α > 0, (4.19)

where Wh and Vh are vectors corresponding to the nodal displacement or velocity test

functions wh and vh with

‖qh(wh)‖20 =
∫

Ω
(qh(wh))

2 dΩ = WT
hG

hWh, (4.20)

and

‖vh‖21 =
∫

Ω

2
∑

i,j=1

(

∂(vh)i
∂xj

)2

dΩ = VT
hS

hVh. (4.21)
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In the meshfree formulation, matrices Gh and Sh in two dimensions are given by

Gh
ab =

∫

Ω
B̂T

am

3
∑

c=1

Nc

{

∫

Ω̄ Ncm
TB̂b dΩ

∫

Ω̄Nc dΩ

}

dΩ, (4.22a)

Sh
ab =

∫

Ω







φa,xφb,x + φa,yφb,y 0

0 φa,xφb,x + φa,yφb,y






dΩ. (4.22b)

The numerical evaluation of the inf-sup value αh in (4.19) is based on the solution of

the following generalized eigenvalue problem, which is computed on a sequence of refined

meshes [17,20]:

Ghψ = ωShψ. (4.23)

If the eigenvalues are set in increasing order, then the smallest nonzero eigenvalue ωk is

used to compute the numerical inf-sup value αh as [17,20]

αh =
√
ωk, (4.24)

provided that there are no spurious pressure modes. The number of pressure modes can be

anticipated from [20]

kpm = k − (nu − np + 1),

where nu is the number of displacement or velocity degrees of freedom and np the number

of pressure degrees of freedom. A formulation that passes the inf-sup test must do so with

kpm = 0 (no pressure modes) or if kpm > 0 (constant or spurious pressure modes), the

pressure modes must be constant pressure modes as these can be removed by appropriate

modification of the essential boundary conditions [16,20]. Hence, a formulation that is free

of spurious pressure modes and does not show a decrease towards a vanishing αh with mesh

refinement is said to pass the inf-sup test. In Section 4.5.8, we show that the inf-sup test

is passed by the maximum-entropy meshfree method for several benchmark problems.
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4.5 Numerical Results and Discussions

The application of the maximum-entropy meshfree (MEM) method to near-incompressible

solids at small strains as well as Stokes flow is presented. The accuracy and performance

of the (MEM) method are examined by means of eight benchmark problems: displacement

patch test, a cantilever beam subjected to a parabolic end load, Cook’s membrane problem,

a three-dimensional cantilever beam, a three-dimensional rigid flat punch under frictionless

indentation, two-dimensional cavity flow, two-dimensional Poiseuille flow, and various inf-

sup tests. Structured background meshes are adopted for all the two-dimensional examples

other than inf-sup tests. For the latter, distorted meshes are employed. The performance

of the MEM method on unstructured tetrahedral background meshes is assessed in all the

three-dimensional examples. We consider the MINI [166] element within the standard u-p

formulation for near-incompressible solids as a representative finite element that relies on

the background mesh employed by the MEM method. The MEM solution is compared to

the MINI element solution in most of the examples. In the numerical experiments, STD

stands for standard Gauss quadrature (i.e., B̄a − ¯̄Ba = 0) and MOD for the modified

integration scheme presented in Section 4.2 (i.e., B̄a − ¯̄Ba 6= 0). Unless stated otherwise,

MOD with a second-order accurate scheme is used for both the volume and surface integrals.

In the examples, no explicit unit system is adopted, but consistency of units is assumed.

4.5.1 Displacement Patch Test

Consider the boundary-value problem for a two-dimensional elastic plate under essential

boundary conditions:

∇ · σ = 0 in Ω = (0, 1)2,

ux(x) = x on Γ, uy(x) = x+ y on Γ.
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(a) (b)

Figure 4.2: Meshes used for the displacement patch test. (a) Uniform mesh of four-node
quadrilaterals (Q4); and (b) Non-uniform mesh of three-node triangles (T3). For the near-
incompressible case, nodal degrees of freedom are as shown in Fig. 4.1.

Plane strain conditions are assumed with the following material parameters: E = 3 × 107

and ν = {0.3; 0.499}. The meshes used in the study are shown in Fig. 4.2: a uniform

mesh of four-node quadrilateral elements (Q4) for ν = 0.3, and a non-uniform mesh of

three-node triangular elements (T3) for ν = {0.3; 0.499}. Both meshes are tested using

STD and MOD schemes. Maximum-entropy basis functions are used with a support-width

parameter γ = 2.0 for the Gaussian prior, and γ = 1.5 for the quartic prior. Numerical

results for the relative error in the L2-norm are shown in Tables 4.1 and 4.2. Different Gauss

quadrature rules (number of Gauss points) for the volume integrals are tested (quadrature

rule for quadrilateral elements is indicated within braces). Numerical results confirm that

patch test satisfaction is met to within machine precision for both compressible and near-

incompressible material behavior only when MOD is employed. In this study, max-ent

approximants are used, but the generality of the integration approach renders it applicable

to other meshfree approximants as well as polygonal finite element interpolants [113].
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Table 4.1: Relative error in the L2-norm for the patch test (ν = 0.3)

Prior Quadrature T3 (STD) T3 (MOD) Q4 (STD) Q4 (MOD)

Gaussian
3 (3 × 3) 1.7× 10−3 3.2× 10−16 6.4× 10−6 1.2× 10−15

6 (6 × 6) 5.6× 10−4 3.1× 10−16 1.9× 10−8 2.8× 10−15

12 (12× 12) 2.9× 10−4 3.4× 10−16 6.6× 10−12 2.5× 10−15

Quartic
3 (3 × 3) 2.6× 10−3 2.8× 10−16 1.3× 10−4 3.2× 10−16

6 (6 × 6) 3.0× 10−3 4.4× 10−16 5.6× 10−7 9.3× 10−16

12 (12× 12) 7.8× 10−4 3.6× 10−16 1.3× 10−8 7.9× 10−16

Table 4.2: Relative error in the L2-norm for the patch test (ν = 0.499)

Prior Quadrature T3 (STD) T3 (MOD)

Gaussian
3 5.4× 10−1 8.2× 10−14

6 4.8× 10−1 8.8× 10−14

12 4.5× 10−1 8.6× 10−14

Quartic
3 5.2× 10−1 2.6× 10−13

6 3.9× 10−1 2.6× 10−13

12 5.1× 10−1 6.2× 10−13

4.5.2 Cantilever Beam

A cantilever beam of thickness t with a a parabolic end load P (Fig. 4.3(a)) is con-

sidered. The displacement solution for compressible (ν = 0.3) and near-incompressible

(ν = 0.499999) material behavior with E = 107 in plane strain condition is sought. Es-

sential boundary conditions on the clamped edge are applied according to the analytical

solution given by Timoshenko and Goodier [170]:

ux =
Py

6ĒI

(

3x2 − 6Lx+ ν̄y2
)

− Py

6Iµ

(

y2 − 3

4
D2

)

, (4.26a)

uy =
P

6ĒI

(

3ν̄ (L− x) y2 + 3Lx2 − x3
)

, (4.26b)
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Table 4.3: Normalized tip deflection for the cantilever beam (plane strain).

uNUM
2 /uEXACT

2 at point A
Regular mesh Irregular mesh

Method ν = 0.3 ν = 0.499999 ν = 0.3 ν = 0.499999
MINI 0.963 0.969 0.955 0.962
MEM 1.001 0.999 1.001 1.000

where µ is the material shear modulus (Lamé parameter) and

Ē =











E for plane stress

E/
(

1− ν2
)

for plane strain
, (4.27a)

ν̄ =











ν for plane stress

ν/ (1− ν) for plane strain
. (4.27b)

In the numerical computations the following parameters are used: L = 16, D = 4, t = 1

and P = −1. Two background meshes for the upper half of the beam are studied: a regular

mesh of three-node triangles (Fig. 4.3(b)) and an irregular mesh of three-node triangles

(Fig. 4.3(c)). Maximum-entropy basis functions are used with a support-width parameter

γ = 2.0 for the Gaussian prior. The numerical solution of the maximum-entropy meshfree

method with MOD is compared to the (MINI element) solution. Results for the normalized

tip deflection are shown in Table 4.3 for both meshes. The numerical and exact solution

for the nodal hydrostatic pressure along the fibers of the beam (regular mesh only) are

depicted in Fig. 4.4a for the MINI element and in Fig. 4.4(b) for the maximum-entropy

meshfree method. For the pressure field, the MINI element has some oscillations about the

analytical solution, whereas the maximum-entropy solution is devoid of oscillations and is in

very good agreement with the analytical solution. The convergence study of the normalized

tip deflection for the regular mesh is shown in Fig. 4.5 for the MINI element and the MEM

method. The numerical results indicate that compared to the finite element solution, the

MEM solution has better accuracy and converges faster towards the exact tip-deflection.
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(a)

(b)

(c)

Figure 4.3: Cantilever beam problem. (a) Model geometry and boundary conditions; (b)
Regular mesh of three-node triangles; and (c) Irregular mesh of three-node triangles. Unless
otherwise stated in the text, nodal degrees of freedom are as shown in Fig. 4.1 for both
compressible and near-incompressible elasticity.

To assess the influence of numerical integration, a study of the MEM method with STD

and MOD schemes is conducted. The numerical results for ν = 0.3 and ν = 0.499999 are

presented in Fig. 4.6. For ν = 0.3, the standard displacement-based max-ent formulation

is used with nodes located only at the vertices of the triangles. From the convergence

curves in Fig. 4.6(a), we observe that the rate of convergence of STD (with 3-, 6-, and

12-point quadrature) and MOD techniques are in agreement with theory—the energy norm

of the error is of O(h). For ν = 0.499999, the nodal-averaged pressure formulation is

adopted, and an additional displacement-node is inserted in the middle of every triangle.

It is evident from the curves in Fig. 4.6(b) that a 3-point Gauss quadrature is insufficient
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Figure 4.4: Cantilever beam problem. (a) Nodal pressure for the MINI element; and (b)
Nodal pressure for the maximum-entropy meshfree method.

(under-integration leads to lack of convergence), and only with higher-order Gauss quadra-

ture is the convergence rate closer to optimal. This is not surprising, since 3-point and



4.5. Numerical Results and Discussions 52

0 2 4 6 8 10 12 14 16 18
0.7

0.8

0.9

1

1.1

n

N
or

m
al

iz
ed

 ti
p 

de
fle

ct
io

n

 

 

MINI, ν = 0.3
MEM, ν = 0.3
MINI, ν = 0.499999
MEM,ν = 0.499999

Figure 4.5: Convergence of the normalized tip deflection for the cantilever beam problem.
4n × n (n is the number of divisions along the y-direction) mesh pattern is used on the
upper half of the beam.

