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ABSTRACT

A Galerkin-based maximum-entropy meshfree method for linear and nonlinear elas-
tic media is developed. The standard displacement-based Galerkin formulation is used to
model compressible linear elastic solids, whereas the classical u-p mixed formulation for
near-incompressible linear elastic media is adopted to formulate a volume-averaged nodal
technique in which the pressure variable is eliminated from the analysis. This results in
a single-field formulation that is devoid of volumetric locking. A modified Gauss integra-
tion technique that alleviates integration errors in meshfree methods with guaranteed patch
test satisfaction to machine precision is devised. The performance of the maximum-entropy
meshfree method is assessed for problems in compressible and near-incompressible linear
elastic media using three-node triangular and four-node tetrahedral background meshes.
Both structured and unstructured meshes are considered to assess the accuracy, perfor-
mance and stability of the maximum-entropy meshfree method by means of various nu-
merical experiments, which include patch tests, bending dominated problem, combined
bending-shear problem, rigid indentation, Stokes flow and numerical stability tests.

An extension of the volume-averaged nodal technique is proposed for the analysis of
near-incompressible nonlinear elastic solids in two dimensions. In the nonlinear version, the
volume change ratio of the dilatational constraint, namely .J, is volume-averaged around
nodes leading to a locking-free displacement-based formulation. The excellent performance
of the maximum-entropy meshfree method for problems in near-incompressible nonlinear
elastic solids is demonstrated via three standard two-dimensional numerical experiments—
a combined bending-shear problem, a plane strain compression of a rubber block and a
frictionless indentation problem. Three-node structured and unstructured triangular back-

ground meshes are employed and the results are compared to two finite element methods
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that use such meshes, namely, the linear displacement/constant pressure triangle and the
linear displacement /linear pressure triangle enriched with a displacement bubble node (MINI
element). The two-dimensional nonlinear simulations reveal that the maximum-entropy
meshfree method effectively improves the poor performance of linear triangular meshes in

the analysis of near-incompressible solids at finite strains.
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Chapter 1

Introduction

1.1 Background and Motivations

In the Finite Element Method (FEM), the numerical approximation is locally built by
means of shape functions that are defined over non-overlapping subdivisions (elements)
that divide a domain of interest. These subdivisions are connected together by a topolog-
ical map termed mesh. The foregoing features of FEM render it to be well-suited to solve
partial differential equations (PDEs): they lead to well-established formulas for the finite el-
ement shape functions, which makes computation of shape functions straightforward; finite
element shape functions are endowed with the so-called Kronecker-delta property, which
allows the imposition of essential boundary conditions in a direct and simple manner; and
very efficient and inexpensive computations are obtained since the final discrete system is
banded and sparse. Despite these striking advantages that arise in many practical applica-
tions, a number of shortcomings that emanate from the need of a mesh are present in the
finite element method. For instance, mesh distortions (especially in large deformation anal-
ysis) breakdown the simulation very early leading to inaccurate solutions; the accuracy of
finite element computations is strongly dependent on the quality of the mesh, which compli-
cates its generation, especially in three-dimensional settings with complex geometries; the

piece-wise continuous character of finite element shape functions induces mesh alignment



1.1. Background and Motivations 2

sensitivity along shear band formations, which makes the numerical solution dependent on
the mesh structure and element edge orientation.

The above-mentioned drawbacks and many others (see for instance, Refs. [IL2]) provide
motivation for the development of alternative numerical procedures to improve the perfor-
mance of simulations that otherwise are intractable with standard finite elements. Meshfree
methods, whose approximations are not built using a mesh, are a promising alternative.
However, meshfree methods are not exempt from drawbacks either. For instance, meshfree
methods are prone to errors in the numerical integration of the weak form. As a means to
alleviate these errors, expensive numerical integration technique is usually needed, which
impacts the overall computational cost. For instance, Gauss integration with higher-order
accurate scheme on a background mesh of finite elements [3,[4] or the use of higher-order
quadrature rules on integration cells aligned with the support of shape functions [5.[6] are
typically adopted. Thus, an in-depth understanding of the numerical integration error in
meshfree methods, ways to control it, and the development of more efficient integration
techniques are necessary.

Standard displacement-based Galerkin formulations exhibit severe stiffening when mod-
eling near-incompressible materials. In elasticity theory, this occurs when the Poisson’s ratio
v approaches 1/2, and is referred to as volumetric locking. In finite elements, some of the
approaches to alleviate locking are: reduced/selective integration [7], B-bar technique [§],
mixed formulations [9], and assumed strain methods [I0]. All of these techniques are in
fact specific instances of mixed formulations. The equivalence between reduced/selective
integration and mixed formulation was demonstrated by Malkus and Hughes [9]. The B-
bar technique and assumed strain methods can be derived from the three-field Hu-Washizu
mixed formulation [II]. A recently developed B-bar technique for NURBS-based isogeo-
metric analysis [I2] is obtained by an L? projection of the dilatational strain onto the lower
order approximation space—typically, the pressure space in a mixed u-p formulation.

An important consideration in employing mixed formulations is the selection of the

approximation spaces since not all choices for them lead to stability. In particular, the
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stability of two-field mixed formulations, such as u-p, is characterized by the Ladyzhenskaya-
Babuska-Brezzi (LBB) inf-sup condition [I3HI5]. However, the analytical proof to establish
LBB-stability is either cumbersome [I6] or impossible to accomplish for distorted finite
elements [I7], which has led to the development of other approaches that by-pass the inf-
sup condition [I8[I9]. Alternatively, a numerical test to verify the inf-sup condition has been
developed [I7], which can be readily performed over any finite element discretization. Finite
element spaces for the displacement and pressure that pass the numerical (Chapelle-Bathe)
inf-sup test are likely to satisfy its analytical counterpart [20]. Displacement-based Galerkin
meshfree methods [452TH27] that are based on moving least squares approximants, natural
neighbor interpolants, or entropy approximants are also prone to locking. Huerta and
Ferndndez-Méndez [28] have conducted an in-depth study of volumetric locking in the
element-free Galerkin (EFG) method. Various remedies have been pursued in the literature
to overcome this deficiency—for instance, Dolbow and Belytschko [29] employed reduced
integration techniques within a mixed formulation of the EFG method; Gonzélez et al. [30]
enriched the displacement approximation in a mixed natural element formulation; Vidal et
al. [31] used pseudo-divergence-free approximants in the EFG to satisfy the incompressibility
condition; and the B-bar and enhanced strain methods were introduced in the EFG by
Recio et al. [32]. In an effort to depart from background cell integration, stabilized nodal
integration [33H37] and stress-point integration schemes [38H40] have also been proposed
to overcome numerical integration errors and facilitate large deformation simulations with
meshfree methods. These approaches attempt to mimic reduced integration procedures,
and have had success in suppressing volumetric locking. Meshfree methods that are based
on mixed formulations are also subjected to stability requirements.

The finite element literature is replete with use of mixed formulations and their sta-
bility analysis for incompressible media problems (for example, see Refs. [411[42]). The
performance and comparison among several stabilization procedures for finite elements is
provided in Ref. [43]. On the other hand, the study of stability in meshfree mixed formu-

lations is rendered difficult due to the rational form of meshfree basis functions and the
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absence of an element structure in the construction of the meshfree approximation. For
instance, Dolbow and Belytschko [29] and De and Bathe [44] emphasize the difficulty in
obtaining an analytical proof to the inf-sup condition and in passing the inf-sup test. A
stable meshfree formulation for incompressible media based on mixed formulations is, in
general, an outstanding issue in meshfree methods. A few instances of meshfree methods
that violate the LBB condition have also been developed within the framework of stabilized
methods [45H47].

In this dissertation, a new formulation for meshfree methods that provides a remedy
for volumetric locking in the incompressible limit is presented. A wolume-averaged nodal
technique is proposed, which allows to solve for nodal pressure variables in the pressure
(divergence-free) constraint of a displacement /pressure formulation. As a result, the nodal
pressure variables are explicitly written in terms of the displacement field. The latter is
used to eliminate the pressure field from the analysis in the equilibrium constraint. A
displacement-based formulation is yielded. Even though the proposed approach shares
common features with the method proposed by Krysl and Zhu [48], there exist notable
differences. We use averages of strain matrices from the elements attached to a particular
node to satisfy the near-incompressibility constraint in the weak form, whereas in Ref. [48]
the averages are used to obtain a strain field that satisfies a kinematic constraint in a
displacement-based weak form. Additionally, Krysl and Zhu [48] formulate their method in
a nodal integration framework for finite elements, whereas in this work numerical integration
is tailored for meshfree basis functions using Gauss quadrature. Finally, the stability of the
proposed method is demonstrated via various inf-sup tests and optimal convergence in
energy- and L%-norms is established.

In traditional finite element methods, mesh topology is one of the key ingredients to-
wards an accurate solution. Ideally, metrics tolerances should be satisfied by the element
topology in order to be valid for a finite element computation [49]. Examples of metrics
are: relative size, element shape and maximum angle [50)51]. A mechanism that precludes

the ability of a mesh to comply with these metrics is called mesh distortion. Mesh dis-
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tortion can arise in several ways. One instance is related to the mesh generation itself in
which slivers, poor shapes or small element sizes appear. Another instance occurs when
the continuum undergoes large deformations. In the latter case, the elements distort too
much resulting in elements with high aspect ratio. Due to the maturity of mesh generators,
the aforementioned metrics are easily accomplished in two dimensions. However, in three
dimensions, especially in complex three-dimensional domains, some of these metrics are
still difficult to achieve and other techniques have to be employed in order to improve the
mesh quality such as mesh smoothing and mesh modification [49]. Due to the latter, it
has been recognized that the easiest way to generate a mesh in complicated geometries is
by means of an unstructured tessellation of triangles or tetrahedra, which has attracted
the attention of many researchers using techniques such as advancing front [52H54] and
Delaunay triangulation [55H58]. Moreover, low-order triangles or tetrahedra are preferred
because their simplicity facilitates remeshing either for mesh refinement or mesh improving
techniques [49].

An added difficulty for finite elements is the modeling of near-incompressible solids
that undergo large deformations. In this setting, finite elements must deal not only with
the volumetric locking issue but also with mesh distortions. Several procedures have been
devised to overcome the former difficulty in large deformation analysis and can be grouped
within mixed methods and displacement-based methods. Most popular techniques in the
former are mixed variational methods of Simo et al. [59], enhanced assumed strain methods
of Simo and Armero [60] and the mixed u-p formulation of Sussman and Bathe [61]. On the
other hand, a series of ‘improved’ displacement-based methods have also been developed.
Noteworthy methods in the latter category are the geometrically nonlinear version of B-bar
projection method [62] and the F-bar method of de Souza Neto et al. [63]. Recently, two
novel methods for near-incompressible analysis at finite strain have emerged. The first one
corresponds to a class of mixed finite elements that establishes a special topology called
diamond element [64] that in conjunction with a suitable choice of finite element spaces for

both displacement and pressure fields guarantees the satisfaction of the inf-sup condition
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with an optimal convergent solution. The second one is a projection method that was
devised for NURBS-based isogeometric analysis [12], which reveals superior accuracy in the
presence of extreme mesh distortions [65].

In the past few years, there has been great interest for using low-order finite element
meshes, particularly in three-dimensional analysis, because they facilitate the mesh gen-
eration of complex domains. However, it is well-known that low-order triangles or tetra-
hedra are not suitable for practical use due to their poor performance in instances such
as bending dominated problems, incompressible media and large deformations. In an
effort to cope with this poor performance of low-order tessellations, various techniques
have been developed especially in large deformation analysis of near-incompressible solids.
These techniques can be classified in four approaches: mixed-enhanced elements [66H6S],
pressure stabilization [69H71], composite pressure fields [72H74], and average nodal pres-
sure/strains [481[75H79]. The last two approaches are broadly based on the idea of reducing
pressure (dilatational) constraints to alleviate volumetric locking.

Contrary to finite elements, meshfree methods are constructed based upon basis func-
tions that possess larger supports and do not rely on a mesh for their definition. This
confers meshfree methods some degree of insensitivity to mesh distortions. However, a
background mesh is still required in Galerkin meshfree methods to perform the numerical
integration of the weak form integrals. The mesh need not comply with the metrics pre-
viously discussed as long as enough neighbors (nodes) are contributing at a given Gauss
point evaluation as to reproduce the consistency of the approximation required by the weak
form—typically linear in a second-order partial differential equation [80]. In principle, any
kind of background mesh can be used. In the meshfree method that is developed herein,
a background mesh of three-node triangles in two dimensions and four-node tetrahedra in
three dimensions, is used.

In nonlinear solid mechanics, a meshfree method that has been utilized to exploit the
mesh insensitivity property of meshfree methods is the well-known reproducing kernel par-

ticle method (RPKM) [23]. Notwithstanding the many applications of the RPKM and
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other meshfree methods in compressible hyperelasticity [81H83], large deformation shear
banding [84] and metal forming analyzes [85,[86], most of the meshfree methods that ad-
dress near-incompressible solids do so by enlarging the support of the basis functions to
mimic under-integration [§7H89]. However, enlarging supports leads to costly computa-
tional times and therefore this kind of technique is in practice avoided [90]. Others have
exploited the use of nodal integration [36L01192], which decreases the numbers of Gauss
points substantially, hence producing a good balance between displacement degrees of free-
dom and number of dilatational constraints as to alleviate locking. On the other hand, few
applications have been documented in meshfree methods using methodologies that were
especially designed for finite elements. For instance, in Refs. [93,94] mixed u-p formula-
tions were employed for near-incompressible hyperelasticity in the natural element method
(NEM) and the meshless local Petrov-Galerkin (MLPG) method, respectively, whereas in
Ref. [95] the F-bar method of de Souza Neto et al. [63] was adapted for the element-free
Galerkin (EFG) method. Among the existing meshfree methodologies, it appears that the
only attempt to exploit the meshfree character to design procedures that can efficiently
deal with the incompressibility constraint is the pressure projection method of Ref. [90].
However, the aforementioned method leads to a non-symmetric tangent stiffness matrix
which is not consistent with hyperelasticity theory—the continuum problem is symmetric
and we would like to preserve that symmetry. Additionally, a non-symmetric tangent stiff-
ness matrix in implicit solvers needs twice the memory and is twice slower than a solver
for symmetric matrices. Therefore, an effective meshfree methodology suitable not only for
large deformations but also for modeling incompressible media is at present an open topic.

In this dissertation, new methodologies for meshfree analysis of two-dimensional non-
linear elastic solids are presented with a two-fold aim: firstly, the development of a method
for large deformations analysis with low-order background (integration) meshes, namely,
three-node triangles; and secondly, the design of a numerical procedure where the meshfree
character is exploited to prevent volumetric locking in the near-incompressible limit. To

these ends, the nonlinear version of the volume-averaged nodal technique is developed. The
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formulation so devised leads to a displacement-based method that exhibits some common-
alities with the F-bar-Patch method of Ref. [96] and the isogeometric F-bar projection
method of Ref. [12], and as such, it can be regarded as an F-bar methodology for meshfree
methods.

Traditionally, numerical integration of the weak form in meshfree methods is carried out
using background cells—triangular or quadrilateral elements are typically adopted in two
dimensions [22]. Meshfree basis functions are non-polynomial and in addition the support of
the basis functions no longer coincides with the union of the background cells that are used
in the numerical integration. This leads to inaccuracies in the numerical integration of weak
form integrals, and the patch test is not passed to machine precision. In the EFG method,
Belytschko et al. [22] used higher-order Gauss quadrature in each background cell, and in
a subsequent study by Dolbow and Belytschko [3], integration cells that were aligned with
the support of the nodal basis functions were used. Griebel and Schweitzer [97] developed
a partition of unity meshfree method by formulating a hierarchical algorithm to construct
a nodal cover by partitioning the domain into overlapping hyperrectangular patches using
d-dimensional trees. Due to the overlapping nodal patches, a decomposition of the patches
into disjoint cells was performed, and these cells were used as the integration domains. A
sparse grid quadrature rule based on univariate Gauss-Patterson rules was employed [98].
As a departure from covers that are rectangular, Riker and Holzer [99] recently proposed
a partition-of-unity method in which the nodal cover is a combination of simplexes and
polygons.