6-point quadrature rules in a triangle are exact for second-order and fourth-order bivariate

polynomials, respectively, but the max-ent basis function for the interior node bears similar-

ity to a cubic bubble function, which renders the integrand of the stiffness matrix to be like

a fourth-order bivariate polynomial. Hence, the improved accuracy with 6-point quadra-

ture is realized, with 12-point quadrature being able to deliver about the same accuracy

as the modified integration scheme. The numerical results demonstrate the performance of

STD and MOD schemes, and establishes that the MOD technique can deliver accurate and

optimal convergence in MEM computations.

Lastly, the accuracy and rate of convergence of the MINI element and the maximum-

entropy meshfree method for two support-width parameters γ are compared in Fig. 4.7.

For the Gaussian prior, γ = 2.0 represents a larger support and γ = 4.0 a smaller support.

From Fig. 4.7, we observe that the max-ent and finite element solutions are accurate and

have the optimal rate of convergence in the energy norm for both support sizes.
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Figure 4.6: Rate of convergence in energy norm for the cantilever beam problem using
standard and modified Gauss integration techniques. (a) ν = 0.3; and (b) ν = 0.499999.
4n × n (n is the number of divisions along the y-direction) mesh pattern is used on the
upper half of the beam.
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Figure 4.7: Rate of convergence in energy norm for the cantilever beam problem for two
support-width parameters. (a) γ = 2.0; and (b) γ = 4.0. 4n × n (n is the number of
divisions along the y-direction) mesh pattern is used on the upper half of the beam.

4.5.3 Cook’s Membrane

The model geometry and boundary conditions for the Cook’s membrane problem is shown

in Fig. 4.8(a). This standard benchmark problem is suitable to test the behavior of the near-

incompressible formulation under combined bending and shear (see for instance, Refs. [10,
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64, 96]). The left edge is clamped and the right end is subjected to a shear load F = 6.25

per unit length (total shear load of 100). The following material parameters are considered:

E = 250 and ν = 0.4999. A regular mesh of three-node triangles is used with a mesh

pattern of n × n divisions per side. A reference mesh for n = 6 is shown in Fig. 4.8(b).

Maximum-entropy basis functions are used with a support-width parameter γ = 2.0 for the

Gaussian prior. The numerical solution of the maximum-entropy meshfree method with

MOD is compared to the MINI element solution. The convergence study of the vertical

tip displacement at point A upon mesh refinement is shown in Fig. 4.8(c) for both the

MINI element and the maximum-entropy meshfree method. Numerical results indicate that

the max-ent solution has a faster convergence in the vertical tip displacement vis-à-vis the

MINI element solution. It is also observed that the MINI element produces oscillations in

the hydrostatic pressure field, whereas the maximum-entropy pressure field is smooth.

4.5.4 Three-Dimensional Cantilever Beam

In this example, a three-dimensional cantilever beam subjected to an end load is studied to

establish the robustness of the maximum-entropy meshfree method in bending problems.

The geometry, boundary and loading conditions are depicted in Fig. 4.9(a). The tetrahedral

background mesh used in this example is illustrated in Fig. 4.9(b). The geometry and

loading parameters are set as follows: L = 21, H = 4, W = 6 and P = 50000. The

following material parameters are considered: E = 200000 and ν = 0.4999. We focus

on the tip deflection at point A of the beam whose exact solution is −21.11, as well as

on the smoothness of the pressure field. The analysis is conducted for the MINI element

and the MEM method. In the latter case, the MOD integration technique is used. The

corresponding numerical solutions are shown in Figs. 4.10(a) and 4.10(b) for the MINI

element, whereas Figs. 4.10(c) and 4.10(d) depict the solutions for the MEM method. We

note that the maximum-entropy solution is proximal to the exact one, whereas the MINI

element solution behaves somewhat ‘stiff’ on the same mesh. Additionally, a smoother

pressure field is observed in the maximum-entropy meshfree method than in the MINI
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Figure 4.8: Cook’s membrane problem. (a) Model geometry and boundary conditions; (b)
Sample mesh; and (c) Vertical tip displacement. Nodal degrees of freedom are as shown in
Fig. 4.1.

element method.

In order to demonstrate the need for the MOD integration scheme in three dimensions,

the same analysis is conducted using an eight-order Gauss quadrature rule (STD integration
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Figure 4.9: Three-dimensional cantilever beam. (a) Geometry, boundary and loading con-
ditions; and (b) background mesh for integration.

scheme) for the MEM method. The numerical and exact tip deflections at point A are

summarized in Table 4.4. We observe that the STD scheme can not deliver the correct

result, and indeed higher-order Gauss quadrature is needed. The latter is not surprising

since due to the unstructured mesh, the support of basis functions can get significantly

large leading to under-integration if the accuracy of the quadrature rule employed is not

sufficient. However, use of very higher-order Gauss quadrature is unappealing in a meshfree

method since it imposes a computational burden on the simulations.
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(a) (b)

(c) (d)

Figure 4.10: Three-dimensional cantilever beam. (a) MINI element solution for vertical
displacement; (b) MINI element solution for hydrostatic pressure field; (c) MEM solution
for vertical displacement; and (d) MEM solution for hydrostatic pressure field.

Table 4.4: Tip deflection for the three-dimensional cantilever beam at point A.

Method Numerical Exact
MINI −16.02 −24.11

MEM (MOD) −24.02 −24.11
MEM (STD) −141.99 −24.11

4.5.5 Three-Dimensional Rigid Flat Punch

In this example, a simple model of three-dimensional frictionless indentation is considered

to showcase the performance of the MEM method under compressive loads. Similar bench-

mark problems are typically studied in two dimensions [64, 96, 171]. The geometry of the

problem is depicted in Fig. 4.11(a). A severe constraint on allowable deformation states is

introduced by fully clamping the bottom surface and the four lateral surfaces. A frictionless
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Figure 4.11: Three-dimensional rigid flat punch. (a) Geometry and boundary conditions;
and (b) background mesh for integration.

downward displacement of 0.15 is applied on the center of the top surface within a square

area of 2/3 × 2/3. Due to the symmetry of the problem, only a quarter of the geometry

is considered. The material parameters are set to E = 3 × 107 and ν = 0.4999. The

unstructured tetrahedral background mesh shown in Fig. 4.11(b) is used to demonstrate

the ability of the MEM method. The numerical solutions for the MINI element are pre-

sented in Figs. 4.12(a) and 4.12(b), whereas the maximum-entropy solutions are depicted

in Figs. 4.12(c) and 4.12(d). In light of these results, the MEM method is clearly superior

in the prediction of the displacement field and in realizing a smoother pressure solution.
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(a) (b)

(c) (d)

Figure 4.12: Three-dimensional rigid flat punch. (a) MINI element solution for displace-
ment field; (b) MINI element solution for hydrostatic pressure field; (c) MEM solution for
displacement field; and (d) MEM solution for hydrostatic pressure field.

4.5.6 Leaky-Lid Driven Cavity Flow

The leaky-lid driven cavity flow problem is a standard benchmark to test the performance

of numerical methods in incompressible flow [7, 49, 167, 172]. The geometry, background

mesh and prescribed velocity along the boundary of the domain are depicted in Fig. 4.13.

Max-ent basis functions are used with a support-width parameter γ = 2.0 for the Gaussian

prior.
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Figure 4.13: Leaky-lid driven cavity flow. Geometry, mesh and boundary conditions.

In Fig. 4.14, the numerical velocity and hydrostatic pressure fields for the MINI element

and MEM formulation are compared. We observe that the velocity field is quite similar for

both approximations and that they are in agreement with the numerical results of Ref. [167].

A good match between the velocity of the MINI and MEM solutions is observed in Fig. 4.15.

However, the MEM method better predicts the hydrostatic pressure field with a smoother

solution throughout the domain. This behavior is also confirmed by the results shown in

Fig. 4.16, where the nodal pressure is plotted for two background meshes along line Q-Q.

The first one, a coarser mesh of 12×12 divisions and the second one, a finer mesh of 24×24

divisions shown in Fig. 4.13. On the finer mesh, the MINI element solution drifts away from

the smooth MEM solution, and the former also has some oscillations. The situation is still

worse for the MINI element in the coarser mesh, whereas the MEM solution on both meshes

is similar and they are in agreement with the results of Ref. [167].
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(a) (b)

(c) (d)

Figure 4.14: Leaky-lid driven cavity flow. (a) MINI element solution for velocity field, (b)
MEM solution for velocity field, (c) MINI element solution for hydrostatic pressure field;
and (d) MEM solution for hydrostatic pressure field.

4.5.7 Poiseuille Flow

In this example, we are interested in predicting the steady laminar flow between two fixed

(no-slip) parallel plates (sufficiently large compared to the gap between the plates) when

a parabolic velocity field is prescribed at the inlet. This problem is known as Poiseuille

flow [173]. The geometry, background mesh and boundary conditions are shown in Fig. 4.17.

On considering unit dynamic viscosity and vanishing natural boundary conditions at the

outlet, the following analytical solution is valid well away from the edge of the plates [173]:
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Figure 4.15: Leaky-lid driven cavity flow. Nodal velocity measured along lines (a) P -P and
(b) Q-Q.
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Figure 4.16: Leaky-lid driven cavity flow. Nodal pressure measured along line Q-Q (a) for
12× 12 mesh and (b) for 24× 24 mesh.
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Figure 4.17: Poiseuille flow. Geometry, mesh and boundary conditions.

u = 1− (y − 1)2, (4.28a)

v = 0, (4.28b)

p = −2x+ 16, (4.28c)

Eqs. (4.28a) and (4.28b) are imposed as essential boundary conditions at the inlet and

on the upper and bottom plates. Max-ent basis functions are used with a support-width

parameter γ = 2.0 for the Gaussian prior. The numerical axial velocity and pressure field

are depicted in Fig. 4.18. We observe that both the MINI element and MEM solutions

match the analytical solution in (4.28).

4.5.8 Inf-Sup Tests

The numerical inf-sup test described in Section 4.4 has been assessed for meshfree meth-

ods [29,44]. Here, the inf-sup test is applied on three problems: leaky-lid driven cavity flow,

Poiseuille flow, and a square domain (the same used for the cavity flow) with zero-velocity

imposed along the boundary. When a vanishing velocity is imposed along the boundary of

the domain, a zero pressure field must be obtained everywhere. Otherwise, the formulation
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(a) (b)

(c) (d)

Figure 4.18: Poiseuille flow. (a) MINI element solution for axial velocity, (b) MEM solution
for axial velocity, (c) MINI element solution for hydrostatic pressure field; and (d) MEM
solution for hydrostatic pressure field.

Table 4.5: Values of αh in the numerical inf-sup tests.

Problem n = 4 n = 8 n = 12 n = 16
Cavity 0.295 0.308 0.308 0.300

Poiseuille 0.112 0.113 0.113 0.113
Zero-velocity 0.295 0.308 0.308 0.300

would suffer from spurious pressure modes [16]. In order to compute the numerical inf-sup

value, four nodal discretizations are considered in each problem. The background meshes

are shown in Fig. 4.19. Numerical inf-sup values are presented in Table 4.5. From Table 4.5,

we observe that for all the tests the numerical inf-sup values converge to a value that is

bounded away from zero with successive mesh refinements. Since the whole boundary has

been imposed with essential boundary conditions for the leaky-lid driven cavity flow and

zero-velocity tests, one constant pressure mode was obtained in both cases. However, the

constant pressure mode can be eliminated if one essential boundary condition is removed

from the boundary. We also mention that a zero-pressure field was obtained for the zero-

velocity test, which indicates that the MEM formulation is free of spurious pressure modes.

The inf-sup test is therefore passed and the MEM formulation is stable.
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(a) (b) (c) (d)

(e) (f)

(g) (h)

Figure 4.19: Distorted background meshes employed for the inf-sup test. (a), (b), (c) and
(d) for the leaky-lid driven cavity flow and the zero-boundary velocity problems; (e), (f),
(g) and (h) for the Poiseuille problem. n× n mesh pattern is used for the leaky-lid driven
cavity flow and zero-boundary velocity problems, while for the Poiseuille flow, n×n/2 mesh
pattern is considered. In both cases n is the number of divisions along the x-direction.
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Chapter 5

Maximum-Entropy Meshfree

Method for Near-Incompressible

Nonlinear Elasticity

In this chapter, the formulation of the maximum-entropy meshfree method for two-dimensional

near-incompressible nonlinear elasticity is presented. Some basic concepts on nonlinear con-

tinuum mechanics that are used in several parts of this chapter are first given. A novel

meshfree formulation for near-incompressible elastic solids at finite strains is then pre-

sented. The performance of the maximum-entropy meshfree method in large deformation

analysis with near-incompressible behavior is investigated. Structured and unstructured

three-node triangular background meshes are employed in three numerical experiments: a

combined bending-shear problem (nonlinear Cook’s membrane), a plane strain compres-

sion of a rubber block, and a frictionless indentation problem. In all the experiments, the

maximum-entropy solution is compared to two finite element solutions that use three-node

triangular meshes, namely, the linear displacement/constant pressure triangle (T1P0) and

the MINI [166] element.
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5.1 Basic Nonlinear Continuum Mechanics

5.1.1 Reference Map

The motion of a body is mathematically described by a mapping χ between initial (X) and

current (x) body particle positions as

x = χ (X, t) ≡ x (X, t) , (5.1)

where t is the time variable. For a fixed t, the above equation represents the mapping

between the undeformed and deformed bodies. On the other hand, if X is kept fixed for

a given particle, (5.1) represents the trajectory of that particle as a function of time. The

undeformed configuration is referred to as material, Lagrangian or reference configuration,

whereas the deformed configuration is referred to as spatial, Eulerian or current configura-

tion.

5.1.2 Displacement Vector

The displacement vector is the distance between the spatial and material configurations of

a particle and is given by

u = x−X. (5.2)

5.1.3 Deformation Gradient Tensor

The deformation gradient tensor is the gradient of the mapping function that describes the

motion and is given by

F =
∂χ

∂X
=

∂x

∂X
= I+

∂u

∂X
. (5.3)

The deformation gradient tensor plays a prominent role in finite deformation theory since

it is used to define strain and stress measures as well as material constitutive relations. It

accounts for geometrical effects that are neglected in infinitesimal deformation theory.
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5.1.4 Volume Changes

Volume change ratio

It represents the ratio between the volume after deformation per unit reference (infinitesi-

mal) volume, or simply volume change ratio. It is given by

J = detF. (5.4)

If J = 1, no volume change is observed, which is the case when the body has not undergone

any motion (F = I) or if it has deformed, its deformation is isochoric. On the other hand,

J = 0 implies that the body has collapsed into a material particle, which is not physically

acceptable. In general, J > 0 so that the deformation map is one-to-one.

Isochoric deformations

These are deformations that do not induce volume changes (volume-preserving). They only

produce volume distortions. Isochoric deformations are described by J = 1.

Volumetric deformations

These are deformations that induce volume changes (volume-dilatation) that stem from

uniform contraction/dilatation ratio in all directions. They are described by a spherical

deformation gradient tensor as

F = αI, (5.5)

where α is a scalar representing the contraction/dilatation ratio.

5.1.5 Push-Forward/Pull-Back Operations

Measures defined on the material configuration can be expressed in terms of measures

defined on the spatial configuration by means of a push-forward operation, which is denoted

by χ∗[·]. For instance, the elemental spatial vector dx can be considered as the push-forward
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of its material vector counterpart dX. The operation is written as

dx ≡ χ∗[dX] = FdX. (5.6)

Conversely, measures defined on the spatial configuration can be expressed in terms of

measures defined on the material configuration by means of a pull-back operation, which is

denoted by χ−1
∗

[·]. For instance, the elemental material vector dX can be considered as the

pull-back of its spatial vector counterpart dx. The operation is written as

dX ≡ χ−1
∗

[dx] = F−1dx. (5.7)

5.1.6 Strain Measures

Right Cauchy-Green deformation tensor

It is a symmetric material tensor given as

C = FTF, (5.8)

which is defined via the push-forward of the scalar product of two elemental material vectors

as

dx1 · dx2 = dX1 ·C dX2. (5.9)

The right Cauchy-Green deformation tensor represents the change in length of the two

material vectors after deformation along with the change in the enclosed angle between the

two material vectors after deformation.

Left Cauchy-Green deformation tensor

It is a symmetric spatial tensor given as

b = FFT, (5.10)
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which is defined via the pull-back of the scalar product of two elemental spatial vectors as

dX1 · dX2 = dx1 · b−1dx2. (5.11)

The left Cauchy-Green deformation tensor represents the change in length of the two spatial

vectors measured from the material configuration along with the change in the enclosed

angle between the two spatial vectors measured from the material configuration.

Green-Lagrange strain tensor

It is a symmetric material tensor defined as

E =
1

2
(C− I). (5.12)

Euler-Almansi strain tensor

It is a symmetric spatial tensor defined as

e =
1

2
(I− b−1). (5.13)

5.1.7 Stress Measures

Cauchy stress tensor

It is a symmetric spatial tensor that represents the current force per unit of deformed area.

It is also referred to as true stress tensor or simply stress tensor and is denoted by σ.

First Piola-Kirchhoff stress tensor

It is an unsymmetric (neither spatial nor material) tensor that can be interpreted as the

current force per unit of undeformed area and is related to the Cauchy stress tensor by

P = JσF−T. (5.14)
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Second Piola-Kirchhoff stress tensor

It is a symmetric material tensor that can be interpreted as a force in the undeformed

configuration per unit of undeformed area and is related to the Cauchy stress tensor by

S = JF−1σF−T. (5.15)

Kirchhoff stress tensor

It is a symmetric spatial tensor which results from a push-forward of the second Piola-

Kirchhoff stress tensor as

τ = FSFT, (5.16)

which can be related to the Cauchy stress tensor by considering (5.15) to yield

τ = Jσ. (5.17)

5.1.8 Hyperelasticity

When the work done by stresses during a deformation process is stored in the material

as part of its internal energy and is independent of the path followed to reach the final

configuration from the initial one, the material behavior is said to be path-independent and

is termed hyperelastic. A hyperelastic material is characterized by a strain energy function

or elastic potential Ψ.
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Strain energy function

Various strain energy functions are available. Typical expressions for the strain energy of

isotropic materials commonly used in the finite element and meshfree literature are:

Ψ(E) = 1
2λ(trE)2 + µE : E, (St. Venant-Kirchhoff)

Ψ(C) = 1
2µ(trC− 3)− µ ln J + λ

2 (ln J)
2, (compressible neo-Hookean)

Ψ(C) = 1
2µ(trC− 3), (incompressible neo-Hookean)

where λ and µ are the Lamé material parameters. When modeling incompressible materi-

als with finite elements or meshfree methods, a common practice is to treat the material

as slightly compressible, which results in near-incompressible material behavior. This is

accomplished by separation of the strain energy function into two parts. An isochoric

(distortional) part and a volumetric (dilatational) part. For instance, some examples of

near-incompressible isotropic neo-Hookean materials commonly used to validate numerical

procedures have the expressions:

Ψ(C) = 1
2µ(J

−2/3trC− 3) + 1
2κ(J − 1)2,

Ψ(C) = 1
2µ(J

−2/3trC− 3) + 1
2κ(ln J)

2,

where the parts that depend on the bulk modulus of the material, κ, are the volumetric

strain energy functions.

Stress tensors

The second Piola-Kichhoff stress tensor is obtained as

S =
∂Ψ(E)

∂E
, (5.18)
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which can also be written in terms of C with the aid of (5.12) as

S = 2
∂Ψ(C)

∂C
. (5.19)

Various other stress tensors can be obtained using the relations given in Section 5.1.7.

Elasticity tensors

Most numerical procedures, as the one proposed in this dissertation, are based on the mini-

mization of a potential energy functional. On taking the first variation of that functional in

an arbitrary direction yields the weak form which is used to build the numerical procedure.

The relationship between stress and strain measures (constitutive relations) are nonlinear

in hyperelasticity, therefore the weak form. An iterative procedure is then needed to find a

solution that satisfies the weak form. Typically, Newton-based methods are employed. The

latter implies that the weak form must be linearized. The linearization is usually done in

the reference (material) configuration. A push-forward operation follows if the linearized

quantities are required in the spatial configuration. As part of the linearization of the weak

form in the reference configuration, we obtain the material or Lagrangian elasticity tensor,

which is given as

C =
∂S(E)

∂E
= 2

∂S(C)

∂C
. (5.20)

F-bar methodology

An incompressible material that undergoes finite strains must satisfy

J = detF = 1. (5.21)

In a numerical method, the above equation is typically enforced by means of Lagrange

multipliers or penalty procedures in the minimization of a potential energy functional. A

standard approach to model incompressible solids by means of penalty procedures implicitly
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introduced in the material constitutive relation is obtained by using the multiplicative

decomposition of the deformation gradient tensor [12,72,174–177] as

F = FdilFdev, (5.22)

where Fdil = J1/3I and Fdev = J−1/3F. Due to the fact that the deviatoric part of the

deformation gradient tensor is volume-preserving, detFdev = 1. This leaves us with Fdil as

the important quantity in the incompressible behavior of the media, namely,

detF =
(

detFdil
)(

detFdev
)

= detFdil = 1 (5.23)

to be enforced. For a single-field (finite element or meshfree) approximation, it would

not be possible to satisfy detFdil = 1 without inducing a locking mechanism. However,

a locking-free methodology can be developed in a single-field formulation if the modified

gradient tensor

F̄ = F̄dilFdev (5.24)

is constructed. In (5.24), F̄dil = J̄1/3I, which leads to

det F̄ = J̄ = 1 (5.25)

to be enforced in lieu of (5.21) or (5.23). An identity like (5.24) is coined as F -bar methodol-

ogy in the literature and has been successfully used in the context of finite elements [72,177]

and isogeometric analysis [12].