Atluri et al. [I00] proposed a methodology to integrate the weak form in the meshless
local Petrov-Galerkin method without the need for background cells by using the support
of the basis functions as the domain of integration. This approach was adopted and im-
proved upon in the work of De and Bathe [6]. Similar ideas have also been pursued in
Refs. [T0THI04]. With the aim of using anisotropic weight functions with reduced support
sizes, Balachandran et al. [I05] developed a methodology that automatically confines the

basis functions to natural neighbor polygonal regions by means of the Schwarz-Christoffel
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mapping. The resulting basis functions are used within a MLS-based meshfree method.
Liu and Tu [I06] developed an adaptive procedure within individual background cells for
meshfree methods. One of the first theoretical studies on the influence of numerical quadra-
ture errors in meshfree methods was recently put forth by Babuska et al. [I07]. Schembri
et al. [I08] compare the performance of different meshfree approximation schemes in three-
dimensional computations.

In this dissertation, a new numerical integration scheme for Galerkin meshfree meth-
ods is proposed. On appealing to assumed strain methods [II] and nodal integration
techniques [34H36], a modified strain tensor is defined. Maximum-entropy basis func-
tions [27109] are used in its discretization, and Gauss quadrature is adopted in the numeri-
cal integration. The procedure so devised alleviates numerical integration errors in meshfree
methods and ensures patch test satisfaction to within machine precision. An added feature
of the numerical integration scheme is that fewer number of Gauss points than in standard
Gauss quadrature are required to accurately compute the weak form integrals.

Parts of this dissertation are published. Chapter Ml has led to two articles. One is
already published [I10] and the other one is to appear [I11]. Ref. [I12], which is based on

Chapter [l is currently in preparation.

1.2 Original Contributions

Because mesh generation is eased in complex geometries, three-node triangle and four-node
tetrahedron, are highly desirable in finite element analysis. However, due to mesh distortion
issues and very ‘stiff’ solutions that are delivered when finite element shape functions are
used in the analysis of near-incompressible media, these type of meshes are rarely employed.
The formulation of an effective methodology for simulation of near-incompressible media
problems with low-order finite element meshes is one of the main contributions in this
dissertation. Although the elemental structure of the mesh is not used to construct the

meshfree approximation, it is used for computation of the numerical integration of the
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weak form in the meshfree method. Accurate solutions are obtained, which enable the
use of these low-order meshes in practical applications in near-incompressible elasticity at
small and finite strains. The meshfree method developed in this dissertation should allow
even larger deformations than those achieved by F-bar methodologies for finite elements.
However, this remains to be assessed.

Numerical integration errors are important issues in meshfree methods. As previously
discussed, many attempts have been made to improve the accuracy of the numerical in-
tegration in meshfree methods. However, very expensive techniques have resulted, which
impact the computational cost. The development of a numerical integration scheme that
alleviates integration errors in meshfree methods with minimal number of Gauss points
is another key contribution in this dissertation. A modified strain tensor is proposed to
obtain an accurate numerical integration technique. This results in a correction to the stiff-
ness matrix that alleviates integration errors in meshfree methods and patch test is met to
within machine precision. In this dissertation, maximum-entropy basis functions are used,
but the generality of the proposed numerical integration scheme renders it applicable to
any method, not necessarily meshfree, that is able to use a background mesh of triangles or
tetrahedra. For instance, the element-free Galerkin (EFG) method [22], the natural element

method (NEM) [4] and polygonal finite element interpolants [113] can be adopted.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows. In Chapter 2l a summary of
meshfree methods is presented. A historical background is provided. Distinct ways to con-
struct meshfree methods with their respective features are also presented. The remainder
of Chapter [2 is devoted to specific issues in meshfree methods.

Chapter Bl focuses on maximum-entropy approximation. A description of the principle
of mazimum entropy and its link to the linear approximation problem are presented. De-

tails on the construction of maximum-entropy basis functions are elaborated in the rest of
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Chapter Bl

The formulation of the maximum-entropy meshfree method for linear elastic media is
presented in Chapter @ It focuses on both compressible and near-incompressible behavior.
An accurate numerical integration scheme for meshfree methods is developed. A novel mesh-
free formulation for near-incompressible media along with theoretical background for nu-
merical stability is also presented. The accuracy and performance of the maximum-entropy
meshfree method is studied using two- and three-dimensional structured and unstructured
background meshes by means of various benchmark problems, which include problems with
homogeneous deformation (patch tests), bending dominated problems, rigid indentation,
Stokes flow and numerical stability tests. Wherever appropriate, the maximum-entropy
solutions are compared to analytical solutions and to a finite element solution.

Chapter [l is devoted to the formulation of the maximum-entropy meshfree method for
near-incompressible nonlinear elasticity in two dimensions. A novel meshfree formulation
for near-incompressible elastic solids at finite strains is presented. The performance of the
maximum-entropy meshfree method in large deformation analysis with near-incompressible
behavior is investigated. Structured and unstructured triangular background meshes are
employed in three benchmark problems: nonlinear Cook’s membrane, plane strain com-
pression of a rubber block, and a frictionless indentation problem. In all the problems, the
maximum-entropy solution is compared to two finite element solutions that use a mesh of
three-node triangles.

In Chapter [l a summary of the main results and findings of this dissertation are
presented, with some concluding remarks on the potential of maximum-entropy meshfree
method to solve incompressible media problems. Some thoughts on future work are also

provided.
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Chapter 2

Meshfree Methods in

Computational Mechanics

In this chapter, a summary of meshfree methods is provided. We start by presenting a
historical background on the evolution of meshfree methods since their inception to recent
developments. A discussion on distinct ways to construct meshfree methods along with
their respective features is then provided. We close this chapter discussing some of the

main issues of meshfree methods with remarks on possible cures that have been pursued.

2.1 Historical Background

Meshfree methods are relatively new numerical techniques compared to finite elements. In a
nutshell, what characterizes meshfree or meshless methods is that the construction of basis
(or shape) functions depends only on the nodal coordinates and no mesh definition is indeed
employed to this objective. The first recognized meshfree method was developed in 1977
under the name of smoothed particle hydrodynamics (SPH) [114115] to model astrophysical
phenomena such as galaxy and star formation, stellar collision, and gravity currents [116l-

[121]. Over the years, SPH has gained increasing interest in a wide range of applications

such as metal impact [122H125], wave impact [I126H128], steel penetration [125[1291[130], and
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metal forming analysis [I311132]. The success of SPH method in modeling astrophysical
phenomena without a explicit mesh has led to the development of several meshfree methods
with the aim of overcoming drawbacks of mesh-based methods. Some of the shortcomings of
mesh-based methods such as standard finite elements are encountered, for instance, in the
modeling of explosion and penetration problems. In this type of problems the continuum
is broken into small fragments which would imply breakage of finite elements or the use
of adaptive/refinement mesh techniques to accurately capture the transformation of the
continuum into small pieces. Either way is difficult since, on one hand, a discontinuity can
not be embedded in a standard finite element, and on the other hand, adaptive/refinement
mesh techniques, apart from being a formidable task in complicated geometries, imply
mapping of states variables from one mesh to another, which introduces numerical error in
the solution. Another problem that presents difficulties for finite elements is the modeling
of phenomena that require higher-order interpolation fields, which is the case for plates and
shells simulations, and gradient theory of plasticity. The applicability of finite elements is
limited in this type of problems since constructing C! finite element interpolants is non-
trivial [7]. One of the main applications in which meshfree methods have shown promise
over finite elements is in the modeling of phenomena involving large deformations [S8TH5]
[R7HO0L03-95]. Distorted finite elements have a tendency to breakdown the computation
very early with the accuracy of the solution being lost, whereas meshfree basis functions
do not depend on the mesh and as such are less sensitive to mesh distortions.

In the realm of difficulties for finite elements, meshfree methods have therefore emerged
as an alternative to finite elements. Although after the invention of SPH method other
meshfree methods such as generalized finite difference method (GFDM) [133] and meshfree
collocation method (MCM) [I34] have been devised, it has been recognized that most of
the advances in meshfree methods were done in the 1990s with the introduction of the
diffuse element method (DEM) [2I] in 1992 and a posterior improvement, which was termed
as element-free Galerkin method (EFG) in the seminal work of Belytschko et al. [22] in

1994. The list began to increase with the introduction of other meshfree methods such
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as the reproducing kernel particle method (RKPM) [23] and the natural element method
(NEM) [135] in 1995; the partition of unity method (PUM) [136,[137], the finite point
method (FPM) [138] and the h-p cloud method [I39] in 1996; the meshless local Petrov-
Galerkin (MLPG) method [5] in 1998; the method of finite spheres (MFS) [26] in 2000, and
so on. This list is by no means exhaustive. A detailed overview of meshfree methods is
provided in Refs. [2,[140,141]. Due to the mesh-independence of meshfree basis functions,
greater flexibility for constructing meshfree methods is realized. Meshfree methods can be
formulated starting from a strong form or starting from a weak form, or from a combination

of both.

2.2 Strong-Form Meshfree Methods

Strong-form meshfree methods are formulated starting from a boundary-value problem.
Since in a boundary-value problem only derivatives appear, there is no need for numer-
ical integration. However, the consistency of the approximation is ‘strong’ in the sense
that it must satisfy up to the order of the highest derivative—second-order consistency for
solid mechanics. A strong-form numerical approximation implies that the boundary value
problem is satisfied only at the nodes of a domain of discretization, which is refer to as col-
location. One of the drawback of meshfree collocation techniques is that they suffer from
instabilities due to the ill-conditioned moment matrix that arises in the process of func-
tion approximation and the need to satisfy the derivative boundary conditions of the PDE.
Additionally, they usually lead to unsymmetric matrices. However, they are easier to im-
plement than meshfree methods obtained from a weak form. Some examples of strong-form
meshfree methods are the generalized finite difference method (GFDM) [133], the smoothed
particle hydrodynamics (SPH) [114115], the meshfree collocation method (MCM) [134] and
the finite point method (FPM) [138].
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2.3 Weak-Form Meshfree Methods

Weak-form meshfree methods are obtained by ‘weakening’ the consistency imposed by the
strong form over the approximation. To this end, the PDE is satisfied in an average sense
by converting it to an integral form using a variational principle or a weighted residual
method. This leads to two function definitions. The trial function, which describes the
approximation, and the test function, which acts as the weighting function in the integral
form. If a weighted residual method is used, integration by parts needs to be done in order
to obtain the final weak form expression. In contrast to strong forms, the surface integral
that appears in the weak form provides a natural way to satisfy the derivative boundary
conditions at no additional cost.

Since integrals are present in a weak form, numerical integration is required. Thus, in
meshfree methods that are formulated from weak forms, a quadrature mesh (also referred
to as background mesh) is needed to compute the weak form integrals. However, the basis
function definition does not depend on the quadrature mesh. In other words, the mesh is
only used to sample the basis functions at the integration points. As long as the numerical
integration is done accurately and the space for the approximation is correctly chosen,
weak-form meshfree methods (and also finite elements) are stable formulations. However,
due to the need for numerical integration, the implementation is more involved than in
strong-form meshfree methods.

Weak forms offer many attractive ways to formulate numerical procedures depending
on the selection of the trial and test functions. For instance, if trial and test functions are
chosen to be the same, Galerkin methods are obtained. Most meshfree methods are based
on a Galerkin method. Some examples of Galerkin-based meshfree methods are the element
free Galerkin method (EFG) [22], the reproducing kernel particle method (RKPM) [23], the
natural element method (NEM) [], and the method of finite spheres (MFS) [26]. The
method developed in this dissertation belongs to this category. On the other hand, if

trial and test functions are chosen differently, Petrov-Galerkin methods are obtained. The
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meshless local Petrov-Galerkin (MLPG) method [5] is a representative one in this category.

2.4 Weak-Strong Form Meshfree Methods

As the name suggests, weak-strong form meshfree methods are obtained from a combination
of weak and strong forms. In this type of methods, the strong form formulation is used
everywhere except at those nodes that are on or near boundaries with derivative boundary
conditions. Instead, a weak form formulation is used at those nodes. The latter choice is to
prevent instabilities stemming from derivatives boundary conditions. Since the weak form
is employed in a limited region of the domain, the use of background cells for numerical
integration is minimal. Weak-Strong form were introduced by Liu and Gu [142] for problems

in two-dimensional solids and further extended to incompressible fluids [143].

2.5 Issues in Meshfree Methods

As previously pointed out, meshfree methods are an attractive alternative to overcome
issues that are related to the dependency of the finite element interpolation on a well defined
element topology. However, meshfree methods have their shortcomings. The understanding
of these shortcomings combined with the understanding of possibilities that strong forms
and weak forms offer for the development of meshfree formulations are of vital importance

in the success of a meshfree methodology. The main shortcomings are summarized next.

2.5.1 Issues in Strong-Form Meshfree Methods

The instability of the discrete equations is the main issue related to strong-form meshfree
methods. The instability stems from two sources. The singularity of the moment matrix
that arises from the function approximation and the large errors introduced by the deriva-
tive boundary condition. The former occurs when the nodes that are selected to construct

the approximation of a function (usually a field variable) at a given point in the domain
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are not correctly chosen or are not sufficient in number. For instance, the polynomial basis
p = {ap, a1z, azy} provides a linearly-independent basis for a first-order approximation in
two dimensions. In order to find the unknown coefficients ag, a; and as, three conditions are
exactly needed. One can provide these three conditions by approximating a field variable u
at three nodes of the discretized domain. Proceeding likewise results in the linear system of
equations u, = ap+ a1z, + a2y, (n=1,2,3), where the coefficients represent nodal field vari-
ables and (z,,, y,) are the coordinates of node n. The singularity in this system of equations
can appear in two ways. Firstly, the procedure to find the three nodes might not actually
find all of them, resulting in an undetermined system of equations. Secondly, the three
nodes selected might not produce a linearly-independent system of equations. For instance,
the latter might occur if two nodes are collinear, again resulting in an undetermined system
of equations. However, this source of instability is a minor issue since there are efficient
methods to overcome it. For instance, the use of weighted least square method [144], the use
of radial basis functions [I34] and the use of the matrix triangularization algorithm [145],
are frequently adopted in the formulation of strong-form meshfree methods. The use of
maximum-entropy basis functions would also provide a way to overcome this issue if a pro-
cedure to construct higher-order maximum-entropy basis functions is developed. On the
other hand, the derivative boundary condition is the critical issue in strong-form mesh-
free methods [I46], since differentiation is a roughening operator that magnifies errors in
the approximation. Therefore, any error in the numerical approximation of the derivative
boundary conditions might introduce large numerical error in the discrete equations result-
ing in an ill-conditioned system that needs some form of stabilization to be usable. Ways
for stabilization have been studied in strong-form meshfree methods. For instance, the use
of additional derivative variables to enforce the derivative boundary conditions [147], the
addition of higher-order differential terms in the strong form equations [148]149] and the
use of weak-strong form meshfree methods [142][143], are usually employed to formulate

stable strong-form meshfree methods.