Of importance is to note that in standard displacement formulations, (5.21) imposes

a severe constraint on possible deformations. That is, the resulting motion is unable to

distort while simultaneously satisfying the incompressibility constraint (5.21), which leads

to a catastrophic artificial stiffening known as volumetric locking. The F -bar methodology

provides a means to preclude volumetric locking by considering two independent quantities,
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namely, J and J̄ , which both depend on displacement field variables. The resulting motion is

now able to distort while simultaneously satisfying the new constraint (5.25). An important

step that follows is the appropriate definition of the ‘bared’ quantities in (5.25). This is

presented in the next section.

5.2 F-bar Methodology in the Maximum-Entropy Meshfree

Method

The key ingredient in the F -bar methodology is the definition of J̄ . For instance, in Ref. [12]

it is defined as the L2 projection onto the lower-order approximation space, whereas in

Ref. [72] it is defined as the ratio of the volume of an element that belongs to a patch

to the total volume of that patch. In the F -bar methodology that is proposed here for

meshfree approximations, J̄ is defined in a different way. The methodology presented in

Chapter 4 for small strain elasticity is extended to nonlinear computations. To this end, a

corresponding volume-averaged nodal quantity on J is considered for nonlinear analysis as

follows:

Ja =

∫

Ω̄ NaJ dΩ
∫

Ω̄Na dΩ
, (5.26)

where Na is a linear finite element shape function1 defined on a background (integration)

mesh of three-node triangles and Ω̄ is the union of all the elements attached to node a,

i.e., Ω̄ = ∪Ωe
a. Following the approach of F -bar methodologies that was described in

Section 5.1.8, we define J̄ as the finite element interpolation of the nodal averages given

in (5.26), i.e.,

J̄ =
∑

a

NaJa. (5.27)

Note that in the method developed in this dissertation, we compute the average of J it-

self (see (5.26)) and not the average of J1/3 as is done in Ref. [12]. This leads to slightly

1Although a meshfree basis function could be used in lieu of Na, this is not strictly needed for the
meshfree method herein since derivatives of Na do not appear in the formulation.
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different results in the weak form and in its linearization. For convenience in further deriva-

tions, (5.24) is rewritten as follows on considering the definition of Fdev and F̄dil:

F̄ = αF, (5.28)

where α =
(

J̄/J
)1/3

.

The F -bar methodology of Ref. [12] operates on the potential energy functional, whereas

the corresponding methodology of Refs. [72, 177] operates on the stress measure only. The

former methodology is more consistent in hyperelasticity since it leads to a symmetric

tangent stiffness matrix. The F -bar methodology for meshfree methods is developed along

the lines of Ref. [12]. To this end, the usual space of admissible deformations is considered:

D = {χ : Ω → R
2 | detF > 0, χ = χ∗ onΓχ}, (5.29)

where Ω ∈ R
2 is an open bounded domain on the initial (reference) configuration with

boundary Γ and χ is the mapping that defines the displacement of a particle from its initial

position X to its current position x, i.e., u = χ(X) − X = x − X. On the other hand,

Γχ is the portion of the boundary where the deformation χ∗ is prescribed. The vectors

of external body forces f0 and external surface forces t0 are assumed independent of the

motion. Next, the following modified potential energy functional is considered:

Π̄(χ) =

∫

Ω
Ψ(Ē(χ)) dΩ −

∫

Ω
f0 · χdΩ−

∫

Γt

t0 · χdΓ, (5.30)

where Ψ(Ē(χ)) is the modified strain energy function, which depends on F̄ through the

modified Green-Lagrange strain tensor:

Ē(χ) =
1

2

(

F̄TF̄− I
)

. (5.31)

The weak form of the finite strain near-incompressible elastic problem and its lineariza-
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tion need to be carefully developed due to the dependency of the potential energy functional

on the modified deformation gradient tensor F̄. We deal with this in the next section.

5.3 Variational Weak Form

The stationarity of (5.30) in the arbitrary direction v ∈ V = {v : Ω → R
2 | v = 0 onΓχ}

given by the directional derivative2

DΠ̄(χ)[v] ≡ ∂Π̄(χ+ ǫv)

∂ǫ

∣

∣

∣

∣

ǫ=0

= 0 (5.32)

yields the weak form

DΠ̄(χ)[v] =

∫

Ω
S̄(χ):DĒ(χ)[v] dΩ −

∫

Ω
f0 · v dΩ−

∫

Γt

t0 · v dΓ = 0, (5.33)

where the modified second Piola-Kirchhoff stress tensor S̄(χ) is defined as

S̄(χ) = S(Ē(χ)) =
∂Ψ(E)

∂E
(Ē(χ)) (5.34)

and DĒ(χ)[v] needs to be developed. To this end, the following operators are defined:

θ(·) =
3
∑

a=1

Na(X)

{

∫

Ω̄ Na{·} dΩ
∫

Ω̄ Na dΩ

}

, (5.35a)

ϑ(·) =
θ(·)

J̄
− 1

J
{·}, (5.35b)

where Ω̄ was defined in (5.26). The complete derivation of DĒ(χ)[v] is presented in Ap-

pendix B. The final expression is

DĒ(χ)[v] =
1

3
ϑ
(

Jtr
(

∇
0vF−1

))

F̄TF̄+ α(F̄T
∇

0v)sym. (5.36)

2See Appendix A for details on directional derivative and weak form derivation.
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On substituting (5.36) into (5.33) leads to the final weak form expression as

DΠ̄(χ)[v] =
1

3

∫

Ω
ϑ
(

Jtr(∇0vF−1)
)

S̄ : (F̄TF̄) dΩ +

∫

Ω
αS̄ : (F̄T

∇
0v)sym dΩ

−
∫

Ω
f0 · v dΩ−

∫

Γt

t0 · v dΓ = 0. (5.37)

5.4 Linearized Weak Form

The implicit numerical solution relies on the linearization of the weak form (5.37). The

linearized weak form in the direction of the increment ∆u is given by 3

DΠ̄(χ)[v] + D2Π̄(χ)[v,∆u] = 0, (5.38)

where D2Π̄(χ)[v,∆u] ≡ D
{

DΠ̄(χ)[v]
}

[∆u] is the second variation of Π̄(χ) in ∆u. The

derivation of the second variation is complicated and leads to many terms. Thus, only the

final result is provided here and details are given in Appendix B. The external forces are

assumed independent of the motion, and for the sake of clarity, the second variation is split

into a material and a geometric part:

D2Π̄(χ)[v,∆u] =
(

D2Π̄(χ)[v,∆u]
)

mat
+
(

D2Π̄(χ)[v,∆u]
)

geo
, (5.39a)

where

(

D2Π̄(χ)[v,∆u]
)

mat
=+

1

9

∫

Ω
ϑ
(

Jtr(∇0vF−1)
)

ϑ
(

Jtr(∇0∆uF−1)
)

(F̄TF̄) : C̄ : (F̄TF̄) dΩ

+
1

3

∫

Ω
αϑ
(

Jtr(∇0vF−1)
)

(F̄TF̄) : C̄ : (F̄T
∇

0∆u)sym dΩ

+
1

3

∫

Ω
α(F̄T

∇
0v)sym : C̄ : (F̄TF̄)ϑ

(

Jtr(∇0∆uF−1)
)

dΩ

+

∫

Ω
α2(F̄T

∇
0v)sym : C̄ : (F̄T

∇
0∆u)sym dΩ, (5.39b)

3See Appendix A for details on linearization of nonlinear equations and linearization of the weak form.
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and

(

D2Π̄(χ)[v,∆u]
)

geo
=− 1

3

∫

Ω

1

J̄2
θ
(

Jtr(∇0vF−1)
)

θ
(

Jtr(∇0∆uF−1)
)

S̄ : (F̄TF̄) dΩ

+
1

3

∫

Ω

1

J̄
θ
(

Jtr(∇0vF−1)tr(∇0∆uF−1)
)

S̄ : (F̄TF̄) dΩ

− 1

3

∫

Ω

1

J̄
θ
(

Jtr(∇0vF−1
∇

0∆uF−1)
)

S̄ : (F̄TF̄) dΩ

+
1

3

∫

Ω
tr(∇0vF−1

∇
0∆uF−1)S̄ : (F̄TF̄) dΩ

+
2

9

∫

Ω
ϑ
(

Jtr(∇0vF−1)
)

ϑ
(

Jtr(∇0∆uF−1)
)

S̄ : (F̄TF̄) dΩ

+
2

3

∫

Ω
αϑ
(

Jtr(∇0vF−1)
)

S̄ : (F̄T
∇

0∆u)sym dΩ

+
2

3

∫

Ω
α(F̄T

∇
0v)sym : S̄ϑ

(

Jtr(∇0∆uF−1)
)

dΩ

+

∫

Ω
α2S̄ : [(∇0v)T∇0∆u]sym dΩ. (5.39c)

In the derivation of (5.39b), the modified Lagrangian elasticity tensor C̄ is obtained as

follows:

C̄ = C(Ē(χ)) =
∂S(E)

∂E
(Ē(χ)). (5.40)

Finally, upon collecting terms from (5.37) and (5.39b)-(5.39c) and substituting into (5.38)

yields the final expression for the linearized weak form.

5.5 Discrete Linearized Weak Form

Discretization of the linearized weak form (5.38) leads to the following Newton-Raphson

scheme:

t+∆t (Kmat +Kgeo)
(i−1)∆u(i) = t+∆tF− t+∆tT(i−1), (5.41)

where t + ∆t is to indicate that the material and geometric tangent stiffness matrices,

Kmat and Kgeo, respectively, and the external and internal nodal force vectors, F and T,

respectively, are computed incrementally by application of boundary conditions (forces and
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displacements) in increments. On the other hand, i stands for the equilibrium iterations

that are involved within an increment. A solution obtained from the Newton-Raphson

scheme (5.41) is computationally demanding in most practical applications due to the con-

tinuous formation of Kmat and Kgeo. Other schemes that provide a compromise between

accuracy and computational cost are desired. Among such schemes BFGS [178] seems to

be the most robust for large computations and is therefore widely used in the implementa-

tions in this dissertation. Details on the latter and other Newton-based schemes for solving

nonlinear equations are provided in Appendix C.