2.5. Issues in Meshfree Methods 18

2.5.2 Issues in Weak-Form Meshfree Methods

Two main issues are present in weak-form meshfree methods. The non-zero contribution of
basis functions of interior nodes on the boundary and the errors in the numerical integration.
The former emanates from the fact that most meshfree basis functions lack the Kronecker-
delta property, and therefore they do not interpolate the field variables. Moreover, it has
a direct impact on the imposition of essential boundary conditions since the weak form
demands their exact satisfaction by requiring basis functions to vanish on the boundary.
The consequence in violating this is that essential boundary conditions can not be imposed
directly at the nodes as in finite element, and special techniques have to be considered
to impose them. Among techniques to impose essential boundary conditions, Nitsche’s
method and blending technique of Huerta and Ferndndez-Méndez [I50] are most efficient.
Maximum-entropy basis functions offer an elegant means to solve this problem since by
construction the vanishing property is readily obtained on convex boundaries, which is
sufficient to impose essential boundary condition directly at the nodes [27]. However, this
property is lost in non-convex domains. Radial point interpolation basis functions [I51]
provide another means to directly impose essential boundary conditions at the nodes. On
the other hand, numerical integration errors is the critical issue in weak-form meshfree
methods, which is understood as follows. Meshfree basis functions are non-polynomial
and in addition the support of basis functions does not coincide with the union of the
background cells that are employed in the numerical integration—triangular or quadrilateral
elements are typically adopted in two dimensions [22]. This leads to inaccuracies in the
numerical integration of weak form integrals, and patch test is not passed to machine
precision. Whether or not to pass the patch test exactly is not an issue per se. However,
the importance of ensuring sufficient accuracy in the numerical integration is that its error
is not larger than the error of the approximation. This can be evidenced in the patch test.

Many attempts have been pursued in order to reduce the integration error in weak-from

!Finite element shape functions meet the vanishing requirement very easily since they possess Kronecker-
delta property which automatically implies vanishing of interior basis functions on the boundary.
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meshfree methods. The adoption of higher-order Gauss quadrature rule has been suggested
to overcome this issue partially [3]. Another option that has been pursued by many is the
construction of background cells that coincide with the support of the basis functions [3L[516]
[152]. Neither procedure is efficient since considerable number of Gauss points to achieve an
adequate accuracy is implied, especially in three-dimensional computations. In an attempt
to reduce the burden of adopting many Gauss points, nodal integration techniques that use
the nodes as the Gauss points have been devised [34[36]. However, numerical instabilities
are present in these methods, which require further attention. A promising technique
that uses smoothing operators in the construction of the strain field is proposed in this

dissertation.
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Chapter 3

Maximum-Entropy Approximation

This chapter focuses on maximum-entropy approximation. We start by providing some in-
sights on the linear completeness concept along with standard ways of constructing linearly-
complete meshfree approximations. A description of the principle of maximum entropy is
provided and its link to the linear approximation problem is presented. Details on the
construction of maximum-entropy basis functions are elaborated towards the end of this

chapter.

3.1 Linear Completeness

Linear completeness is the ability of an approximant to exactly reproduce constant and lin-
ear field variables (also known as zeroth and firth-order consistency, respectively). In order
for a numerical method that is based on the weak form of a second-order partial differen-
tial equation to converge, approximants that possess linear completeness are sufficient [80].
Meshfree basis functions are sought such that completeness is obtained by construction.
A standard procedure to construct basis functions with a desired completeness order was
briefly described in Section 2.5.11 More details are presented here. Consider a continuous
field function u(x) defined in a domain €2, which is represented by a set of field nodes. The

approximation of the field variable u(x) at a point with coordinates x = {z,y} in , is
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obtained as follows:

ay
u(x) = Zpi(x)ai = [ p1(x) pa(x) ... pm(x) (1‘2 =pla, (3.1)
i=1 :

where p;(x) is a monomial of a polynomial basis, and a; is the coefficient for p;(x). In two

dimensions, a linear polynomial basis is

pTz[l . y] (3:2)

If the approximation (B is required to pass through n nodes of the domain €2 with the

polynomial basis ([B.2]) being used, the following system of equations is obtained:

uy 1z w»n ai
S R N P - (3.3)
Un 1z, yn as

It is evident that if n = 3 in (B3]), the system is square and, provided is not singular, a
unique set of nodal coefficients a; can be obtained as a result of the linear approximation
procedure as

a=P lu (3.4)

The basis functions ¢; (i = {1,2,...,n}) are then computed on substituting ([B.4]) back
into (BI) as follows:

u(x) = ptPlu= Z piu; = @1 (x)u. (3.5)
i=1

However, if n > 3, the system (B.3)) is undetermined with non-unique solution. Some mesh-
free methods construct basis functions imposing that n = m such that a square system

is obtained. Doing that has the shortcoming, however, that the nodes entering the ap-
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proximation procedure have to be correctly selected as to obtain a non-singular system
(see Section 25.0]). Procedures that are related to optimization theory can be adopted to
compute basis functions when n > m. Among these procedures, moving least squares [144]
and the principle of mazimum entropy [153] are two possibilities.

In order to interpret the linear approximation problem under the mazimum entropy
formalism to be introduced in the next section, the linear approximation problem in two

dimensions is rewritten as

o1
1 1 --- 1 1

P2
1 o - Tp . = x ’ (3'6)
Yyr Y2 0 Un Y

_¢n_

where the basis functions ¢; (i = {1,2,...,n}) are now directly obtained as the solution

of (36]). Note that similar to ([B3]), the system (3.0]) is also undetermined if n > 3.

3.2 Principle of Maximum Entropy

In this section, the construction of linearly-complete basis functions is linked to the prin-
ciple of mazimum entropy. Consider a set of n discrete events {z1,...,2,}. The pos-
sibility of each event is p, = p(xz,) € [0,1] with uncertainty —Inp,. The Shannon-
entropy [154] H(p) = — > 0_, palnp, is the amount of uncertainty represented by the
distribution {p1,...,pn}. Based on the Shannon-entropy, Jaynes [153] postulated that

solving the optimization problem (principle of maximum entropy):

pERﬁ

max — Zpa In pg, (3.7a)
a=1
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subject to the constraints:

> pa=1 Y pagr(ra) =< gr(x) >, (3.7b)
a=1 a=1

yields the least-biased probability distribution and the one that has the most likelihood
to occur. In BI), R is the non-negative orthant and < g,(x) > is the expectation of
the function g,.(z). On considering the constraints of the max-ent problem as the only
information available for a set of n discrete probabilities (n usually larger than the number
of constraints), the principle of maximum entropy provides a rationale means for least-
biased statistical inference when insufficient information is available.

The optimization problem (B7)) assigns probabilities to every p, in the set. Assume
now that the probability p, has an initial guess w, known as a prior, which reduces its

uncertainty to —Inp, + Inw, = —In(ps/w,). An alternative problem can be formulated on

using this prior in B7) (principle of minimum relative entropy [I55,156]):
- P
max — In | —= 3.8a
max = (w) | (3.52)

subject to the constraints:

Zpa =1, Zpagr(‘ra) =< gr(z) >. (3.8b)
a=1 a=1

Depending upon the prior employed, the optimization problem (B.8]) may assign probabili-
ties to a selected number of p, in the set. It can be easily seen that if the prior is constant,
the Shannon-Jaynes entropy functional ([B.7)) is recovered as a particular case. The max-ent

approach is demonstrated next by means of two dice experiments.

Example 3.2.1. A fair dice is thrown. The set of possible outcomes are the events

{1,2,3,4,5,6}. Since the dice is fair, we infer that all the events have equal possibility
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events

Figure 3.1: Throwing a fair dice. If the dice is fair, max-ent assigns equal possibilities to
all events.

1/6 of being the outcome. Taking the expectation of the outcome yields:

If this expectation is viewed as the constraint in the max-ent problem (B.7), the set of
possibilities previously inferred is exactly predicted by max-ent. The result is shown in

Fig. B

Example 3.2.2. A biased dice is thrown. The set of possible outcomes are the events
{1,2,3,4,5,6}. A guess is made on each outcome via the following set of prior possibilities
w ={0.1,0.1,0.1,0.1,0.5,0.1}. On considering these priors, the expectation of the outcome
yields:

£EF=01-14+01-2+01-3+01-44+05-5+0.1-6=4.1.

If this expectation is viewed as the constraint in the max-ent problem (B.8]), the set of ‘most
honest’ possibilities assigned by max-ent is p = {0.1,0.1,0.1,0.1,0.5,0.1}, which is exactly

the guess, as expected. The result is depicted in Fig.

The connection between the principle of mazximum entropy and the construction of
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events

Figure 3.2: Throwing a biased dice. If the dice is biased, max-ent assigns the most probable
possibility to each event.

linearly-complete basis functions is now evident: the discrete probabilities and the con-
straints of the max-ent problem are interpreted as the basis functions and the linear repro-

ducing conditions given in the system (B.6)), respectively.

3.3 Maximum-Entropy Basis Functions

As already stated in Section [B:2], basis functions are viewed as discrete probabilities satis-
fying the max-ent constraints. The connection between maximum-entropy basis functions
and linearly-complete approximations was established by Sukumar [I57]. In Ref. [I57], the
principle of maximum entropy was employed to obtain linearly-complete interpolants on
polygonal domains. Arroyo and Ortiz [27] realized a meshfree approximation using a mod-
ified entropy functional—with emphasis on establishing a smooth transition between finite
element and meshfree methods. Sukumar and Wright [109] generalized the construction
of max-ent meshfree basis functions by using the relative (Shannon-Jaynes) entropy func-
tional with a prior [I55,156]. On using compactly-supported prior functions that are at
least C°, compactly-supported max-ent basis functions are realized. In particular, when a

Gaussian prior is employed the approach of Arroyo and Ortiz [27] is recovered. Maximum-
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entropy basis functions are obtained from a convex optimization problem and are endowed
with the following attributes [27]: variation diminishing property; positive-definite mass
matrices and weak Kronecker-delta property on the boundary. The last property is note-
worthy since it enables the direct imposition of essential boundary conditions as in finite
element. Recently, new applications of max-ent meshfree basis functions have emerged:
barycentric coordinates for arbitrary polytopes are developed in Ref. [I58], co-rotational
formulation is presented in Ref. [I59], second-order max-ent approximants are proposed
in Refs. [160,161], fluid and plastic flows are studied in Ref. [I62], and stable meshfree
methods for fluid mechanics are developed in Refs. [I63[164].

The approach in Ref. [I09] is now followed to present expressions for max-ent basis
functions and their derivatives. To this end, let the prior function be denoted by w,(x).
The set of max-ent basis functions {¢,(x) > 0}7_, is obtained via the solution of the

following optimization problem:

max — ;%(x) In (‘MX) > , (3.92)

PER™ W (X)

subject to the linear reproducing conditions:

Z ¢a(x) =1, Z ¢a(x))~(a =0, (39b)
a=1 a=1

where X, = x, — x are shifted nodal coordinates and R’} is the non-negative orthant. If
we(x) is a constant for all a, then the Shannon-Jaynes entropy functional, — )" ¢ 1In ¢q,
is recovered. In practice, any prior function that is compactly-supported and at least
CP-continuous may be used. Typical prior functions are smooth Gaussian radial basis

functions [27]

wa(x) = exp(—fallxa —x]?), (3.10a)

Most available meshfree basis functions would typically not vanish on the boundary and as such special
procedures are needed to enforce essential boundary conditions [T40l1411[150].
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and C? quartic polynomials [I59]

1—-6¢°+8¢°—3¢" 0<q<1,
wa(q) = (3.10b)

0 qg>1.

In BI0k), B, = v/h?; 7 is a parameter that controls the support-width of the basis function
at node a; and h, is a characteristic nodal spacing that may be distinct for each node a. Inn
dimensions, h, is set as the distance to the n-nearest neighbor from node a. For the quartic
polynomial, ¢ = ||x, — X||/pa and p, = ~vh, is the radius of the basis function support
at node a. In a recent study on max-ent meshfree methods [I65], it has been shown that
substantial improvements in accuracy are realized by letting the support-width parameters
as unknowns and solving for them through the variational structure (minimizing principle)
of the continuum problem.

On using the procedure of Lagrange multipliers, the solution of the variational state-

ment ([3.9) is [109]:

Za(x;N7)

2 A Za(X; A") = wa(x) exp(=A" - Xq), (3.11)

Pa(x) =

where the partition function Z(x;X*) = >, Zy(x;A™), and in three dimensions x, =
[Za Ta Za)T and A* = [X¥ A5 A3]T. In (BII), the Lagrange multiplier vector A* is the

minimizer of the dual of the optimization problem posed in (39

\* = in In Z(x: A 3.12
arg min In (x5 ), (3.12)

which gives rise to the following system of nonlinear equations:

r(x;A) = Valn Z(x;0) = = > ¢a(x)%e = 0, (3.13)

where V) stands for the gradient with respect to A.
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The gradient of max-ent basis functions is needed to complete the derivation. To this

end, we use the converged value of A* and rewrite (B.11)) as follows:

(o) — Ll X

= Syl JeEA) = () = AT X, (3.14)

Taking the gradient of ¢, in the above expression yields

Véa = ¢a (Wa -> ¢bvfb> : (3.15)

b=1

Next, we use f, given in ([B.I4]) and take its gradient to obtain

Vw,

a

V= FAT - %, - VA (3.16)

which needs the gradient of A*. In order to find the latter, we take the total derivative
of (3I3]), which vanishes for A*:

Dr =Vr+ Viar-VA* =0, (3.17)

where Vr is the gradient of r taken with A fixed. Proceeding likewise in (3I3]) and noting
that Vr is the Hessian of In Z, (317 leads to

n n v
VX =H'(A-T), H=) % 0% A=) oXo-—r  (3.18)
b=1 b=1 b
and therefore V f, in ([B16) becomes
Vwa * > -1 -1
Vf.= + X+ %, [(H)T = H) AL (3.19)

a

Using the above expression for Vf, in ([B.I8]) yields the final expression for the gradient of
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Figure 3.3: Plots of a maximum-entropy basis function computed with a Gaussian prior
for three values of 7. Note that the locality of the basis function is affected but it always
vanishes on the boundary. (a) v =1; (b) v = 2; and (c¢) v = 3.

qba ﬂmﬂ:

Voo = ¢q {ia . [(H)—l —(H)*. Al + waa _ Z%Vw—tb} : (3.20)
¢ b=l

In Fig. B3] plots of a max-ent basis function computed with a Gaussian prior for various
support-width parameter ~ are illustrated for two dimensions. For v = 2, plots of the
Gaussian prior and the corresponding max-ent basis function along with their derivatives

are shown in Fig. B4l For the Gaussian prior, (3.20k) reduces to [27]

V¢a = ¢aH_1 “Xg. (3.21)



3.3. Maximum-Entropy Basis Functions 30

Figure 3.4: Plots of Gaussian prior (7 = 2) and maximum-entropy basis function and their
derivatives for node a. Note that w,(x,) = 1, but ¢4(x,) # 1, and hence the interior basis
function ¢, does not satisfy the Kronecker-delta property. The smoothness of the basis
function and its derivatives are inherited from the Gaussian prior. (a) Gaussian prior, wg;

(b) Ow,/0x; (¢) Qwe/0y; (d) da; (€) Opa/0x; and (f) gy /dy.
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Chapter 4

Maximum-Entropy Meshfree
Method for Linear Elastic Media

In this chapter, the formulation of the maximum-entropy meshfree method for linear elastic
media is presented. Both compressible and near-incompressible behavior are considered. A
novel meshfree formulation for near-incompressible media along with theoretical background
for its numerical stability is presented. The development of an accurate numerical integra-
tion technique for meshfree methods that alleviates integration errors with guaranteed patch
test satisfaction is also presented. The accuracy and performance of the maximum-entropy
meshfree method is studied using two- and three-dimensional structured and unstructured
background meshes by means of various benchmark problems, which include patch tests,
bending dominated problem, combined bending-shear problem, rigid indentation, Stokes

flow and numerical stability tests.
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4.1 Governing Equations and Variational Formulation

4.1.1 Strong Form

Consider a body defined by an open bounded domain Q C R™ (n = {2,3}) with boundary I'
such that ' = T', UT; and ', NT'; = (). A nearly-incompressible isotropic linear elastic solid

or fluid under static loads and no body force is governed by the following equations [7]:

V.-o=0 inQ, (4.1a)

V.out+tl=0 mQ (4.1b)
n

and the following essential (displacement or velocity) and natural (traction) boundary con-

ditions imposed on I';, and I';, respectively:

u=u onl,, (4.1c)

oc-n=t only (4.1d)

where the Cauchy stress tensor o is related to the strain tensor € and the pressure parameter

p by the following isotropic linear elastic constitutive relation:

o(u,p) = —pl + 2ue(u). (4.1e)

In (A1)  and p are identified with the first and second Lamé parameters of the solid:

vE B E
Arv)(1—20) M7 20+0)

n=A= (4.2)

respectively, where v is the Poisson’s ratio and E is the Young’s modulus of the material.
If the continuum is a fluid, the Lamé parameters in ([£.2]) stand for a penalty parameter and
the dynamic viscosity, respectively. The penalty parameter is usually taken as n ~ 107y [1].