In order to derive the material and geometric tangent stiffness matrix, as well as the

residual nodal force vector (right-hand side of (5.41)), the following maximum-entropy

approximations are used for both the test and trial functions in the reference configuration:

∆uh(X) =
3
∑

a=1

φa(X)∆ua, (5.42a)

vh(X) =

3
∑

a=1

φa(X)va, (5.42b)

where now the nodal quantities are related to the nodes of the three-node triangular back-

ground (integration) mesh plus an extra interior node per triangle, which mimics a bubble

node ensuring a good balance between number of displacement degrees of freedom and num-

ber of dilatational constraints [7]. Fig. 5.1 depicts a sample mesh used for displacement

approximation as well as averaging of J (see (5.26)) in the maximum-entropy meshfree

method. In what follows, the following matrix notations which result from symmetry con-

siderations are used:

{C̄} = {F̄TF̄} =

[

C̄11 C̄22 2C̄12

]T

, (5.43)

{S̄} =

[

S̄11 S̄22 S̄12

]T

, (5.44)
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a

Figure 5.1: Mesh to compute volume-averaged nodal J around a representative node a.
Filled black circles represent displacement nodes and open circles are the nodes used for
linear finite element shape functions.

{C̄} =













C̄1111 C̄1122 C̄1112
C̄2211 C̄2222 C̄2212
C̄1211 C̄1222 C̄1212













, (5.45)

where {·} denotes Voigt notation; and the following matrix forms which result from the

discretization procedure:

Bq =













(F11)
−1φq,X 0

0 (F22)
−1φq,Y

(F21)
−1φq,Y (F12)

−1φq,X













, (5.46)

B̄0
q =













F̄11φq,X F̄21φq,X

F̄12φq,Y F̄22φq,Y

F̄12φq,X + F̄11φq,Y F̄22φq,X + F̄21φq,Y













, (5.47)

B̄kk
q =













ϑ
(

JmTBq

)

C̄11

ϑ
(

JmTBq

)

C̄22

2ϑ
(

JmTBq

)

C̄12













, (5.48)
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B̄q =
1

3
B̄kk

q + αB̄0
q . (5.49)

Additionally, the following vector that arises from some trace operations is defined:

m =

[

1 1 1

]T

. (5.50)

5.5.1 Residual Nodal Force Vector

The residual nodal force vector is R = t+∆tF− t+∆tT(i−1) and is obtained upon discretiza-

tion of (5.37), which yields

R =
∑

q

vT
q

[∫

Ω
φqf0 dΩ+

∫

Γ
φqt0 dΓ

−1

3

∫

Ω
ϑ
(

JBT
q m
)

{C̄}T{S̄} dΩ −
∫

Ω
α
(

B̄0
q

)T {S̄} dΩ
]

. (5.51)

5.5.2 Material Tangent Stiffness Matrix

The material tangent stiffness matrix is obtained upon discretization of (5.39b). Before

proceeding likewise, terms in (5.39b) are rearranged such that the following expression is

obtained:
(

D2Π̄(χ)[v,∆u]
)

mat
=

∫

Ω
(∇0v̄) : C̄ : (∇0∆ū) dΩ, (5.52)

where

∇
0(̄·) =

1

3
ϑ
(

Jtr(∇0(·)F−1)
)

C̄+ α
(

F̄T
∇

0(·)
)

sym
. (5.53)

Due to the symmetry of (5.52), further arrangements can be done by using Voigt notation

to obtain
(

D2Π̄(χ)[v,∆u]
)

mat
=

∫

Ω
{∇0v̄}T{C̄}{∇0∆ū} dΩ. (5.54)
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Finally, on substituting (5.42) into (5.54) leads to the following discrete material tangent

stiffness matrix:

Kmat =
∑

p

∑

q

vT
p

[
∫

Ω
B̄T

p {C̄}B̄q dΩ

]

∆uq. (5.55)

5.5.3 Geometric Tangent Stiffness Matrix

On substituting (5.42) into (5.39c) yields the following discrete geometric tangent stiffness

matrix:

Kgeo =
∑

p

∑

q

vT
p

[

− 1

3

∫

Ω

1

J̄2
θ
(

JBT
p m
)

θ
(

JmTBq

)

{C̄}T{S̄} dΩ

+
1

3

∫

Ω

1

J̄
θ
(

JBT
pmmTBq

)

{C̄}T{S̄} dΩ

− 1

3

∫

Ω

1

J̄
θ
(

JF−T(∇0φp)(∇
0φq)

TF−1
)

{C̄}T{S̄} dΩ

+
1

3

∫

Ω
F−T(∇0φp)(∇

0φq)
TF−1{C̄}T{S̄} dΩ

+
2

9

∫

Ω
ϑ
(

JBT
p m
)

ϑ
(

JmTBq

)

{C̄}T{S̄} dΩ

+
2

3

∫

Ω
αϑ
(

JBT
pm
)

{S̄}TB̄0
q dΩ

+
2

3

∫

Ω
α(B̄0

p)
T{S̄}ϑ

(

JmTBq

)

dΩ

+I

∫

Ω
α2(∇0φp)

TS̄(∇0φq) dΩ

]

∆uq. (5.56)

5.6 Numerical Results and Discussions

In this section, the performance of the maximum-entropy meshfree (MEM) method for two-

dimensional analysis of near-incompressible elastic solids at finite strains is examined. By

means of three benchmark problems, the ability of the MEMmethod in the nonlinear regime

is tested by comparing its numerical solution to the corresponding ones of two mixed u-p

finite elements, namely, the linear displacement/constant pressure triangle (T1P0) and the

MINI [166] element. The former is well-known to fail the LBB inf-sup stability condition [13–

15], whereas the second one is LBB stable and has proved to be the most stable finite element
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for two-dimensional analysis of fully incompressible elastic solids at finite strains [179]. In

all the numerical experiments, the following neo-Hookean material is considered:

Ψ(C) =
1

2
µ(J−2/3trC− 3) +

1

2
κ(ln J)2, (5.57)

with material parameters µ = 80.1938 and κ = 400942, which results in a near-incompressible

elastic solid with ν = 0.49989. For all the examples in this section, the nodal degrees of

freedom are arranged as shown in Fig. 5.1. In respect of the parameters of max-ent basis

functions (see Section 3.3), we usually set γ = 1.1 to γ = 1.5 for the quartic prior. In

the examples, fifth-order accurate Gauss integration scheme has been used for the MEM

method, whereas third-order sufficed for the finite element methods. This difference in

the integration order is expected since meshfree basis functions are rational functions and

their supports do not coincide with the background cells that are employed in the numeri-

cal integration. Details on numerical integration issues in meshfree methods are presented

in Section 4.2 of Chapter 4. In the examples, no explicit unit system is adopted, but

consistency of units is assumed.

5.6.1 Nonlinear Cook’s Membrane

In this example, the ability of the proposed meshfree formulation is studied by means of

a standard benchmark problem that has been employed by many authors to test the be-

havior of near-incompressible formulations under combined bending and shear in distorted

meshes [12,64,96]. The model geometry and boundary conditions are shown in Fig. 5.2(a).

The left edge of the membrane is clamped and its right end is subjected to a shear load

F = 6.25 per unit length (total shear load of 100). A reference background mesh of n × n

subdivisions is shown in Fig. 5.2(b) for n = 20. The convergence study of the vertical tip

displacement at point A upon mesh refinement is shown in Fig. 5.2(c) for the MEM method

and both finite element methods. Numerical results indicate that the MEM convergence is

superior to the finite elements convergence, and that is achieved with moderate mesh size.
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We observe that the MINI element solution behaves somewhat ‘stiff’ and therefore requires

an even more refined mesh than those employed in the analysis to emulate what is obtained

by the MEM method. On the other hand, the poor convergence showed by the T1P0

element is symptomatic of its well-known instability which does not preclude locking com-

pletely. The overall performance of the three methods considered is presented in Fig. 5.3 for

the vertical displacement and pressure field solutions obtained with the mesh depicted in

Fig. 5.2(b). We observe that the MEM and MINI element solutions deliver smooth pressure

fields, whereas the pressure field for the T1P0 exhibits checkerboard pattern.

5.6.2 Plane Strain Compression

The following example is a standard test to demonstrate the ability of meshfree methods

to withstand very large strains [81,89,93]. It consists of a plane strain analysis of a rubber

block compression. The top and bottom surfaces of the block are assumed perfectly bonded

to rigid plates. The compression is simulated by incrementally applying a downward dis-

placement on the top surface with the bottom surface fixed to deform the model up to a

vertical nominal strain of 35%. Due to the symmetry of the problem, only a quarter of

the model is considered. The model geometry, boundary conditions and background mesh

employed in the analysis are depicted in Fig. 5.4. A pictorial of the analysis results for

the vertical displacement and pressure fields is presented in Fig. 5.5 for the last converged

solution of the MEM and finite element methods. The poor performance of the T1P0 el-

ement is evident in Figs. 5.5(a) and 5.5(b) since an unreasonable deformation is predicted

with checkerboarding pressure modes. On the other hand, the MINI element solutions pre-

sented in Figs. 5.5(c) and 5.5(d) reveal that the MINI element is unable to achieve the

total compression imposed in the test even though checkerboard pressure pattern is not

observed. Finally, the MEM solutions illustrated in Figs. 5.5(e) and 5.5(f) seem reasonable

with respect to the solutions reported in other meshfree studies [81, 89, 93] for the total

compression imposed in the analysis. It is also evident that the MEM method does not

present checkerboarding pressure modes and delivers smooth pressure field.
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Figure 5.2: Nonlinear Cook’s membrane. (a) Model geometry and boundary conditions;
(b) Sample mesh; and (c) Vertical tip displacement convergence.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Nonlinear Cook’s membrane. Vertical displacement and hydrostatic pressure
field solutions for the mesh shown in Fig. 5.2(b). (a),(d)T3P0 element; (b),(e) MINI ele-
ment; and (c),(f) MEM method.
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Figure 5.4: Plane strain compression. Model geometry, boundary conditions and back-
ground mesh.

We also study up to how much deformation the MEM method is able to withstand. In

this endeavor, a very particular behavior was found in the upper right corner of the domain

when undergoing extreme large deformations. This behavior is shown in Fig. 5.6 for a

vertical nominal strain of 70%. It consists of a flipping mechanism of the elements close to

that corner. However, this is not surprising for a method like the one presented here for

a couple of reasons. Firstly, the computation of meshfree basis functions derivatives does

not rely on the parametric mapping that is needed in finite element methods. Therefore,

issues such as negative volumes and singular Jacobi matrix, which breakdown finite element

computations, do not arise in meshfree methods. Secondly, in the proposed method for

near-incompressible analysis, the determinant of the deformation gradient tensor, namely

J , is not relevant in the near-incompressible limit but the average J̄ , which is computed

from the elements surrounding a node. Therefore, even though J < 0 may occur for a

particular element, the average J̄ can still be a positive scalar allowing the computation

anyhow. We think that this behavior should be viewed as a virtue of meshfree methods

rather than a weakness, but we realize that the underlying phenomena which motivate this
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Plane strain compression. Vertical displacement and hydrostatic pressure field
solutions. (a),(b) T3P0 element; (c),(d) MINI element; and (e),(f) MEM method.
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(a)

(b)

Figure 5.6: Plane strain compression. Extreme large deformations achieved by the MEM
method. (a) Vertical displacement field and background integration mesh in the deformed
configuration; and (b) nodes in the deformed configuration.

flipping behavior must be studied in detail. Among the underlying phenomena that might

shed some light on the flipping of elements are physical instabilities, numerical instabilities

and integration errors of the Gauss scheme employed.

5.6.3 Frictionless Indentation of a Rubber Block

The last example considered is a frictionless indentation of a rubber block of rectangu-

lar cross section, which is assumed to be in plain strain condition. The bottom and

lateral surfaces are fixed in their normal directions, whereas a rectangular frictionless

rigid indenter pushes inward a portion of the top surface. The indentation is simulated

by incrementally applying a downward displacement on the top surface to deform the

block up to a vertical nominal strain of 35%. A test of this type has been employed to

evaluate near-incompressible formulations under highly constrained compression (e.g., see

Refs. [12, 64, 96, 180, 181]). In addition, we wanted to evaluate the proposed method for
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Figure 5.7: Frictionless indentation of a rubber block. (a) Model geometry and boundary
conditions; and (b) Unstructured mesh employed.

near-incompressible hyperelasticity when an unstructured background mesh is employed

for numerical integration of the weak form. Although a good tessellation can be easily

obtained with two-dimensional mesh generators, we intentionally constructed a zone with

poorly-shaped elements to compare the solution of the meshfree method with those of its

finite element counterpart. The model geometry, boundary conditions and the unstructured

background mesh employed in the analysis are shown in Fig. 5.7. The vertical displacement

and pressure fields resulted from the analysis are illustrated in Fig. 5.8 for the last converged

solution of the MEM and finite elements methods. Once again, we observe that the T1P0

predicts an unreasonable deformed shape with checkerboarding pressure modes, whereas

the MINI element withstands only up to a vertical nominal strain of around 24%. We also

observe that in the MINI element solution an unreasonable deformation state results near to

the zone where poorly-shaped elements reside, which clearly is a consequence of the acute
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Frictionless indentation of a rubber block. Vertical displacement and pressure
solutions for the last stable increment. (a),(b) T3P0 element; (c),(d) MINI element; and
(e),(f) MEM method.

angles in the element. On the other hand, we observe that the solution delivered by the

MEM method does not present that unreasonable deformation state. The superiority of

the MEM method is attested by its ability to withstand the total indentation applied by

the indenter with a smoother pressure field.
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Chapter 6

Summary and Conclusions

In this dissertation, a Galerkin meshfree method based on maximum-entropy approxi-

mants was developed and its applications to elastostatics was demonstrated. The standard

displacement-based Galerkin formulation was used to model compressible linear elastic

solids, whereas the classical u-p mixed formulation for near-incompressible linear elastic

media was adopted to formulate a volume-averaged nodal technique, in which the pressure

variable is eliminated from the analysis. This resulted in a single-field (displacement or ve-

locity) formulation that is devoid of volumetric locking. Since numerical integration errors

are prevalent in meshfree methods, a modified Gauss integration technique was proposed to

accurately compute the weak form integrals of the linear elastostatics problem. On consid-

ering ideas from assumed strain methods and nodal integration techniques, a redefinition

of the small strain tensor was devised, which after discretization with maximum-entropy

basis functions resulted in a correction to the stiffness matrix that alleviated integration

errors in meshfree methods and proved to pass the patch test to machine accuracy.

Various standard benchmark problems were studied to assess the accuracy, perfor-

mance and versatility of the maximum-entropy meshfree method for compressible and

near-incompressible linear elastic media. Patch tests on structured and unstructured back-

ground meshes were considered to affirm its satisfaction to within machine precision for both
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compressible and near-incompressible linear elasticity. A cantilever beam subjected to a

parabolic end load was then considered. The maximum-entropy and MINI element displace-

ment field solutions were compared to the exact (analytical) solution for both compressible

and near-incompressible behavior. A convergence study for the vertical tip displacement

was conducted. The maximum-entropy meshfree method converged faster with mesh re-

finements, whereas the MINI element solution behaved somewhat ‘stiff’. In the maximum-

entropy computations, standard Gauss integration sufficed for compressible elasticity with

low-order quadrature, whereas the proposed modified Gauss integration provided a more

efficient scheme with less Gauss points evaluations in the near-incompressible case. Op-

timal rates of convergence in the L2- and energy-norm of the error were found for both

the maximum-entropy meshfree method and the MINI element, but the former was more

accurate. The MINI element results also showed some pressure oscillations, whereas the

maximum-entropy meshfree method delivered smooth pressure field. A further example

consisted in a combined bending and shear problem (Cook’s membrane). A convergence

test for the vertical tip displacement upon mesh refinement was conducted for both the

maximum-entropy method and the MINI element. Superior convergence was found in the

maximum-entropy meshfree method.

We then moved to three-dimensional problems with the aim of testing unstructured

tetrahedral background meshes. Two examples were considered. A three-dimensional can-

tilever beam subjected to an end load and a three-dimensional rigid flat punch test. In the

first problem, the maximum-entropy and MINI element vertical tip displacement solutions

were studied. The maximum-entropy method delivered almost the exact (analytical) solu-

tion, whereas the MINI element solution underestimated it. Due to the complexity of basis

functions supports on unstructured tetrahedral meshes, standard Gauss integration proved

to be prohibitive for practical use—eight-order accurate scheme was insufficient, whereas

the proposed modified Gauss integration scheme only required a second-order accurate

scheme. In the three-dimensional rigid flat punch test, smoother solutions were found in

the maximum-entropy meshfree method for both displacement and pressure fields.



95

In further examples, the volume-averaged formulation was tested in two Stokes flow

problems: a leaky-lid driven cavity flow and the Poiseuille flow. Good agreement between

maximum-entropy and MINI element velocity field solutions were found in both problems.

However, in the former the pressure field predicted by the maximum-entropy meshfree

method was smooth, whereas pressure oscillations were found in the MINI element solution.

Finally, a series of numerical inf-sup tests were performed to assess the stability of the

maximum-entropy meshfree method in various Stokes flow problems. With nodal refine-

ment, the numerical inf-sup value remained a constant that was bounded away from zero;

furthermore, there were no spurious pressure modes. These results affirmed the stability of

the maximum-entropy meshfree method.

The maximum-entropy meshfree method was extended to treat near-incompressible elas-

tic solids at finite strains in two dimensions. The nonlinear version of the volume-averaged

nodal technique was formulated and used to average the dilatational constraint at a node

from the displacement field of surrounding nodes. The methodology resulted in a single-field

formulation (displacement-based) which is devoid of volumetric locking and is amenable for

meshfree methods due to its node-wise character. It also exhibits commonalities with the

F -bar methodologies that were recently developed for finite elements [96] and isogeomet-

ric analysis [12], and therefore it can be regarded as an F -bar methodology for meshfree

methods. In devising this meshfree formulation, we were driven by the idea of improving

the poor performance of low-order meshes in simulating near-incompressible hyperelastic

problems. The meshfree method was developed for background meshes composed of three-

node triangles, and its extension to four-node tetrahedra for three-dimensional simulations

is straightforward. However, since fifth-order accurate standard Gauss integration scheme

was required in two-dimensions, a more efficient integration scheme should be designed for

the method to be robust in three-dimensional nonlinear computations.

Two different finite elements that rely on three-node triangular meshes were consid-

ered as a basis for comparison with the maximum-entropy meshfree method. The linear

displacement/constant pressure triangle (T1P0) and the MINI element were considered.
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A nonlinear Cook’s membrane was considered to assess the meshfree methodology under

combined bending and shear. A convergence study of the vertical tip displacement was per-

formed. The maximum-entropy convergence was superior to the finite elements convergence

with mesh refinements. Both the maximum-entropy meshfree method and the MINI element

presented smooth pressure fields, whereas the pressure field delivered by the T1P0 showed

checkerboard pattern, as expected. A plane strain compression of a rubber block was next

considered to study the performance of the meshfree method under extreme large deforma-

tions induced by compression. The T1P0 element performed poorly with checkerboarding

pressure modes, whereas the MINI element could not withstand the complete compression

imposed in the analysis, although it did not present checkerboard pressure pattern. On the

other hand, the maximum-entropy solution confirmed its superior performance by achiev-

ing the total compression imposed in the analysis with a smoother pressure field. The last

example consisted in a frictionless indentation of a rubber block. The maximum-entropy

meshfree method along with the finite elements were tested on an unstructured three-node

triangular mesh with badly-shaped elements. As expected, the T1P0 element predicted

an unreasonable displacement field with checkerboard pressure pattern, whereas the MINI

element was unable to withstand the total displacement imposed by the indenter and pre-

sented a rare deformation near to the badly-shaped elements location. The superiority of

the maximum-entropy meshfree method was verified by its ability to deform up to the total

compression induced by the indenter with a smoother pressure field.

Two contributions have emanated from this dissertation. The first original contribution

is the development of a novel technique for modeling near-incompressible media with low-

order meshes (triangles and tetrahedra) in an effective manner due to the mesh distortion

insensitivity property of meshfree basis functions. A formulation that renders low-order

meshes viable for near-incompressible analysis is especially beneficial in two situations.

Firstly, in complex geometries, where low-order triangular or tetrahedral meshes might be

the only alternative for discretization, and secondly, in large deformation computations,

where mesh distortions can invalidate the analysis if standard finite elements are used on
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such meshes. The second original contribution is the development of an efficient and accu-

rate numerical integration technique for meshfree methods that use cell-based integration.