The kinematic relation between the strain tensor € and the displacement or velocity vector
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1
s:§m®V+V®m. (4.3)

4.1.2 Weak Form

For Galerkin-based mixed formulations with u,v as the trial and test displacement (or
velocity) functions, and p,q as the trial and test hydrostatic pressure functions, the weak

form of (A1) (with (ZIel) substituted) reads [7]:
Find u € % and p € & such that

a(u,v) —b(p,v) = (t,v) VYveV’, (4.4a)

1
b(g,u) + E(p, ) =0 Vge 2, (4.4b)

where % C H'(Q) is the Sobolev space of functions with square-integrable first derivatives
in Q, 7 = H}(Q) is the Sobolev space of functions with square-integrable first derivatives
in  and vanishing values on the essential boundary T, and & = H}(Q) = L3(Q) is the
Sobolev space of square-integrable functions with zero mean. The bilinear forms a(-,-) and

b(-,-) are given by

a(u,v) = 2/1/95(u) ce(v)dQ, (4.4c)

b(q,v) = /qu - v dQ, (4.4d)

whereas the linear form (t,-) is

(t,v) :/F t-vdl. (4.4e)
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4.2 Modified Gauss Integration

As in finite element methods, numerical integration is used in meshfree methods to evaluate
the weak form integrals that appear in ([@4]). Typically, the support of meshfree basis func-
tions is greater than the support of finite element basis functions, which lends flexibility
to meshfree methods and often leads to improved accuracy. However, this has its conse-
quences: with polynomial finite element basis functions whose support includes the union
of triangles or tetrahedra, appropriate Gauss quadrature rules can be selected to ensure
accurate and optimally convergent finite element solutions. In meshfree methods, these
properties are lost, and hence use of standard Gauss quadrature to evaluate ([@4]) leads to
errors in the numerical integration. The integration issue in meshfree methods that use
background cells for integration is well-documented in Ref. [3]. It can be understood due
to the following characteristic of meshfree basis functions. Meshfree basis functions are
rational (non-polynomial) functions and their support do not coincide with the union of
background cells that are employed in the numerical integration. When performing nu-
merical integration of the weak form, a multiplication of the form BaTCB arises. This in
turn leads to multiplication between basis function derivatives (for instance, ¢q »¢s,,) whose
support is the intersection of the support of ¢, and ¢, and as such can differ appreciably
from the union of the cells used in the numerical integration. As a consequence, significant
numerical errors can be expected from the numerical integration using the standard strain
tensor. To overcome this deficiency in existing meshfree methods, a numerical integra-
tion scheme that alleviates the aforementioned errors and ensures patch test satisfaction to
within machine precision, is devised. To this end, the following modification to the strain

tensor in a certain background finite element cell is proposed:

E=e—€+e, (4.5)

1B, is the nodal strain matrix and C is the matrix stemming from the material constitutive relation.
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where & bears resemblance to an assumed strain [IT], which is referred to as the modified
strain. The rest of the terms in (45 are defined next. e is the standard small strain
tensor, € is the volume average strain tensor over the background cell, and € corresponds to
€ written as a surface integral by means of Green’s theorem. The corresponding equations

are

1
s:§[u®V—|—V®u], (4.6a)
1
E = — ds) 4.6b
e= e | ean, (4.6b)
E= ! 1[u@n—l—n@u] ar (4.6¢)
Ve Jre 2 ’ '

In the numerical examples that are presented in this dissertation, the integral in (46D is

referred to as the volume integral and the integral in (L6d) as the surface integral. When

linearly complete finite elements are used, (4.6bl) and (4.6d)) yield the same result with & = €,
and the small strain tensor is recovered. However, for meshfree basis functions € # €, in
general. The latter observation allows one to see € — € as a correction that is introduced
into the stiffness matrix such that the integration error is reduced when the same Gauss
quadrature rule is employed to integrate € as well as €. It is pertinent to mention here that
the strain in the form of (L.6D]) and ([AGd) has been previously used in nodal integration
schemes [34H306], which in part has motivated the definition of the modified strain via (Z3]).

On using n-point Gauss quadrature in the numerical integration of the weak form inte-

grals, the evaluation of & will be required at each of these Gauss points x;, namely

e(xp) = e(xp) — E(xx) + E(xx). (4.7)

Since € and € are integral expressions over the background cell where numerical integration
is carried out, it follows that for each xj of the n-point evaluations, these integrals must

also be computed using numerical integrationt.

2Note that & and & are constants within each background cell, and hence are pre-computed.
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A further step that will be useful for later discretization of the weak form (4] is to dis-
cretize the modified strain ([€5]). For this, the following discretization for the displacement

(or velocity) over a background mesh of triangles or tetrahedra is considered:

N
uh(x) = Z ¢a(x)ua, (4.8)
a=1

where N = {3,4}, u, € %, € %; ¢, are max-ent basis functions. On substituting (48]

into (L) leads to the following strain matrices:

Ba(x) = Ba(x) - Ba + ]:3a7 (493)

where in two dimensions
B.(x) = 0 Gay |- (4.9b)

or in three dimensions

is the standard strain matrix. In two and three dimensions

B, =Y Ba(x,)wy, (4.94)
p=1
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whereas in two dimensions

{Z Na<§r>u<&>rwr} : (4.9¢)

No&)=| 0 guny |- (4.91)

or in three dimensions

B, = % Z_: {Z Na(xr)wr} AF, (4.9¢)

- 0 0 ally
N, (x,) = far= | (4.91)
gbany Galz 0

Gan; 0 Gang

0 Cbanz Cbany

In two as well as three dimensions, lila is evaluated along the boundary of the element with
n; (i = {x,y, z}) as the i-component of the unit outward normal to the cell’s edge. Note
that when B, — ]§a = 0, the standard strain matrix B, is recovered.

As a last remark on the modified Gauss integration scheme, we point out that the
integration order is preserved and the integration error is minimized when the same Gauss
quadrature rule is used to integrate € as well as €. When the strain is a constant, which
occurs in the patch test, machine precision accuracy is realized. To prove the foregoing, it

suffices to show that the nodal forces at all interior nodes (whose basis function support
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vanish on the boundary) are identically equal to zero for a uniform stress field o = ¢, i.e.,

fo=> . Blocd=0 (4.10)

is to be established, where the assembly is over all elements e that have a non-zero inter-

section with the support of ¢,. The proof follows.

Proof. On using (4.9), f, can be expressed as

a—Z/ BT ZB Xp) wp—i—BT o df).

On performing numerical integration using n-point Gauss quadrature within the element,

the following is obtained:

“_ZZ B (x)w ZBT xp)wp | we + Blw, | A%,

e q=1

which simplifies to

= Z Zn: ﬁerwqac,

e qg=1
since the first two terms cancel because 22:1 wqg = 1 (Gauss weights sum to unity). For
the sake of simplicity, the two-dimensional expression for B, given in ([#9¢) are used to

write

a_zzz{ZNT &)1 (&) !wr}wq

e g=1L=1

Now, closer inspection of the above equation and the expression for N, N, given in (4.91)
reveals that contribution along an interior edge L will arise from two adjacent triangles with
common edge L. However, since the normal vector on the edge will assume equal magnitude
but opposite signs for the two cases, the two contributions cancel each other. Proceeding

likewise, the net contribution to f, from all interior edges vanishes, and hence ([{I0) is
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satisfied. O O

4.3 Discrete System and MEM implementation

In the derivations of this section, the strain matrices resulted from the modified strain

already developed in Section are employed.

4.3.1 Discrete Weak Form

The objective is to obtain a formulation solely in terms of the primary variable u. To this
end, the pressure field is written in terms of nodal pressure values that are obtained by
volume-averaging of the divergence-free constraint in a neighborhood of a given node. This
procedure has been previously adopted in finite element and meshfree studies [48l[75[76178].
Consider the following discretizations for the displacement (or velocity) and pressure (trial

and test functions) over a background mesh of triangles or tetrahedra:

N N
up(x) = Z da(X)ug, vp(x) = Z Da(X)Va, (4.11a)
a=1

a=1
N N

pr(x) = Na(X)pa, (%) =Y Na(X)a, (4.11b)
a=1 a=1

where N = {3,4}, uy € %, € Z and p, € P, € P; ¢, are max-ent basis functions
and N, are standard finite element shape function&H. In order to ensure stability of the
solution [7], the displacement approximation is enhanced with an extra displacement node
in the interior of each triangle or tetrahedra. This approach is similar to the use of nodal
bubble shape functions in finite element methods [I66L167], even though in the present case
the max-ent basis function of the interior node does not necessarily vanish on the boundary
of the element. See Ref. [168] for a related study on meshfree methods involving bubble

functions. On substituting (EIT]) into the weak form (€.4D]) and relying on the arbitrariness

3Note that since the derivative of the pressure does not appear in the weak form, there is no need to use
meshfree basis functions and hence finite element shape functions are adopted in the discretization of the
pressure.
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Figure 4.1: Mesh to compute volume-averaged nodal pressure around a representative node
a. Filled black circles represent displacement or velocity nodes and open circles are for
pressure nodes.

of nodal pressure test functions yields

N N

R 1
§ j / N,m"Byu, dQ + —§ j / N, Nypp dQ = 0, (4.12)
b=1"9 Py

and performing row-sum in the pressure term leads to

N

R 1
§ {/ NamTBbdQ}ub+ {—/ NadQ}pa:O. (4.13)
b O nJa

Now, solving for p, in [@I3)), the following volume-averaged nodal pressure is obtained:

N A
Jo Nom™B,, dQ
.= — § : , 4.14
p n 2 { fQ N, d0 uy ( )

where m™T = [1 1 0] in two dimensions or m™ = [1 1 1 0 0 0] in three dimensions. For the
purpose of computation of integrals in ({fI4]), ) is the union of all the elements attached
to node a, i.e., @ = UQS. A reference mesh for the method developed in this dissertation
is illustrated in Fig. A1l In three dimensions, the 3-node triangle is replaced by a 4-node

tetrahedron.
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Even though the approach here devised shares common features with the method pro-
posed by Krysl and Zhu [4§], there exist notable differences. We use averages of strain ma-
trices from the elements attached to a particular node to satisfy the near-incompressibility
constraint in the weak form (£4]), whereas in Ref. [48] the averages are used to obtain a
strain field that satisfies a kinematic constraint in a displacement-based weak form within

a nodal integration scheme.

4.3.2 Discrete System

On substituting (£II) along with the nodal pressure expression ([EI4]) into the weak
form (44al), and appealing to the arbitrariness of nodal test functions, the following discrete

system of equations is obtained:

Kd = f, (4.152)

where d is the vector of nodal coefficients and

3
K,, = / BI'CB, dQ — / BEm{ZNCQCb} ds, (4.15D)
Q Q c=1
f, = ¢at dl (4.15¢)
Tt
with
200 0
C=1| o 2u 0 (4.15d)

0 0 pu
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for plane strain or

20 0 0 0 0 O
0 20 0 0 0 O

_ 0 0 2u 0 0 O

C= (4.15e)
0 0 0 w 0O
0 0 0 w0
0O 0 0 0 1

in three dimensions and
J5 NemTB,, dQ2
o= — . 4.15f

Note that only unknowns related to u appear in the system given in (£I5]). The pres-
sure field p can be computed a posteriori from the u field through (£I4]). The numerical
evaluation of the integrals appearing in (ZI5]) is performed over the background mesh of
triangles or tetrahedra using Gauss integration with the modified strain matrix B, that

was developed in Section (Z4.2)).

4.3.3 Numerical Integration of the Stiffness Matrix and the External

Force Vector

In (Z15]), matrix K, now appears corrected in terms of the modified strain matrix Ba, and
is numerically integrated using n-point Gauss quadrature rule. Recall that the same Gauss
quadrature rule is used in (4.6D]). In particular, for a three-node triangular background cell,
the numerical integration of the stiffness matrix disregarding the pressure part is computed
as follows:

Ko = Y Bl (x1,)CBy (x) Ay, (4.16)
k=1
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where A€ is the area of the three-node triangle and ¢ its thickness. In ([{I0]), indices a and
b range over the nodes covered by the intersection of the support of the basis functions
contained in ]§a and Bb. Numerical integration of the external force vector is done as usual

with an n-point Gauss quadrature rule.

4.3.4 On the Selection of the Appropriate Gauss Quadrature Rule

The weak form integrals appearing in (£.15]) need to be computed with sufficient accuracy to
preclude under integration or a rank-deficient stiffness matrix. Due to the interior displace-
ment node that is added inside the triangle or tetrahedra for stability, at least second-order
accurate Gauss rule is needed to compute the volume integrals, which is confirmed by the
numerical experiments presented in Section Using first-order accurate Gauss rule will
lead to a rank-deficient stiffness matrix. On the other hand, the computation of the sur-
face integral is not a significant issue since it does not involve basis function derivatives;
a second-order accurate scheme is used on each edge. The above-mentioned quadrature
rules suffice to pass the patch test to machine precision and to ensure optimal rates of

convergence in the energy norm for the proposed meshfree method.

4.4 Inf-Sup Condition and Numerical Inf-Sup Test

Consider the bilinear forms appearing in the weak form ([4.4]). The optimality and stability
of the mixed formulation is guaranteed if the consistency of the approximation, the ellip-
ticity of a(-,-) on the null space of b(-,-) and the LBB inf-sup condition [I3HI5] on b(,-)
are satisfied [20]. By construction, max-ent basis functions satisfy the linear consistency
required by the weak form (Z4]). On the other hand, if numerical integration is accu-
rate enough—which is the case herein (see Section [.2]), the ellipticity condition is always
met by displacement or velocity-pressure mixed formulations [169]. What remains to be

established for the stability of the meshfree formulation is the satisfaction of the inf-sup
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condition [I3HI5]:

/ anV - vi| dQ
inf sup L =ap>a>0 (4.17)
an€H(Q) v, cmi)  lanllollvall

holds with « a positive constant independent of h. Since in the formulation proposed in this
dissertation the pressure field is eliminated by writing it as a function of the displacement
(or velocity) field, i.e., g, = gn(wp), the following equivalent form of the inf-sup condition

is useful:

/ gn(Wp)V - vy, | dS2
inf sup Q

=ap > a>0. (4.18)

waeH} () v, emi) 196 (Wa)llollvally
An analytical proof to condition in ([@I8)) is difficult for meshfree methods [29/[44]. Instead,
it is commonly verified through the numerical inf-sup test [I7,20]. To this end, let us

consider the matrix (numerical) form of (EIR]), namely

WGV
inf sup h h

=ap>a>0, (4.19)
Wi v, \/WEGhWh\/VESth

where W), and V), are vectors corresponding to the nodal displacement or velocity test

functions wy, and vj, with

lan (w12 = / (gn(wn))? d2 = WIGHW), (4.20)
Q
and
2. /(v \ 2
HVthz/ > < 7. > dQ = VIshvy,. (4.21)
Q. T

i,7=1
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In the meshfree formulation, matrices G" and S" in two dimensions are given by

3 TR
R ~ N.m" By d2
GZ :/BaTm N, fQ c dQ, 4.22a
- i B -
a,r x + a 0
sh :/ Pa.cPbz + PayPoy a6 (4.22b)
Q 0 ¢a,x¢b,x + ¢a,y¢b,y

The numerical evaluation of the inf-sup value «; in ([EI9) is based on the solution of
the following generalized eigenvalue problem, which is computed on a sequence of refined

meshes [17,20]:
Ghap = wShap. (4.23)

If the eigenvalues are set in increasing order, then the smallest nonzero eigenvalue wy is

used to compute the numerical inf-sup value «y, as [17,20]

an = /on, (4.24)

provided that there are no spurious pressure modes. The number of pressure modes can be
anticipated from [20]

kpm =k — (ny, —np + 1),

where n,, is the number of displacement or velocity degrees of freedom and n, the number
of pressure degrees of freedom. A formulation that passes the inf-sup test must do so with
kpm = 0 (no pressure modes) or if k,, > 0 (constant or spurious pressure modes), the
pressure modes must be constant pressure modes as these can be removed by appropriate
modification of the essential boundary conditions [16,20]. Hence, a formulation that is free
of spurious pressure modes and does not show a decrease towards a vanishing «y, with mesh
refinement is said to pass the inf-sup test. In Section [£.5.8, we show that the inf-sup test

is passed by the maximum-entropy meshfree method for several benchmark problems.
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4.5 Numerical Results and Discussions

The application of the maximum-entropy meshfree (MEM) method to near-incompressible
solids at small strains as well as Stokes flow is presented. The accuracy and performance
of the (MEM) method are examined by means of eight benchmark problems: displacement
patch test, a cantilever beam subjected to a parabolic end load, Cook’s membrane problem,
a three-dimensional cantilever beam, a three-dimensional rigid flat punch under frictionless
indentation, two-dimensional cavity flow, two-dimensional Poiseuille flow, and various inf-
sup tests. Structured background meshes are adopted for all the two-dimensional examples
other than inf-sup tests. For the latter, distorted meshes are employed. The performance
of the MEM method on unstructured tetrahedral background meshes is assessed in all the
three-dimensional examples. We consider the MINI [166] element within the standard wu-p
formulation for near-incompressible solids as a representative finite element that relies on
the background mesh employed by the MEM method. The MEM solution is compared to
the MINT element solution in most of the examples. In the numerical experiments, STD
stands for standard Gauss quadrature (i.e., B, — B, = 0) and MOD for the modified
integration scheme presented in Section (ie., By — B, # 0). Unless stated otherwise,
MOD with a second-order accurate scheme is used for both the volume and surface integrals.

In the examples, no explicit unit system is adopted, but consistency of units is assumed.

4.5.1 Displacement Patch Test

Consider the boundary-value problem for a two-dimensional elastic plate under essential

boundary conditions:

V-o=0 inQ=(0,1)7

uz(x) =2 onTI, wuy(x)=x+y onl.
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(a) (b)

Figure 4.2: Meshes used for the displacement patch test. (a) Uniform mesh of four-node
quadrilaterals (Q4); and (b) Non-uniform mesh of three-node triangles (T3). For the near-
incompressible case, nodal degrees of freedom are as shown in Fig. 11

Plane strain conditions are assumed with the following material parameters: F = 3 x 107
and v = {0.3;0.499}. The meshes used in the study are shown in Fig. a uniform
mesh of four-node quadrilateral elements (Q4) for v = 0.3, and a non-uniform mesh of
three-node triangular elements (T3) for v = {0.3;0.499}. Both meshes are tested using
STD and MOD schemes. Maximum-entropy basis functions are used with a support-width
parameter v = 2.0 for the Gaussian prior, and v = 1.5 for the quartic prior. Numerical
results for the relative error in the L2-norm are shown in Tables Il and 2l Different Gauss
quadrature rules (number of Gauss points) for the volume integrals are tested (quadrature
rule for quadrilateral elements is indicated within braces). Numerical results confirm that
patch test satisfaction is met to within machine precision for both compressible and near-
incompressible material behavior only when MOD is employed. In this study, max-ent
approximants are used, but the generality of the integration approach renders it applicable

to other meshfree approximants as well as polygonal finite element interpolants [113].
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Table 4.1: Relative error in the L2-norm for the patch test (v = 0.3)

Prior Quadrature | T3 (STD) | T3 (MOD) | Q4 (STD) | Q4 (MOD)
3(3x3) [17x1073|32x10710]64x107° |1.2x1071°

Gaussian | 6 (6 x6) | 56x107*|3.1x10716|1.9x107% [2.8x 1071
12 (12x12) | 29x 107* | 3.4 x 10716 | 6.6 x 10712 | 2.5 x 1071°

3(B3x3) [26x1073][28x1070[1.3x10"T [3.2x10"1°

Quartic | 6 (6x6) |3.0x1073[44x10716|56x1077 | 9.3 x 10716
12 (12x12) | 7.8 x 107* | 3.6 x 10716 | 1.3 x 1078 | 7.9 x 10716

Table 4.2: Relative error in the L2-norm for the patch test (v = 0.499)

Prior Quadrature T3 (STD) T3 (MOD)
3 5.4 x 1071 8.2 x 1071

Gaussian 6 4.8 x 107! 8.8 x 10714
12 4.5 x 107! 8.6 x 10714

3 5.2 x 1071 2.6 x 10713

Quartic 6 3.9x 107! 2.6 x 10713
12 5.1x 107! 6.2 x 10713

4.5.2 Cantilever Beam

A cantilever beam of thickness ¢ with a a parabolic end load P (Fig. £3[(a)) is con-
sidered. The displacement solution for compressible (v = 0.3) and near-incompressible
(v = 0.499999) material behavior with £ = 107 in plane strain condition is sought. Es-
sential boundary conditions on the clamped edge are applied according to the analytical

solution given by Timoshenko and Goodier [I70]:

Py 2 - 92 Py 2 3 2
=2 (322 — 6L _ 2V (2 2p?), 4.2
Us = oz (3z% — 6Lz + vy”) oI vy (4.26a)
P
uy:@(3D(L—x)y2+3Lx2—x3), (4.26b)
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Table 4.3: Normalized tip deflection for the cantilever beam (plane strain).

uYOM [y EXACT at point A
Regular mesh Irregular mesh
Method v=20.3 v = 0.499999 v=20.3 v = 0.499999
MINI 0.963 0.969 0.955 0.962
MEM 1.001 0.999 1.001 1.000

where p is the material shear modulus (Lamé parameter) and

_ E for plane stress

E = , (4.27a)
E/(1—v?) for plane strain
v for plane stress

v= (4.27b)

v/(1 —wv) for plane strain

In the numerical computations the following parameters are used: L = 16, D =4, t =1
and P = —1. Two background meshes for the upper half of the beam are studied: a regular
mesh of three-node triangles (Fig. [43|(b)) and an irregular mesh of three-node triangles
(Fig. A.3(c)). Maximum-entropy basis functions are used with a support-width parameter
v = 2.0 for the Gaussian prior. The numerical solution of the maximum-entropy meshfree
method with MOD is compared to the (MINI element) solution. Results for the normalized
tip deflection are shown in Table for both meshes. The numerical and exact solution
for the nodal hydrostatic pressure along the fibers of the beam (regular mesh only) are
depicted in Fig. 4k for the MINI element and in Fig. f4|(b) for the maximum-entropy
meshfree method. For the pressure field, the MINI element has some oscillations about the
analytical solution, whereas the maximum-entropy solution is devoid of oscillations and is in
very good agreement with the analytical solution. The convergence study of the normalized
tip deflection for the regular mesh is shown in Fig. for the MINTI element and the MEM
method. The numerical results indicate that compared to the finite element solution, the

MEM solution has better accuracy and converges faster towards the exact tip-deflection.



4.5. Numerical Results and Discussions 50

Ay

a_}
e D
7

A
A 4

(c)

Figure 4.3: Cantilever beam problem. (a) Model geometry and boundary conditions; (b)
Regular mesh of three-node triangles; and (c) Irregular mesh of three-node triangles. Unless
otherwise stated in the text, nodal degrees of freedom are as shown in Fig. 1] for both
compressible and near-incompressible elasticity.

To assess the influence of numerical integration, a study of the MEM method with STD
and MOD schemes is conducted. The numerical results for ¥ = 0.3 and v = 0.499999 are
presented in Fig. For v = 0.3, the standard displacement-based max-ent formulation
is used with nodes located only at the vertices of the triangles. From the convergence
curves in Fig. .6la), we observe that the rate of convergence of STD (with 3-, 6-, and
12-point quadrature) and MOD techniques are in agreement with theory—the energy norm
of the error is of O(h). For v = 0.499999, the nodal-averaged pressure formulation is
adopted, and an additional displacement-node is inserted in the middle of every triangle.

It is evident from the curves in Fig. @.0I(b) that a 3-point Gauss quadrature is insufficient
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Figure 4.4: Cantilever beam problem. (a) Nodal pressure for the MINI element; and (b)
Nodal pressure for the maximum-entropy meshfree method.

(under-integration leads to lack of convergence), and only with higher-order Gauss quadra-

ture is the convergence rate closer to optimal. This is not surprising, since 3-point and
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Figure 4.5: Convergence of the normalized tip deflection for the cantilever beam problem.
4n x n (n is the number of divisions along the y-direction) mesh pattern is used on the
upper half of the beam.

6-point quadrature rules in a triangle are exact for second-order and fourth-order bivariate
polynomials, respectively, but the max-ent basis function for the interior node bears similar-
ity to a cubic bubble function, which renders the integrand of the stiffness matrix to be like
a fourth-order bivariate polynomial. Hence, the improved accuracy with 6-point quadra-
ture is realized, with 12-point quadrature being able to deliver about the same accuracy
as the modified integration scheme. The numerical results demonstrate the performance of
STD and MOD schemes, and establishes that the MOD technique can deliver accurate and
optimal convergence in MEM computations.

Lastly, the accuracy and rate of convergence of the MINI element and the maximum-
entropy meshfree method for two support-width parameters v are compared in Fig. 7]
For the Gaussian prior, v = 2.0 represents a larger support and v = 4.0 a smaller support.
From Fig. .7, we observe that the max-ent and finite element solutions are accurate and

have the optimal rate of convergence in the energy norm for both support sizes.
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Figure 4.7: Rate of convergence in energy norm for the cantilever beam problem for two
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divisions along the y-direction) mesh pattern is used on the upper half of the beam.

4.5.3 Cook’s Membrane

The model geometry and boundary conditions for the Cook’s membrane problem is shown

in Fig.[A8(a). This standard benchmark problem is suitable to test the behavior of the near-

incompressible formulation under combined bending and shear (see for instance, Refs. [10]
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[64196]). The left edge is clamped and the right end is subjected to a shear load F' = 6.25
per unit length (total shear load of 100). The following material parameters are considered:
E = 250 and v = 0.4999. A regular mesh of three-node triangles is used with a mesh
pattern of n x n divisions per side. A reference mesh for n = 6 is shown in Fig. E.8|(b).
Maximum-entropy basis functions are used with a support-width parameter v = 2.0 for the
Gaussian prior. The numerical solution of the maximum-entropy meshfree method with
MOD is compared to the MINI element solution. The convergence study of the vertical
tip displacement at point A upon mesh refinement is shown in Fig. L8]c) for both the
MINI element and the maximum-entropy meshfree method. Numerical results indicate that
the max-ent solution has a faster convergence in the vertical tip displacement vis-a-vis the
MINI element solution. It is also observed that the MINI element produces oscillations in

the hydrostatic pressure field, whereas the maximum-entropy pressure field is smooth.

4.5.4 Three-Dimensional Cantilever Beam

In this example, a three-dimensional cantilever beam subjected to an end load is studied to
establish the robustness of the maximum-entropy meshfree method in bending problems.
The geometry, boundary and loading conditions are depicted in Fig. L9(a). The tetrahedral
background mesh used in this example is illustrated in Fig. f9(b). The geometry and
loading parameters are set as follows: L = 21, H = 4, W = 6 and P = 50000. The
following material parameters are considered: E = 200000 and v = 0.4999. We focus
on the tip deflection at point A of the beam whose exact solution is —21.11, as well as
on the smoothness of the pressure field. The analysis is conducted for the MINI element
and the MEM method. In the latter case, the MOD integration technique is used. The
corresponding numerical solutions are shown in Figs. f10(a) and [LI0(b) for the MINI
element, whereas Figs. [£10(c) and AI0(d) depict the solutions for the MEM method. We
note that the maximum-entropy solution is proximal to the exact one, whereas the MINI
element solution behaves somewhat ‘stiff’ on the same mesh. Additionally, a smoother

pressure field is observed in the maximum-entropy meshfree method than in the MINI
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Figure 4.8: Cook’s membrane problem. (a) Model geometry and boundary conditions; (b)
Sample mesh; and (c) Vertical tip displacement. Nodal degrees of freedom are as shown in
Fig. 411

element method.

In order to demonstrate the need for the MOD integration scheme in three dimensions,

the same analysis is conducted using an eight-order Gauss quadrature rule (STD integration



4.5. Numerical Results and Discussions 56

VY

H
Z/ ! yP

A
Y

\ |
\ L \

Figure 4.9: Three-dimensional cantilever beam. (a) Geometry, boundary and loading con-
ditions; and (b) background mesh for integration.

scheme) for the MEM method. The numerical and exact tip deflections at point A are
summarized in Table L4l We observe that the STD scheme can not deliver the correct
result, and indeed higher-order Gauss quadrature is needed. The latter is not surprising
since due to the unstructured mesh, the support of basis functions can get significantly
large leading to under-integration if the accuracy of the quadrature rule employed is not
sufficient. However, use of very higher-order Gauss quadrature is unappealing in a meshfree

method since it imposes a computational burden on the simulations.
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Figure 4.10: Three-dimensional cantilever beam. (a) MINI element solution for vertical

displacement; (b) MINI element solution for hydrostatic pressure field; (¢) MEM solution
for vertical displacement; and (d) MEM solution for hydrostatic pressure field.

Table 4.4: Tip deflection for the three-dimensional cantilever beam at point A.

Method Numerical Exact
MINI —16.02 —24.11
MEM (MOD) —24.02 —24.11
MEM (STD) —141.99 —24.11

4.5.5 Three-Dimensional Rigid Flat Punch

In this example, a simple model of three-dimensional frictionless indentation is considered
to showcase the performance of the MEM method under compressive loads. Similar bench-
mark problems are typically studied in two dimensions [64,06,[171]. The geometry of the
problem is depicted in Fig. A ITla). A severe constraint on allowable deformation states is

introduced by fully clamping the bottom surface and the four lateral surfaces. A frictionless
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Figure 4.11: Three-dimensional rigid flat punch. (a) Geometry and boundary conditions;
and (b) background mesh for integration.

downward displacement of 0.15 is applied on the center of the top surface within a square
area of 2/3 x 2/3. Due to the symmetry of the problem, only a quarter of the geometry
is considered. The material parameters are set to £ = 3 x 107 and v = 0.4999. The
unstructured tetrahedral background mesh shown in Fig. ELTT[(b) is used to demonstrate
the ability of the MEM method. The numerical solutions for the MINI element are pre-
sented in Figs. M12(a) and L.I2kb), whereas the maximum-entropy solutions are depicted
in Figs. E12(c) and EI2l(d). In light of these results, the MEM method is clearly superior

in the prediction of the displacement field and in realizing a smoother pressure solution.
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Figure 4.12: Three-dimensional rigid flat punch. (a) MINI element solution for displace-
ment field; (b) MINT element solution for hydrostatic pressure field; (¢) MEM solution for
displacement field; and (d) MEM solution for hydrostatic pressure field.