Numerical integration in meshfree methods is well-known to be prone to errors with patch

test not being met to within machine precision. Many attempts have been made to improve

the accuracy of the numerical integration in meshfree methods. However, these have re-

sulted in expensive numerical integration schemes. The modified Gauss integration scheme

proposed in this dissertation has proved to be a simple and inexpensive alternative for

accurate integrations that also provides patch test satisfaction to machine accuracy. In

particular, it was shown to be very efficient in three-dimensional settings on unstructured

tetrahedral background meshes. The generality of the proposed modified Gauss integration

technique renders it applicable not only for any Galerkin-based meshfree method such as

the element-free Galerkin method and the natural element method, but also for polygo-

nal finite element interpolants. The extension of the nonlinear meshfree methodology to

three-dimensional near-incompressible solids at finite strains along with the development of

an accurate numerical integration scheme for meshfree methods in nonlinear analysis will

demonstrate the potential of the maximum-entropy meshfree method as a numerical tool.

Developments along these lines are suggested for future investigations.



Appendix A

Directional Derivative and

Linearizations

A.1 Directional Derivative

Consider a real-valued function f(z). The directional derivative of f(z) in the direction n

is defined as

Df(z)[n] ≡ ∂f(z+ ǫn)

∂ǫ

∣

∣

∣

∣

ǫ=0

, (A.1)

which represents the gradient of f(z) in the direction n and gives a linear (or first-order)

approximation to the increment in f(z) due to the increment n. The directional derivative is

used in the derivation of the weak form (see Chapter 5, Section 5.3) and in its linearization

(see Chapter 5, Section 5.5). The use of the directional derivative in the linearization of

nonlinear equations is described in the next section.

A.2 Linearization of Nonlinear Equations

Consider a real-valued nonlinear system of equations r(z) = 0, which has a solution estimate

zk at iteration k. A new value zk+1 = zk +w is obtained in terms of an increment w by
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establishing the linear approximation

r(zk+1) ≈ r(zk) + Dr(zk)[w] = 0, (A.2)

where D(·)[w] is the directional derivative in the direction w. The directional derivative on

r(zk) yields

Dr(zk)[w] = Kw, (A.3)

where the tangent matrix K is

K(zk) = [Kij(zk)], Kij(zk) =
∂ri
∂zj

∣

∣

∣

∣

zk

. (A.4)

On substituting (A.3) into (A.2), a set of linear equations in w is obtained to be solved in

a Newton-Raphson iteration as

K(zk)w = −r(zk), zk+1 = zk +w. (A.5)

A.3 Linearization of the Weak Form

On considering a reference map χ (see Chapter 5, Section 5.1.1) and a potential energy

functional Π(χ) = 0, the weak form is given by the directional derivative of Π(χ) in the

arbitrary direction v as

DΠ(χ)[v] ≡ ∂Π(χ+ ǫv)

∂ǫ

∣

∣

∣

∣

ǫ=0

= 0, (A.6)

which yields a set of nonlinear equations to be linearized using the procedure presented in

Appendix A.2. To this end, the directional derivative of (A.6) is taken in the direction ∆u1

1 We use the notation ∆u instead of the simpler u to indicate that in an incremental procedure like the
Newton’s method, the displacements are obtained by increments ∆u that sum to u in the final solution.
The increment ∆u is the incremental solution at a given iteration.
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and consider (A.2) to arrive at the linearized weak form as

DΠ(χ)[v] + D2Π(χ)[v,∆u] = 0, (A.7)

where D2Π(χ)[v,∆u] ≡ D {DΠ(χ)[v]} [∆u]. A common practice is to set v = δu, where

δu is the so-called vector of virtual displacements. When virtual displacements are em-

ployed, (A.6) and (A.7) are known as virtual work and linearized virtual work, respectively.

As an example of the above procedure, consider the weak form in the initial (reference)

configuration in terms of the second Piola-Kirchhoff stress and the Green-Lagrange strain

tensor given as

DΠ(χ)[v] =

∫

Ω
S(χ):DE(χ)[v] dΩ −

∫

Ω
f0 · v dΩ−

∫

Γt

t0 · v dΓ = 0, (A.8)

where the vectors of external body forces f0 and external surface forces t0 are assumed

independent of the motion. The linearization of (A.8) in the direction ∆u is

∫

Ω
S(χ):DE(χ)[v] dΩ −

∫

Ω
f0 · v dΩ−

∫

Γt

t0 · v dΓ

+

∫

Ω
DE(χ)[v]:DS(χ)[∆u] dΩ +

∫

Ω
S(χ):D2E(χ)[v,∆u] dΩ = 0, (A.9)

where

DS(χ)[∆u] =
∂S(χ)

∂E(χ)
:DE(χ)[∆u] = C : DE(χ)[∆u], (A.10)

with C as the material elasticity tensor. In (A.9), D2E(χ)[v,∆u] is developed to give (for

instance, see Ref. [182])

D2E(χ)[v,∆u] =
1

2
[(∇0v)T∇0∆u+ (∇0∆u)T∇0v]. (A.11)



Appendix B

Derivations for the Meshfree F-bar

Methodology

B.1 Directional Derivative of the Modified Green-Lagrange

Strain Tensor

The detailed derivation of (5.36) is developed. Before proceeding, some expressions are first

defined. The following equations are obtained from the standard literature (for instance,

see Ref. [182]):

DF(χ)[v] = ∇
0v, (B.1)

DJ(χ)[v] = Jtr
(

∇
0vF−1

)

. (B.2)

We now consider (B.2) and proceed to take the directional derivative of (5.26) to obtain

DJa(χ)[v] =

∫

Ω NaJtr
(

∇
0vF−1

)

dΩ
∫

ΩNa dΩ
. (B.3)
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On considering the operator given in (5.35a) in conjunction with (B.3), the directional

derivative of (5.27) yields

DJ̄(χ)[v] = θ
(

Jtr
(

∇
0vF−1

))

. (B.4)

Recalling that α =
(

J̄/J
)1/3

, its directional derivative is developed with the aid of (B.4)

and the operators defined in (5.35) as follows:

Dα(χ)[v] =
1

3α2

[

1

J
DJ̄(χ)[v] − J̄

J2
DJ(χ)[v]

]

=
1

3α2J

[

θ
(

Jtr
(

∇
0vF−1

))

− J̄tr
(

∇
0vF−1

)]

=
1

3
αϑ
(

Jtr
(

∇
0vF−1

))

. (B.5)

We are now equipped to develop the directional derivative of the modified Green-Lagrange

strain tensor. We continue by taking the directional derivative of (5.31):

DĒ(χ)[v] =
1

2

[

(

DF̄(χ)[v]
)T

F̄+ F̄TDF̄(χ)[v]
]

. (B.6)

We now make use of (5.28) in conjunction with (B.1) and (B.5) to write

DF̄(χ)[v] = Dα(χ)[v]F + αDF(χ)[v]

=
1

3
αϑ
(

Jtr
(

∇
0vF−1

))

F+ α∇0v. (B.7)

On substituting (B.7) into (B.6) leads to the final expression for the modified Green-

Lagrange strain tensor:

DĒ(χ)[v] =
1

3
ϑ
(

Jtr
(

∇
0vF−1

))

F̄TF̄+ α(F̄T
∇

0v)sym. (B.8)
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B.2 Second Variation of the Modified Energy Functional

The detailed derivation of (5.39) is presented. The directional derivative of the modified

second Piola-Kirchhoff stress tensor is first derived. In this process, we use (5.40) in con-

junction with (B.8) and proceed as follows:

DS̄(χ)[∆u] =
∂S(E)

∂E

(

Ē(χ)
)

: DĒ(χ)[∆u]

= C̄ : DĒ(χ)[∆u]

=
1

3
ϑ
(

Jtr
(

∇
0∆uF−1

))

C̄ :
(

F̄TF̄
)

+ αC̄ : (F̄T
∇

0∆u)sym. (B.9)

Next, the definition of the directional derivative of the inverse of a tensor [182] is used to

write

DF−1(χ)[∆u] = −F−1
∇

0∆uF−1, (B.10)

which is employed along with (B.2) in the derivation of the following directional derivative:

D
(

Jtr
(

∇
0vF−1

))

[∆u] = DJ(χ)[∆u]tr
(

∇
0vF−1

)

+ Jtr
(

∇
0vDF−1(χ)[∆u]

)

= J
[

tr
(

∇
0vF−1

)

tr
(

∇
0∆uF−1

)

− tr
(

∇
0vF−1

∇
0∆uF−1

)]

.

(B.11)

The next expressions that need to be developed are the directional derivatives of the opera-

tors that were defined in (5.35). With the aid of (B.11) the following expression is obtained

for the operator (5.35a):

Dθ
(

Jtr
(

∇
0vF−1

))

[∆u] = θ
(

Jtr
(

∇
0vF−1

)

tr
(

∇
0∆uF−1

))

− θ
(

Jtr
(

∇
0vF−1

∇
0∆uF−1

))

. (B.12)
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Now, we apply the directional derivative on the operator (5.35b) and make use of (B.12)

along with (B.2), (B.4) and (B.11) to arrive at the following expression:

Dϑ
(

Jtr
(

∇
0vF−1

))

[∆u] = − 1

J̄2
θ
(

Jtr(∇0vF−1)
)

θ
(

Jtr(∇0∆uF−1)
)

+
1

J̄
θ
(

Jtr(∇0vF−1)tr(∇0∆uF−1)
)

− 1

J̄
θ
(

Jtr(∇0vF−1
∇

0∆uF−1)
)

+ tr(∇0vF−1
∇

0∆uF−1). (B.13)

Next, observing that D
(

F̄TF̄
)

[v] = 2DĒ[v] and employing (B.13), yields the following

directional derivative:

D
(

ϑ
(

Jtr
(

∇
0vF−1

))

F̄TF̄
)

[∆u] = − 1

J̄2
θ
(

Jtr(∇0vF−1)
)

θ
(

Jtr(∇0∆uF−1)
)

F̄TF̄

+
1

J̄
θ
(

Jtr(∇0vF−1)tr(∇0∆uF−1)
)

F̄TF̄

− 1

J̄
θ
(

Jtr(∇0vF−1
∇

0∆uF−1)
)

F̄TF̄

+ tr(∇0vF−1
∇

0∆uF−1)F̄TF̄

+
2

3
ϑ
(

Jtr(∇0vF−1)
)

ϑ
(

Jtr(∇0∆uF−1)
)

F̄TF̄

+ 2αϑ
(

Jtr(∇0vF−1)
)

(F̄T
∇

0∆u)sym. (B.14)

One more directional derivative is needed to complete the derivation. To this end, (B.5) and (B.7)

are considered in the derivation of

D
(

α(F̄T
∇

0v)sym
)

[∆u] = +
1

3α2J
(F̄T

∇
0v)symθ

(

Jtr(∇0∆uF−1)
)