4.5.6 Leaky-Lid Driven Cavity Flow

The leaky-lid driven cavity flow problem is a standard benchmark to test the performance
of numerical methods in incompressible flow [7,[49L[167,172]. The geometry, background
mesh and prescribed velocity along the boundary of the domain are depicted in Fig.
Max-ent basis functions are used with a support-width parameter v = 2.0 for the Gaussian

prior.
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Figure 4.13: Leaky-lid driven cavity flow. Geometry, mesh and boundary conditions.

In Fig. E14] the numerical velocity and hydrostatic pressure fields for the MINI element
and MEM formulation are compared. We observe that the velocity field is quite similar for
both approximations and that they are in agreement with the numerical results of Ref. [I67].
A good match between the velocity of the MINI and MEM solutions is observed in Fig.
However, the MEM method better predicts the hydrostatic pressure field with a smoother
solution throughout the domain. This behavior is also confirmed by the results shown in
Fig. L1606l where the nodal pressure is plotted for two background meshes along line Q-Q.
The first one, a coarser mesh of 12 x 12 divisions and the second one, a finer mesh of 24 x 24
divisions shown in Fig. T3l On the finer mesh, the MINI element solution drifts away from
the smooth MEM solution, and the former also has some oscillations. The situation is still
worse for the MINT element in the coarser mesh, whereas the MEM solution on both meshes

is similar and they are in agreement with the results of Ref. [167].
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Figure 4.14: Leaky-lid driven cavity flow. (a) MINI element solution for velocity field, (b)
MEM solution for velocity field, (¢) MINI element solution for hydrostatic pressure field;
and (d) MEM solution for hydrostatic pressure field.

4.5.7 Poiseuille Flow

In this example, we are interested in predicting the steady laminar flow between two fixed
(no-slip) parallel plates (sufficiently large compared to the gap between the plates) when
a parabolic velocity field is prescribed at the inlet. This problem is known as Poiseuille
flow [I73]. The geometry, background mesh and boundary conditions are shown in Fig. 417
On considering unit dynamic viscosity and vanishing natural boundary conditions at the

outlet, the following analytical solution is valid well away from the edge of the plates [I73]:
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Figure 4.15: Leaky-lid driven cavity flow. Nodal velocity measured along lines (a) P-P and
(b) Q-Q.
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Figure 4.16: Leaky-lid driven cavity flow. Nodal pressure measured along line Q-Q (a) for
12 x 12 mesh and (b) for 24 x 24 mesh.
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Figure 4.17: Poiseuille flow. Geometry, mesh and boundary conditions.

u=1-(y—1)>2 (4.28a)
v=0, (4.28b)
p = —2x + 16, (4.28c¢)

Eqgs. (@28a)) and (4.28D) are imposed as essential boundary conditions at the inlet and
on the upper and bottom plates. Max-ent basis functions are used with a support-width
parameter v = 2.0 for the Gaussian prior. The numerical axial velocity and pressure field
are depicted in Fig. I8 We observe that both the MINI element and MEM solutions

match the analytical solution in (L28]).

4.5.8 Inf-Sup Tests

The numerical inf-sup test described in Section 4] has been assessed for meshfree meth-
ods [291/44]. Here, the inf-sup test is applied on three problems: leaky-lid driven cavity flow,
Poiseuille flow, and a square domain (the same used for the cavity flow) with zero-velocity
imposed along the boundary. When a vanishing velocity is imposed along the boundary of

the domain, a zero pressure field must be obtained everywhere. Otherwise, the formulation
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Figure 4.18: Poiseuille flow. (a) MINI element solution for axial velocity, (b) MEM solution
for axial velocity, (c¢) MINI element solution for hydrostatic pressure field; and (d) MEM
solution for hydrostatic pressure field.

Table 4.5: Values of «y, in the numerical inf-sup tests.

Problem n=4 n==~8 n =12 n =16
Cavity 0.295 0.308 0.308 0.300
Poiseuille 0.112 0.113 0.113 0.113
Zero-velocity 0.295 0.308 0.308 0.300

would suffer from spurious pressure modes [16]. In order to compute the numerical inf-sup

value, four nodal discretizations are considered in each problem. The background meshes

are shown in Fig.[£T9 Numerical inf-sup values are presented in Table[ .5l From Table [4.5]

we observe that for all the tests the numerical inf-sup values converge to a value that is

bounded away from zero with successive mesh refinements. Since the whole boundary has

been imposed with essential boundary conditions for the leaky-lid driven cavity flow and

zero-velocity tests, one constant pressure mode was obtained in both cases. However, the

constant pressure mode can be eliminated if one essential boundary condition is removed

from the boundary. We also mention that a zero-pressure field was obtained for the zero-

velocity test, which indicates that the MEM formulation is free of spurious pressure modes.

The inf-sup test is therefore passed and the MEM formulation is stable.
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Figure 4.19: Distorted background meshes employed for the inf-sup test. (a), (b), (c¢) and
(d) for the leaky-lid driven cavity flow and the zero-boundary velocity problems; (e), (f),
(g) and (h) for the Poiseuille problem. n x n mesh pattern is used for the leaky-lid driven
cavity flow and zero-boundary velocity problems, while for the Poiseuille flow, n x n/2 mesh
pattern is considered. In both cases n is the number of divisions along the x-direction.
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Chapter 5

Maximum-Entropy Meshfree
Method for Near-Incompressible

Nonlinear Elasticity

In this chapter, the formulation of the maximum-entropy meshfree method for two-dimensional
near-incompressible nonlinear elasticity is presented. Some basic concepts on nonlinear con-
tinuum mechanics that are used in several parts of this chapter are first given. A novel
meshfree formulation for near-incompressible elastic solids at finite strains is then pre-
sented. The performance of the maximum-entropy meshfree method in large deformation
analysis with near-incompressible behavior is investigated. Structured and unstructured
three-node triangular background meshes are employed in three numerical experiments: a
combined bending-shear problem (nonlinear Cook’s membrane), a plane strain compres-
sion of a rubber block, and a frictionless indentation problem. In all the experiments, the
maximum-entropy solution is compared to two finite element solutions that use three-node
triangular meshes, namely, the linear displacement/constant pressure triangle (T1P0) and

the MINI [166] element.
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5.1 Basic Nonlinear Continuum Mechanics

5.1.1 Reference Map

The motion of a body is mathematically described by a mapping x between initial (X) and

current (x) body particle positions as
X:X(X7t) EX(X7t)7 (51)

where t is the time variable. For a fixed t, the above equation represents the mapping
between the undeformed and deformed bodies. On the other hand, if X is kept fixed for
a given particle, (B.I]) represents the trajectory of that particle as a function of time. The
undeformed configuration is referred to as material, Lagrangian or reference configuration,
whereas the deformed configuration is referred to as spatial, Eulerian or current configura-

tion.

5.1.2 Displacement Vector

The displacement vector is the distance between the spatial and material configurations of
a particle and is given by

u=x-X. (5.2)

5.1.3 Deformation Gradient Tensor

The deformation gradient tensor is the gradient of the mapping function that describes the

motion and is given by
ox 0x Ju
== =—=1+—. 5.3
X 09X X (5:3)
The deformation gradient tensor plays a prominent role in finite deformation theory since

it is used to define strain and stress measures as well as material constitutive relations. It

accounts for geometrical effects that are neglected in infinitesimal deformation theory.
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5.1.4 Volume Changes
Volume change ratio

It represents the ratio between the volume after deformation per unit reference (infinitesi-

mal) volume, or simply volume change ratio. It is given by

J = detF. (5.4)

If J = 1, no volume change is observed, which is the case when the body has not undergone
any motion (F =T) or if it has deformed, its deformation is isochoric. On the other hand,
J = 0 implies that the body has collapsed into a material particle, which is not physically

acceptable. In general, J > 0 so that the deformation map is one-to-one.

Isochoric deformations

These are deformations that do not induce volume changes (volume-preserving). They only
produce volume distortions. Isochoric deformations are described by J = 1.

Volumetric deformations

These are deformations that induce volume changes (volume-dilatation) that stem from
uniform contraction/dilatation ratio in all directions. They are described by a spherical
deformation gradient tensor as

F = ol, (5.5)

where « is a scalar representing the contraction/dilatation ratio.

5.1.5 Push-Forward/Pull-Back Operations

Measures defined on the material configuration can be expressed in terms of measures
defined on the spatial configuration by means of a push-forward operation, which is denoted

by x«[-]. For instance, the elemental spatial vector dx can be considered as the push-forward
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of its material vector counterpart dX. The operation is written as

dx = x.[dX] = FdX. (5.6)

Conversely, measures defined on the spatial configuration can be expressed in terms of
measures defined on the material configuration by means of a pull-back operation, which is
denoted by x;'[-]. For instance, the elemental material vector dX can be considered as the

pull-back of its spatial vector counterpart dx. The operation is written as

dX = x;dx] = F~ldx. (5.7)

5.1.6 Strain Measures
Right Cauchy-Green deformation tensor

It is a symmetric material tensor given as

C=F"F, (5.8)

which is defined via the push-forward of the scalar product of two elemental material vectors
as

dX1 . dX2 = dX1 -C ng. (5.9)

The right Cauchy-Green deformation tensor represents the change in length of the two
material vectors after deformation along with the change in the enclosed angle between the

two material vectors after deformation.

Left Cauchy-Green deformation tensor

It is a symmetric spatial tensor given as

b =FFT, (5.10)
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which is defined via the pull-back of the scalar product of two elemental spatial vectors as
dX; - dXy = dx; - b ldxy. (5.11)

The left Cauchy-Green deformation tensor represents the change in length of the two spatial
vectors measured from the material configuration along with the change in the enclosed
angle between the two spatial vectors measured from the material configuration.

Green-Lagrange strain tensor

It is a symmetric material tensor defined as
1
E= §(C—I). (5.12)

Euler-Almansi strain tensor

It is a symmetric spatial tensor defined as
e=—(I-b1). (5.13)

5.1.7 Stress Measures

Cauchy stress tensor

It is a symmetric spatial tensor that represents the current force per unit of deformed area.
It is also referred to as true stress tensor or simply stress tensor and is denoted by o.
First Piola-Kirchhoff stress tensor

It is an unsymmetric (neither spatial nor material) tensor that can be interpreted as the

current force per unit of undeformed area and is related to the Cauchy stress tensor by

P=JoF T (5.14)
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Second Piola-Kirchhoff stress tensor

It is a symmetric material tensor that can be interpreted as a force in the undeformed

configuration per unit of undeformed area and is related to the Cauchy stress tensor by

S=JFloF T (5.15)

Kirchhoff stress tensor

It is a symmetric spatial tensor which results from a push-forward of the second Piola-
Kirchhoff stress tensor as

T = FSFT, (5.16)

which can be related to the Cauchy stress tensor by considering (B.15]) to yield

T=Jo. (5.17)

5.1.8 Hyperelasticity

When the work done by stresses during a deformation process is stored in the material
as part of its internal energy and is independent of the path followed to reach the final
configuration from the initial one, the material behavior is said to be path-independent and
is termed hyperelastic. A hyperelastic material is characterized by a strain energy function

or elastic potential W.



5.1. Basic Nonlinear Continuum Mechanics 72

Strain energy function

Various strain energy functions are available. Typical expressions for the strain energy of

isotropic materials commonly used in the finite element and meshfree literature are:

IA(trE)? + uE : E, (St. Venant-Kirchhoff)
U(C) = 3u(trC —3) — plnJ + %(ln J)2, (compressible neo-Hookean)

1

2

wu(trC — 3), (incompressible neo-Hookean )

where A and p are the Lamé material parameters. When modeling incompressible materi-
als with finite elements or meshfree methods, a common practice is to treat the material
as slightly compressible, which results in near-incompressible material behavior. This is
accomplished by separation of the strain energy function into two parts. An isochoric
(distortional) part and a volumetric (dilatational) part. For instance, some examples of
near-incompressible isotropic neo-Hookean materials commonly used to validate numerical

procedures have the expressions:

Su(J23rC = 3) + 2k(J — 1),
U(C) = Lu(J7234rC - 3) + $k(In J)2,
where the parts that depend on the bulk modulus of the material, x, are the volumetric
strain energy functions.
Stress tensors

The second Piola-Kichhoff stress tensor is obtained as

90 (E)
oE

S = (5.18)
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which can also be written in terms of C with the aid of (Z12]) as

9T(C)

=2
S 0C

(5.19)

Various other stress tensors can be obtained using the relations given in Section B.I1.7

Elasticity tensors

Most numerical procedures, as the one proposed in this dissertation, are based on the mini-
mization of a potential energy functional. On taking the first variation of that functional in
an arbitrary direction yields the weak form which is used to build the numerical procedure.
The relationship between stress and strain measures (constitutive relations) are nonlinear
in hyperelasticity, therefore the weak form. An iterative procedure is then needed to find a
solution that satisfies the weak form. Typically, Newton-based methods are employed. The
latter implies that the weak form must be linearized. The linearization is usually done in
the reference (material) configuration. A push-forward operation follows if the linearized
quantities are required in the spatial configuration. As part of the linearization of the weak
form in the reference configuration, we obtain the material or Lagrangian elasticity tensor,

which is given as

_9S(E) _,08(C)

.2
¢ OE 0C (5:20)
F-bar methodology
An incompressible material that undergoes finite strains must satisfy

J=detF = 1. (5.21)

In a numerical method, the above equation is typically enforced by means of Lagrange
multipliers or penalty procedures in the minimization of a potential energy functional. A

standard approach to model incompressible solids by means of penalty procedures implicitly
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introduced in the material constitutive relation is obtained by using the multiplicative

decomposition of the deformation gradient tensor [12L[72,[174H177] as
F = Fdlpdey, (5.22)

where FAl = J1/3T and Fdv = J=1/3F. Due to the fact that the deviatoric part of the
deformation gradient tensor is volume-preserving, det F4¢V = 1. This leaves us with F4l as

the important quantity in the incompressible behavior of the media, namely,
detF = (det Fd“> (det FdeV) = det F4l = 1 (5.23)

to be enforced. For a single-field (finite element or meshfree) approximation, it would
not be possible to satisfy det F4 = 1 without inducing a locking mechanism. However,
a locking-free methodology can be developed in a single-field formulation if the modified
gradient tensor

F = Fpdilpdey (5.24)

is constructed. In (524), F4! = J'/31, which leads to
detF=J=1 (5.25)

to be enforced in lieu of (521]) or (5.23). An identity like (5.24]) is coined as F-bar methodol-
ogy in the literature and has been successfully used in the context of finite elements [72l177]
and isogeometric analysis [12].

Of importance is to note that in standard displacement formulations, (E.2I]) imposes
a severe constraint on possible deformations. That is, the resulting motion is unable to
distort while simultaneously satisfying the incompressibility constraint (5.21]), which leads
to a catastrophic artificial stiffening known as volumetric locking. The F-bar methodology

provides a means to preclude volumetric locking by considering two independent quantities,
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namely, J and J, which both depend on displacement field variables. The resulting motion is
now able to distort while simultaneously satisfying the new constraint (5.25]). An important
step that follows is the appropriate definition of the ‘bared’ quantities in (5.25]). This is

presented in the next section.

5.2 F-bar Methodology in the Maximum-Entropy Meshfree

Method

The key ingredient in the F-bar methodology is the definition of .J. For instance, in Ref. [12]
it is defined as the L? projection onto the lower-order approximation space, whereas in
Ref. [72] it is defined as the ratio of the volume of an element that belongs to a patch
to the total volume of that patch. In the F-bar methodology that is proposed here for
meshfree approximations, J is defined in a different way. The methodology presented in
Chapter M for small strain elasticity is extended to nonlinear computations. To this end, a
corresponding volume-averaged nodal quantity on J is considered for nonlinear analysis as

follows:
B fQ N,J dS2

o= TN a

(5.26)

where N, is a linear finite element shape functioJEI defined on a background (integration)
mesh of three-node triangles and €2 is the union of all the elements attached to node a,
ie., O = UQS. Following the approach of F-bar methodologies that was described in
Section [5.1.8, we define J as the finite element interpolation of the nodal averages given
in (£.26), i.e.,
J=> Noa. (5.27)
a

Note that in the method developed in this dissertation, we compute the average of J it-

self (see ([G.26)) and not the average of J/? as is done in Ref. [12]. This leads to slightly

!Although a meshfree basis function could be used in lieu of N,, this is not strictly needed for the
meshfree method herein since derivatives of N, do not appear in the formulation.
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different results in the weak form and in its linearization. For convenience in further deriva-

tions, (5.24) is rewritten as follows on considering the definition of F4¢¥ and Fdil:

F = oF, (5.28)

where o = (j/J)l/g.