− 1

3
α(F̄T

∇
0v)symtr(∇

0∆uF−1)

+
1

3
α(F̄T

∇
0v)symϑ

(

Jtr(∇0∆uF−1)
)

+ α2
(

(∇0∆u)T∇0v
)

sym
. (B.15)
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The last step is to take the second variation of (5.30), or equivalently, the directional

derivative of (5.37). The derivation is split into a material and a geometric part and

motion-independent external forces are assumed. This leads to

(

D2Π̄(χ)[v,∆u]
)

mat
= +

1

3

∫

Ω
ϑ
(

Jtr(∇0vF−1)
)

(F̄TF̄) : DS̄(χ)[∆u] dΩ

+

∫

Ω
α(F̄T

∇
0v)sym : DS̄(χ)[∆u] dΩ, (B.16)

(

D2Π̄(χ)[v,∆u]
)

geo
= +

1

3

∫

Ω
S̄ : D

(

ϑ
(

Jtr
(

∇
0vF−1

))

F̄TF̄
)

[∆u]

+

∫

Ω
S̄ : D

(

α(F̄T
∇

0v)sym
)

[∆u] dΩ. (B.17)

Finally, on substituting (B.9) into (B.16) yields the material part of the second variation

that was presented in (5.39b):

(

D2Π̄(χ)[v,∆u]
)

mat
= +

1

9

∫

Ω
ϑ
(

Jtr(∇0vF−1)
)

ϑ
(

Jtr(∇0∆uF−1)
)

(F̄TF̄) : C̄ : (F̄TF̄) dΩ

+
1

3

∫

Ω
αϑ
(

Jtr(∇0vF−1)
)

(F̄TF̄) : C̄ : (F̄T
∇

0∆u)sym dΩ

+
1

3

∫

Ω
α(F̄T

∇
0v)sym : C̄ : (F̄TF̄)ϑ

(

Jtr(∇0∆uF−1)
)

dΩ

+

∫

Ω
α2(F̄T

∇
0v)sym : C̄ : (F̄T

∇
0∆u)sym dΩ, (B.18)
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and on substituting (B.14) and (B.15) into (B.17) leads to the corresponding geometric

part that was presented in (5.39c):

(

D2Π̄(χ)[v,∆u]
)

geo
= − 1

3

∫

Ω

1

J̄2
θ
(

Jtr(∇0vF−1)
)

θ
(

Jtr(∇0∆uF−1)
)

S̄ : (F̄TF̄) dΩ

+
1

3

∫

Ω

1

J̄
θ
(

Jtr(∇0vF−1)tr(∇0∆uF−1)
)

S̄ : (F̄TF̄) dΩ

− 1

3

∫

Ω

1

J̄
θ
(

Jtr(∇0vF−1
∇

0∆uF−1)
)

S̄ : (F̄TF̄) dΩ

+
1

3

∫

Ω
tr(∇0vF−1

∇
0∆uF−1)S̄ : (F̄TF̄) dΩ

+
2

9

∫

Ω
ϑ
(

Jtr(∇0vF−1)
)

ϑ
(

Jtr(∇0∆uF−1)
)

S̄ : (F̄TF̄) dΩ

+
2

3

∫

Ω
αϑ
(

Jtr(∇0vF−1)
)

S̄ : (F̄T
∇

0∆u)sym dΩ

+
2

3

∫

Ω
α(F̄T

∇
0v)sym : S̄ϑ

(

Jtr(∇0∆uF−1)
)

dΩ

+

∫

Ω
α2S̄ : [(∇0v)T∇0∆u]sym dΩ. (B.19)



Appendix C

Newton-Based Methods for the

Solution of Nonlinear Systems

C.1 Introduction

The methodology to solve nonlinear system of equations by means of Newton’s method was

summarized in Appendix A.2. Here, different approaches are considered to implement the

Newton’s formula (A.5). The Newton’s formula corresponding to the problems considered

in this dissertation is given in (5.41). For convenience, it is rewritten here again as follows:

t+∆tK(i−1)∆u(i) = t+∆tF− t+∆tT(i−1), (C.1a)

K = Kmat +Kgeo, (C.1b)

where t + ∆t is to indicate that the material and geometric tangent stiffness matrices,

Kmat and Kgeo, respectively, and the external and internal nodal force vectors, F and

T, respectively, are computed incrementally by application of boundary conditions (forces

and displacements) in increments. An increment defines a step. On the other hand, i

stands for the equilibrium iterations that are involved within a step. An initial tangent
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stiffness matrix and an initial residual force vector are usually computed in the reference

configuration (u = 0) to start the iterations. The tangent stiffness matrix and residual

force vector are updated (reformed) as iterations go on. The reformation of the residual

force vector is carried out at every iteration with the most updated solution. However,

the reformation of the tangent stiffness matrix can take place after a selected number of

iterations or steps. Moreover, the tangent stiffness matrix can be approximated, again at

every iteration or after a selected number of iterations or steps. These options to compute

the tangent stiffness matrix lead to different procedures. Some of them are summarized in

the following sections of this appendix. Once the iterations are started, they are continued

until appropriate convergence criteria are satisfied. Some of these criteria are discussed

later in this appendix. The solution is then computed as

u(i+1) = u(i) + α∆u(i), (C.2)

where 0 < α ≤ 1 is a relaxation parameter that attempts to find the length of the Newton

direction ∆u that gives a better solution update. This slows convergence but increases the

possibility to converge to a solution, especially when convergence is difficult to achieve with

α = 1. To find α, so-called line search techniques are employed. In this dissertation, the

Illinois algorithm [183] has been employed as the line search technique.

C.2 Newton-Raphson Method

In the Newton-Raphson method (also known as full Newton or Newton’s method), the ma-

terial and geometric tangent stiffness matrices are reformed (assembled) at every iteration.

The Newton’s formula for the Newton-Raphson method reads exactly as in (C.1). Although

reformation at every iteration can be an expensive task, the Newton-Raphson method is

attractive since it provides quadratic convergence to the solution if the initial guess (usually

chosen as u = 0) is sufficiently close to the solution.
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C.3 Modified Newton-Raphson Method

A more inexpensive alternative to the Newton-Raphson method is the modified Newton-

Raphson method. The main idea consists in reforming the tangent stiffness matrix only

few times during the analysis. For instance, the tangent stiffness matrix can be computed

one time in the initial (reference) configuration (u = 0), and be employed as is for the rest

of the analysis. The foregoing method is referred to as the initial stress method [16] and its

Newton’s formula becomes

0Kmat∆u(i) = t+∆tF− t+∆tT(i−1), (C.3)

where 0Kmat stands for the material tangent stiffness matrix evaluated in the initial (refer-

ence) configuration1. However, the convergence of this method is slowed, and therefore it

requires greater number of iterations within each step to achieve convergence.

In a more general view, the Newton’s formula for the modified Newton-Raphson method

is given as

τK(i−1) = t+∆tF− t+∆tT(i−1), (C.4)

where τ corresponds to one of the accepted equilibrium configurations at time 0, ∆t, 2∆t,

. . . , or t. The modified Newton-Raphson method involves less tangent stiffness reformations

than in the Newton-Raphson method. However, its convergence is slowed. The number

of reformations depends on the degree of nonlinearity in the system response. The more

nonlinear the response, the more often the reformations should be performed.

C.4 Broyden’s Method

Instead of reforming the tangent stiffness matrix, an approximation to it can be employed.

The approximation is termed secant matrix because in one dimension it reduces to a secant

1Notice that the geometric tangent stiffness matrix is a null matrix in the initial configuration, and
therefore it does not appear in (C.3).
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method. Procedures that attempt to approximate the tangent stiffness matrix are grouped

within so-called quasi-Newton methods. Broyden’s method [184] is one alternative that

belongs to quasi-Newton methods. Its Newton’s formula is (C.1) with K being a secant

matrix rather than a tangent matrix. The secant matrix is updated every time on using the

last known solution. However, the update is inexpensive since it only involves an assembly

procedure on an initial tangent stiffness matrix, which is usually chosen as 0Kmat. The

secant matrices are then computed using a recursive formula on the initial tangent stiffness

matrix. The Broyden’s update is computed as follows:

R(i−1) = −
(

t+∆tT(i−1) − t+∆tF
)

, (C.5)

∆u(i−1) = u(i) − u(i−1), (C.6)

∆R(i−1) = R(i) −R(i−1), (C.7)

K(i) = K(i−1) +

(

∆R(i−1) −K(i−1) ·∆u(i−1)
)

⊗∆u(i−1)

∆u(i−1) ·∆u(i−1)
. (C.8)

C.5 BFGS Method

The BFGS method [178] is another alternative that belongs to quasi-Newton methods. It

operates similarly to Broyden’s method. The only distinction is that the update procedure

is computed as follows:

K(i) = K(i−1) +
∆R(i−1) ⊗∆R(i−1)

∆R(i−1) ·∆u(i−1)
−
(

K(i−1) ·∆u(i−1)
)

⊗
(

K(i−1) ·∆u(i−1)
)

∆u(i−1) ·K(i−1) ·∆u(i−1)
. (C.9)

C.6 Convergence Criteria

Typical convergence criteria are based on displacement or residual norms. A displacement

criterion is the following:

eD =

√

∆u(i) ·∆u(i)

u(i+1) · u(i+1)
, (C.10)
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whereas a residual criterion is

eR =
1

n

√

R(i) ·R(i), (C.11)

where n is the total number of nodes in the domain of analysis. The equilibrium itera-

tions are terminated when preset tolerances are satisfied. A common technique is to check

convergence on both norms as eD < Dtol and eR < Rtol, where Dtol and Rtol are the

displacement and residual tolerances, respectively. However, most of the times the former

suffices.

C.7 Practical Implementation of Nonlinear Solvers

Numerical tests reveal that a combination of the nonlinear solvers described above performs

better than any of the solvers by themselves. Most of the examples in this dissertation

have been solved using a nonlinear solver in which the modified Newton-Raphson method

is combined with the Broyden’s or BFGS method. The second combination performed

better in most of the cases. Additionally, the geometric part of the tangent or secant

stiffness matrix is usually disregarded. A typical sequence starts at the beginning of a step

with a reformation of the tangent stiffness matrix with the last known solution. In the

rest of the iterations of that step, and in all the iterations of the next 5 or 10 steps, only

BFGS updates are employed. That sequence is repeated during the entire analysis. If at

some point the solution diverges before the preset number of BFGS steps is completed, a

reduction in that number is considered until convergence is restored. This scheme usually

requires many more steps and iterations than the Newton-Raphson method. However, the

inexpensive computations that are involved in the Broyden’s or BFGS updates vastly reduce

the analysis time, which makes the scheme robust for nonlinear analysis.
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