The F-bar methodology of Ref. [12] operates on the potential energy functional, whereas
the corresponding methodology of Refs. [72L[177] operates on the stress measure only. The
former methodology is more consistent in hyperelasticity since it leads to a symmetric
tangent stiffness matrix. The F-bar methodology for meshfree methods is developed along

the lines of Ref. [12]. To this end, the usual space of admissible deformations is considered:
2 ={x:Q—=R?| detF >0, x=x" onl'\}, (5.29)

where 0 € R? is an open bounded domain on the initial (reference) configuration with
boundary I' and y is the mapping that defines the displacement of a particle from its initial
position X to its current position x, i.e., u = x(X) — X = x — X. On the other hand,
I'y is the portion of the boundary where the deformation x* is prescribed. The vectors
of external body forces f; and external surface forces ty are assumed independent of the

motion. Next, the following modified potential energy functional is considered:

(x) = /Q\I/(E(X)) dQ — /Qfo - x dS) — /F to - x dl, (5.30)

where W(E(x)) is the modified strain energy function, which depends on F through the

modified Green-Lagrange strain tensor:

B(y) = % (FTF —1). (5.31)

The weak form of the finite strain near-incompressible elastic problem and its lineariza-
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tion need to be carefully developed due to the dependency of the potential energy functional

on the modified deformation gradient tensor F. We deal with this in the next section.

5.3 Variational Weak Form

The stationarity of (5.30) in the arbitrary direction ve ¥ ={v:Q - R? | v=0 onT,}

given by the directional derivativ

=0 (5.32)
yields the weak form

DII(x)[v] = /QS(X):DE(X)[V] Q) — /Qfo v dQ — g to-vdl' =0, (5.33)

where the modified second Piola-Kirchhoff stress tensor S() is defined as

S(x) =S(E(x)) = (E(x)) (5.34)

and DE(x)[v] needs to be developed. To this end, the following operators are defined:

3 _ .

o) = Y ) { R, (5.350)
a=1 a

90 =220, (5.350)

where Q was defined in (5.26). The complete derivation of DE(x)[v] is presented in Ap-

pendix [Bl The final expression is

DE(y)[V] = %19 (Jtr (VOVF 1)) FTF + a(FTV ). (5.36)

2See Appendix[Al for details on directional derivative and weak form derivation.
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On substituting (5.36) into (B33) leads to the final weak form expression as
_ 1 I o
DII(x)[v] = g/ 9 (Jtr(VOVE™)) S : (FTF) dQ +/ aS : (FIV)gym dQ
Q Q
—/f()'VdQ— t()'VdF:O. (537)
Q I,

5.4 Linearized Weak Form

The implicit numerical solution relies on the linearization of the weak form (B37). The

linearized weak form in the direction of the increment Au is given by
DII(x)[v] + DAI(x)[v, Au] =0, (5.39)

where D*TI(x)[v, Au] = D {DII(x)[v]} [Au] is the second variation of II(x) in Au. The
derivation of the second variation is complicated and leads to many terms. Thus, only the
final result is provided here and details are given in Appendix [Bl The external forces are
assumed independent of the motion, and for the sake of clarity, the second variation is split

into a material and a geometric part:

D’II(x)[v, Au] = (D2ﬁ(x)[v, Au])mat + (D2ﬁ(x)[v, Au])geo, (5.39a)

where

(D*II(x)[v, Au)) 9 (Jtr(VOVE 1) 9 (Jtr(VOAuF 1)) (FTF) : C : (FTF) dQ

I
_|_

mat
ad (Jtr(VIVE™) (FTF) : C: (FTV Au)gym dQ

a(F'VV)gym : C: (FTF) 9 (Jtr(VAuF 1)) dQ

+

+
Wl Wk Ol
ST—So— 35—

+ [ A(FTVV)gym : C: (FTVOAu)gy, d9, (5.39b)

S~

3See Appendix [A] for details on linearization of nonlinear equations and linearization of the weak form.
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and

(D2TI(x)[v, Au) . =— %/Q%e (Jtr(VOVE™)) 0 (Jtr(VPAuF 1)) S : (FTF) dQ
e /Q %_9(Jtr(VovF_l)tr(VOAuF_l))S:(FTF) a0
_% /Q %Q(Jtr(VOVF_IVOAuF_I))S:(FTF) do
+é /Q tr(VOVF WOAUF)S : (FTF) dO
+§ /Q 9 (Jer(VOVF 1)) 9 (Jir(VOAuF—1) S : (FTF) d2
+2 /Q o (Jir(VOVE ) S 1 (FTVOAu)qy d2
+ /Q A(ETVOV) g : §9 (Jer(VOAUF)) dO
+/Qa2§ : [(VO) TV Au)gym dO. (5.39¢)

In the derivation of (5.39b), the modified Lagrangian elasticity tensor C is obtained as
follows:
IS(E)

C=CEN) = 5 (BN)- (5.40)

Finally, upon collecting terms from (5.37) and (£39b)-(53%) and substituting into (5.38])

yields the final expression for the linearized weak form.

5.5 Discrete Linearized Weak Form

Discretization of the linearized weak form (5.38)) leads to the following Newton-Raphson
scheme:

HAL (K o+ Kigeo) ) Aul) = HHALR _ tHALp (1), (5.41)

where ¢t + At is to indicate that the material and geometric tangent stiffness matrices,
Kot and Kge,, respectively, and the external and internal nodal force vectors, F and T,

respectively, are computed incrementally by application of boundary conditions (forces and
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displacements) in increments. On the other hand, i stands for the equilibrium iterations
that are involved within an increment. A solution obtained from the Newton-Raphson
scheme (B.41)) is computationally demanding in most practical applications due to the con-
tinuous formation of Kya¢ and Kge,. Other schemes that provide a compromise between
accuracy and computational cost are desired. Among such schemes BFGS [I7§] seems to
be the most robust for large computations and is therefore widely used in the implementa-
tions in this dissertation. Details on the latter and other Newton-based schemes for solving
nonlinear equations are provided in Appendix [C]

In order to derive the material and geometric tangent stiffness matrix, as well as the
residual nodal force vector (right-hand side of (5.41l)), the following maximum-entropy

approximations are used for both the test and trial functions in the reference configuration:

3
Aup(X) =) ¢a(X)Au,, (5.42a)
a=1
3
Va(X) =) ¢a(X)va, (5.42b)
a=1

where now the nodal quantities are related to the nodes of the three-node triangular back-
ground (integration) mesh plus an extra interior node per triangle, which mimics a bubble
node ensuring a good balance between number of displacement degrees of freedom and num-
ber of dilatational constraints [7]. Fig. 5] depicts a sample mesh used for displacement
approximation as well as averaging of J (see (5.26])) in the maximum-entropy meshfree
method. In what follows, the following matrix notations which result from symmetry con-

siderations are used:

T
{C} = {F'F} = [ Cii Coo 2012} : (5.43)

T
{g} = [ S11 Ses Sio :| ) (5.44)
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Figure 5.1: Mesh to compute volume-averaged nodal J around a representative node a.
Filled black circles represent displacement nodes and open circles are the nodes used for
linear finite element shape functions.

Ciinn Cuae Cinie
{Cy=| Co11 Cro2o Cooto | > (5.45)
Cion1 Ciza2 Cioio

where {-} denotes Voigt notation; and the following matrix forms which result from the

discretization procedure:

(F11) '¢q x 0

B, = 0 (FQQ)_1¢(LY , (5.46)
(Fo1) Yogy  (Fi2) Yogx
F11¢q7X F21¢q,X
132 = Fiaggy Foohgy ) (5.47)
Fiodgx + Fiidgy Foodgx + Fordgy

9 (Jm™By) Ciy

Bi* = | 9 (/m"™B,)Cy |- (5.48)

21 (JmTBq) 612
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_ 1_ _
B, = gB’;'f +aBy. (5.49)

Additionally, the following vector that arises from some trace operations is defined:
T
m:|:1 1 1] . (5.50)

5.5.1 Residual Nodal Force Vector

The residual nodal force vector is R = '7AtF — A1) and is obtained upon discretiza-

tion of (5.37), which yields

R = ) v, [/QqﬁqfonJr/F(bqtodP
q

_1 Tm ~1T & _ o — T 5

5.5.2 Material Tangent Stiffness Matrix

The material tangent stiffness matrix is obtained upon discretization of (5.39b). Before
proceeding likewise, terms in (5.39b) are rearranged such that the following expression is

obtained:

(D*I(x)[v,Au]), = /Q (V%) :C: (VAn)dQ, (5.52)

mat

where

Vo) = %0 (Jer(VOF 1) € + a (FTV(-) (5.53)

sym *

Due to the symmetry of (5.52]), further arrangements can be done by using Voigt notation

to obtain

(D*I(x)[v,Au]) = /Q (V91 T{CH{V A} d. (5.54)
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Finally, on substituting (5.42]) into (5:54]) leads to the following discrete material tangent

stiffness matrix:
Koot = Y Y v, [ / B, {C}B, dQ} Aug. (5.55)
p q &
5.5.3 Geometric Tangent Stiffness Matrix

On substituting (5:42]) into (5.39k) yields the following discrete geometric tangent stiffness

matrix:

Keo = Y. D vy [—%/ﬂ%@(JBEm)H(JmTBq) {C}T{S} a0
+%/Q%_9(JBgmmTBq) {C}T{S}dn
~ 3 | 50 0,900, TE ) (8} de
+y [ FT900,)(9%,)TE O () de
3 Ja
+3/ J (JB,m) 9 (Jm"B,) {C}"{S}d
9 Ja
v /Q o (JB m) {8)TBY d0
+§ /Q o(BY)T(8} 9 (JmB,) dO
i / 02(V96,)T8(V%,) d2| Au, (5.56)
Q

5.6 Numerical Results and Discussions

In this section, the performance of the maximum-entropy meshfree (MEM) method for two-
dimensional analysis of near-incompressible elastic solids at finite strains is examined. By
means of three benchmark problems, the ability of the MEM method in the nonlinear regime
is tested by comparing its numerical solution to the corresponding ones of two mixed u-p
finite elements, namely, the linear displacement/constant pressure triangle (T1P0) and the
MINI [166] element. The former is well-known to fail the LBB inf-sup stability condition [13-

[15], whereas the second one is LBB stable and has proved to be the most stable finite element
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for two-dimensional analysis of fully incompressible elastic solids at finite strains [I79]. In

all the numerical experiments, the following neo-Hookean material is considered:
[y 1 2
U(C) = §'U(J trC — 3) + 5/{(1}0 J)?, (5.57)

with material parameters p = 80.1938 and x = 400942, which results in a near-incompressible
elastic solid with v = 0.49989. For all the examples in this section, the nodal degrees of
freedom are arranged as shown in Fig. 5.l In respect of the parameters of max-ent basis
functions (see Section B.3), we usually set v = 1.1 to v = 1.5 for the quartic prior. In
the examples, fifth-order accurate Gauss integration scheme has been used for the MEM
method, whereas third-order sufficed for the finite element methods. This difference in
the integration order is expected since meshfree basis functions are rational functions and
their supports do not coincide with the background cells that are employed in the numeri-
cal integration. Details on numerical integration issues in meshfree methods are presented
in Section of Chapter Ml In the examples, no explicit unit system is adopted, but

consistency of units is assumed.

5.6.1 Nonlinear Cook’s Membrane

In this example, the ability of the proposed meshfree formulation is studied by means of
a standard benchmark problem that has been employed by many authors to test the be-
havior of near-incompressible formulations under combined bending and shear in distorted
meshes [121[64.96]. The model geometry and boundary conditions are shown in Fig. 5.2(a).
The left edge of the membrane is clamped and its right end is subjected to a shear load
F = 6.25 per unit length (total shear load of 100). A reference background mesh of n x n
subdivisions is shown in Fig. B.2I(b) for n = 20. The convergence study of the vertical tip
displacement at point A upon mesh refinement is shown in Fig. 5.2)(c) for the MEM method
and both finite element methods. Numerical results indicate that the MEM convergence is

superior to the finite elements convergence, and that is achieved with moderate mesh size.
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We observe that the MINT element solution behaves somewhat ‘stiff’ and therefore requires
an even more refined mesh than those employed in the analysis to emulate what is obtained
by the MEM method. On the other hand, the poor convergence showed by the T1P0
element is symptomatic of its well-known instability which does not preclude locking com-
pletely. The overall performance of the three methods considered is presented in Fig. for
the vertical displacement and pressure field solutions obtained with the mesh depicted in
Fig. 5.2(b). We observe that the MEM and MINI element solutions deliver smooth pressure

fields, whereas the pressure field for the T1P0 exhibits checkerboard pattern.

5.6.2 Plane Strain Compression

The following example is a standard test to demonstrate the ability of meshfree methods
to withstand very large strains [S81LR9LO3]. It consists of a plane strain analysis of a rubber
block compression. The top and bottom surfaces of the block are assumed perfectly bonded
to rigid plates. The compression is simulated by incrementally applying a downward dis-
placement on the top surface with the bottom surface fixed to deform the model up to a
vertical nominal strain of 35%. Due to the symmetry of the problem, only a quarter of
the model is considered. The model geometry, boundary conditions and background mesh
employed in the analysis are depicted in Fig. [54l A pictorial of the analysis results for
the vertical displacement and pressure fields is presented in Fig. for the last converged
solution of the MEM and finite element methods. The poor performance of the T1PO el-
ement is evident in Figs. (.5)(a) and [E5|(b) since an unreasonable deformation is predicted
with checkerboarding pressure modes. On the other hand, the MINI element solutions pre-
sented in Figs. B.0l(c) and [B.5[(d) reveal that the MINI element is unable to achieve the
total compression imposed in the test even though checkerboard pressure pattern is not
observed. Finally, the MEM solutions illustrated in Figs. B.5l(e) and E.E(f) seem reasonable
with respect to the solutions reported in other meshfree studies [81,[89,03] for the total
compression imposed in the analysis. It is also evident that the MEM method does not

present checkerboarding pressure modes and delivers smooth pressure field.
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Figure 5.2: Nonlinear Cook’s membrane. (a) Model geometry and boundary conditions;
(b) Sample mesh; and (c) Vertical tip displacement convergence.
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Figure 5.3: Nonlinear Cook’s membrane. Vertical displacement and hydrostatic pressure
field solutions for the mesh shown in Fig. E2(b). (a),(d)T3P0 element; (b),(e) MINI ele-
ment; and (c),(f) MEM method.
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Perfect bonding

Yo

1

Figure 5.4: Plane strain compression. Model geometry, boundary conditions and back-
ground mesh.

We also study up to how much deformation the MEM method is able to withstand. In
this endeavor, a very particular behavior was found in the upper right corner of the domain
when undergoing extreme large deformations. This behavior is shown in Fig. for a
vertical nominal strain of 70%. It consists of a flipping mechanism of the elements close to
that corner. However, this is not surprising for a method like the one presented here for
a couple of reasons. Firstly, the computation of meshfree basis functions derivatives does
not rely on the parametric mapping that is needed in finite element methods. Therefore,
issues such as negative volumes and singular Jacobi matrix, which breakdown finite element
computations, do not arise in meshfree methods. Secondly, in the proposed method for
near-incompressible analysis, the determinant of the deformation gradient tensor, namely
J, is not relevant in the near-incompressible limit but the average J, which is computed
from the elements surrounding a node. Therefore, even though J < 0 may occur for a
particular element, the average J can still be a positive scalar allowing the computation
anyhow. We think that this behavior should be viewed as a virtue of meshfree methods

rather than a weakness, but we realize that the underlying phenomena which motivate this
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Figure 5.5: Plane strain compression. Vertical displacement and hydrostatic pressure field
solutions. (a),(b) T3P0 element; (c),(d) MINI element; and (e),(f) MEM method.
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Figure 5.6: Plane strain compression. Extreme large deformations achieved by the MEM
method. (a) Vertical displacement field and background integration mesh in the deformed
configuration; and (b) nodes in the deformed configuration.

flipping behavior must be studied in detail. Among the underlying phenomena that might
shed some light on the flipping of elements are physical instabilities, numerical instabilities

and integration errors of the Gauss scheme employed.

5.6.3 Frictionless Indentation of a Rubber Block

The last example considered is a frictionless indentation of a rubber block of rectangu-
lar cross section, which is assumed to be in plain strain condition. The bottom and
lateral surfaces are fixed in their normal directions, whereas a rectangular frictionless
rigid indenter pushes inward a portion of the top surface. The indentation is simulated
by incrementally applying a downward displacement on the top surface to deform the
block up to a vertical nominal strain of 35%. A test of this type has been employed to
evaluate near-incompressible formulations under highly constrained compression (e.g., see

Refs. [12,64, 06l 180,181]). In addition, we wanted to evaluate the proposed method for
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(b)

Figure 5.7: Frictionless indentation of a rubber block. (a) Model geometry and boundary
conditions; and (b) Unstructured mesh employed.

near-incompressible hyperelasticity when an unstructured background mesh is employed
for numerical integration of the weak form. Although a good tessellation can be easily
obtained with two-dimensional mesh generators, we intentionally constructed a zone with
poorly-shaped elements to compare the solution of the meshfree method with those of its
finite element counterpart. The model geometry, boundary conditions and the unstructured
background mesh employed in the analysis are shown in Fig. 5.7l The vertical displacement
and pressure fields resulted from the analysis are illustrated in Fig. for the last converged
solution of the MEM and finite elements methods. Once again, we observe that the T1P0
predicts an unreasonable deformed shape with checkerboarding pressure modes, whereas
the MINI element withstands only up to a vertical nominal strain of around 24%. We also
observe that in the MINT element solution an unreasonable deformation state results near to

the zone where poorly-shaped elements reside, which clearly is a consequence of the acute
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Figure 5.8: Frictionless indentation of a rubber block. Vertical displacement and pressure

solutions for the last stable increment. (a),(b) T3P0 element; (c),(d) MINI element; and
(e),(f) MEM method.

angles in the element. On the other hand, we observe that the solution delivered by the
MEM method does not present that unreasonable deformation state. The superiority of

the MEM method is attested by its ability to withstand the total indentation applied by

the indenter with a smoother pressure field.
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Chapter 6

Summary and Conclusions

In this dissertation, a Galerkin meshfree method based on maximum-entropy approxi-
mants was developed and its applications to elastostatics was demonstrated. The standard
displacement-based Galerkin formulation was used to model compressible linear elastic
solids, whereas the classical u-p mixed formulation for near-incompressible linear elastic
media was adopted to formulate a volume-averaged nodal technique, in which the pressure
variable is eliminated from the analysis. This resulted in a single-field (displacement or ve-
locity) formulation that is devoid of volumetric locking. Since numerical integration errors
are prevalent in meshfree methods, a modified Gauss integration technique was proposed to
accurately compute the weak form integrals of the linear elastostatics problem. On consid-
ering ideas from assumed strain methods and nodal integration techniques, a redefinition
of the small strain tensor was devised, which after discretization with maximum-entropy
basis functions resulted in a correction to the stiffness matrix that alleviated integration
errors in meshfree methods and proved to pass the patch test to machine accuracy.
Various standard benchmark problems were studied to assess the accuracy, perfor-
mance and versatility of the maximum-entropy meshfree method for compressible and
near-incompressible linear elastic media. Patch tests on structured and unstructured back-

ground meshes were considered to affirm its satisfaction to within machine precision for both
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compressible and near-incompressible linear elasticity. A cantilever beam subjected to a
parabolic end load was then considered. The maximum-entropy and MINI element displace-
ment field solutions were compared to the exact (analytical) solution for both compressible
and near-incompressible behavior. A convergence study for the vertical tip displacement
was conducted. The maximum-entropy meshfree method converged faster with mesh re-
finements, whereas the MINI element solution behaved somewhat ‘stiff’. In the maximum-
entropy computations, standard Gauss integration sufficed for compressible elasticity with
low-order quadrature, whereas the proposed modified Gauss integration provided a more
efficient scheme with less Gauss points evaluations in the near-incompressible case. Op-
timal rates of convergence in the L?- and energy-norm of the error were found for both
the maximum-entropy meshfree method and the MINI element, but the former was more
accurate. The MINI element results also showed some pressure oscillations, whereas the
maximum-entropy meshfree method delivered smooth pressure field. A further example
consisted in a combined bending and shear problem (Cook’s membrane). A convergence
test for the vertical tip displacement upon mesh refinement was conducted for both the
maximum-entropy method and the MINI element. Superior convergence was found in the
maximum-entropy meshfree method.

We then moved to three-dimensional problems with the aim of testing unstructured
tetrahedral background meshes. Two examples were considered. A three-dimensional can-
tilever beam subjected to an end load and a three-dimensional rigid flat punch test. In the
first problem, the maximum-entropy and MINI element vertical tip displacement solutions
were studied. The maximum-entropy method delivered almost the exact (analytical) solu-
tion, whereas the MINI element solution underestimated it. Due to the complexity of basis
functions supports on unstructured tetrahedral meshes, standard Gauss integration proved
to be prohibitive for practical use—eight-order accurate scheme was insufficient, whereas
the proposed modified Gauss integration scheme only required a second-order accurate
scheme. In the three-dimensional rigid flat punch test, smoother solutions were found in

the maximum-entropy meshfree method for both displacement and pressure fields.
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In further examples, the volume-averaged formulation was tested in two Stokes flow
problems: a leaky-lid driven cavity flow and the Poiseuille flow. Good agreement between
maximum-entropy and MINI element velocity field solutions were found in both problems.
However, in the former the pressure field predicted by the maximum-entropy meshfree
method was smooth, whereas pressure oscillations were found in the MINI element solution.
Finally, a series of numerical inf-sup tests were performed to assess the stability of the
maximum-entropy meshfree method in various Stokes flow problems. With nodal refine-
ment, the numerical inf-sup value remained a constant that was bounded away from zero;
furthermore, there were no spurious pressure modes. These results affirmed the stability of
the maximum-entropy meshfree method.

The maximum-entropy meshfree method was extended to treat near-incompressible elas-
tic solids at finite strains in two dimensions. The nonlinear version of the volume-averaged
nodal technique was formulated and used to average the dilatational constraint at a node
from the displacement field of surrounding nodes. The methodology resulted in a single-field
formulation (displacement-based) which is devoid of volumetric locking and is amenable for
meshfree methods due to its node-wise character. It also exhibits commonalities with the
F-bar methodologies that were recently developed for finite elements [96] and isogeomet-
ric analysis [12], and therefore it can be regarded as an F-bar methodology for meshfree
methods. In devising this meshfree formulation, we were driven by the idea of improving
the poor performance of low-order meshes in simulating near-incompressible hyperelastic
problems. The meshfree method was developed for background meshes composed of three-
node triangles, and its extension to four-node tetrahedra for three-dimensional simulations
is straightforward. However, since fifth-order accurate standard Gauss integration scheme
was required in two-dimensions, a more efficient integration scheme should be designed for
the method to be robust in three-dimensional nonlinear computations.

Two different finite elements that rely on three-node triangular meshes were consid-
ered as a basis for comparison with the maximum-entropy meshfree method. The linear

displacement /constant pressure triangle (T1P0) and the MINI element were considered.
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A nonlinear Cook’s membrane was considered to assess the meshfree methodology under
combined bending and shear. A convergence study of the vertical tip displacement was per-
formed. The maximum-entropy convergence was superior to the finite elements convergence
with mesh refinements. Both the maximum-entropy meshfree method and the MINT element
presented smooth pressure fields, whereas the pressure field delivered by the T1P0 showed
checkerboard pattern, as expected. A plane strain compression of a rubber block was next
considered to study the performance of the meshfree method under extreme large deforma-
tions induced by compression. The T1P0 element performed poorly with checkerboarding
pressure modes, whereas the MINI element could not withstand the complete compression
imposed in the analysis, although it did not present checkerboard pressure pattern. On the
other hand, the maximum-entropy solution confirmed its superior performance by achiev-
ing the total compression imposed in the analysis with a smoother pressure field. The last
example consisted in a frictionless indentation of a rubber block. The maximum-entropy
meshfree method along with the finite elements were tested on an unstructured three-node
triangular mesh with badly-shaped elements. As expected, the T1P0 element predicted
an unreasonable displacement field with checkerboard pressure pattern, whereas the MINI
element was unable to withstand the total displacement imposed by the indenter and pre-
sented a rare deformation near to the badly-shaped elements location. The superiority of
the maximum-entropy meshfree method was verified by its ability to deform up to the total
compression induced by the indenter with a smoother pressure field.

Two contributions have emanated from this dissertation. The first original contribution
is the development of a novel technique for modeling near-incompressible media with low-
order meshes (triangles and tetrahedra) in an effective manner due to the mesh distortion
insensitivity property of meshfree basis functions. A formulation that renders low-order
meshes viable for near-incompressible analysis is especially beneficial in two situations.
Firstly, in complex geometries, where low-order triangular or tetrahedral meshes might be
the only alternative for discretization, and secondly, in large deformation computations,

where mesh distortions can invalidate the analysis if standard finite elements are used on
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such meshes. The second original contribution is the development of an efficient and accu-
rate numerical integration technique for meshfree methods that use cell-based integration.
Numerical integration in meshfree methods is well-known to be prone to errors with patch
test not being met to within machine precision. Many attempts have been made to improve
the accuracy of the numerical integration in meshfree methods. However, these have re-
sulted in expensive numerical integration schemes. The modified Gauss integration scheme
proposed in this dissertation has proved to be a simple and inexpensive alternative for
accurate integrations that also provides patch test satisfaction to machine accuracy. In
particular, it was shown to be very efficient in three-dimensional settings on unstructured
tetrahedral background meshes. The generality of the proposed modified Gauss integration
technique renders it applicable not only for any Galerkin-based meshfree method such as
the element-free Galerkin method and the natural element method, but also for polygo-
nal finite element interpolants. The extension of the nonlinear meshfree methodology to
three-dimensional near-incompressible solids at finite strains along with the development of
an accurate numerical integration scheme for meshfree methods in nonlinear analysis will
demonstrate the potential of the maximum-entropy meshfree method as a numerical tool.

Developments along these lines are suggested for future investigations.



Appendix A

Directional Derivative and

Linearizations

A.1 Directional Derivative

Consider a real-valued function f(z). The directional derivative of f(z) in the direction n

is defined as
0f(z + en)

D(s)fn] = =75

(A1)

which represents the gradient of f(z) in the direction n and gives a linear (or first-order)
approximation to the increment in f(z) due to the increment n. The directional derivative is
used in the derivation of the weak form (see Chapter [ Section [5.3)) and in its linearization
(see Chapter [, Section [5.5]). The use of the directional derivative in the linearization of

nonlinear equations is described in the next section.

A.2 Linearization of Nonlinear Equations

Consider a real-valued nonlinear system of equations r(z) = 0, which has a solution estimate

zj at iteration k. A new value zp1 = z; + W is obtained in terms of an increment w by
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establishing the linear approximation

r(zk41) ~ r(z;) + Dr(zg)[w] = 0, (A2)

where D(-)[w] is the directional derivative in the direction w. The directional derivative on
r(zy) yields
Dr(zy)[w] = Kw, (A.3)

where the tangent matrix K is

K(zy) = [Kij(zi)], Kij(zg) = (A.4)

On substituting ([A.3) into (A.2), a set of linear equations in w is obtained to be solved in

a Newton-Raphson iteration as

K(zy)w = —1(zg), 211 =2z + W. (A.5)

A.3 Linearization of the Weak Form

On considering a reference map x (see Chapter [l Section EI1]) and a potential energy
functional II(y) = 0, the weak form is given by the directional derivative of II(x) in the

arbitrary direction v as
Oll(x + ev)

DGO = =5

=0, (A.6)

which yields a set of nonlinear equations to be linearized using the procedure presented in

Appendix[A22l To this end, the directional derivative of (A6 is taken in the direction A

1 'We use the notation Au instead of the simpler u to indicate that in an incremental procedure like the
Newton’s method, the displacements are obtained by increments Au that sum to u in the final solution.
The increment Au is the incremental solution at a given iteration.
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and consider ([A2)) to arrive at the linearized weak form as
DII(x)[v] + D*I(x)[v, Au] = 0, (A7)

where D?II(x)[v, Au] = D {DII(x)[v]} [Au]. A common practice is to set v = du, where
ou is the so-called vector of wvirtual displacements. When virtual displacements are em-
ployed, (AL6)) and (A7) are known as virtual work and linearized virtual work, respectively.

As an example of the above procedure, consider the weak form in the initial (reference)
configuration in terms of the second Piola-Kirchhoff stress and the Green-Lagrange strain

tensor given as

DII(x)[v] = /QS(X):DE(X)[V] Q) — /Qf(] -vdQ — /F to-vdl =0, (A.8)

where the vectors of external body forces f; and external surface forces ty are assumed

independent of the motion. The linearization of (A.g)) in the direction Au is

/QS(X);DE(X)[v]dQ—/Qfo.vdfz—/rtto.vdr

+ / DE(x)[v]:DS(x)[Au] dQ + / S(x):D?E(x)[v,Au]dQ = 0, (A.9)
Q Q
where
DS(x)[Au] = g;&)) :DE(x)[Au] = C : DE(x)[Aul], (A.10)

with C as the material elasticity tensor. In (A9), D?E(x)[v, Au] is developed to give (for
instance, see Ref. [I82])

D2E(x)[v,Au] = = [(V'V)TVAu + (V°Au)TVOy]. (A.11)

DO =



Appendix B

Derivations for the Meshfree F-bar

Methodology

B.1 Directional Derivative of the Modified Green-Lagrange

Strain Tensor

The detailed derivation of (5.30)) is developed. Before proceeding, some expressions are first
defined. The following equations are obtained from the standard literature (for instance,

see Ref. [182]):
DF(x)[v] = V', (B.1)

DJ(x)[v] = Jtr (VOVF ). (B.2)
We now consider (B:2)) and proceed to take the directional derivative of (5.26) to obtain

_ Jo NoJtr (VOVE™1) dQ

N0 (B.3)

DJo (x)[V]
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On considering the operator given in (G.35h) in conjunction with (B3]), the directional
derivative of (0.27) yields

DJ(x)[v] = 0 (Jtr (VOVF1)). (B.4)

1/3

Recalling that o = (J/J) ", its directional derivative is developed with the aid of (B.4)

and the operators defined in (5.30) as follows:

Do) = 5o |FDIKM ~ DIV
= g7 [0 (e (VOVF™Y)) — Jtr (VVF )]

= ) (Jur (VVE ). (B5)

We are now equipped to develop the directional derivative of the modified Green-Lagrange

strain tensor. We continue by taking the directional derivative of (5.31):

1 T
PE(M = 5 [(DFCOW) " F + FTDE ()] - (B.6)
We now make use of (5.28)) in conjunction with (BI) and (B3] to write

DF(x)[v] = Da(x)[vIF +aDF(x)[v]

= %a 9 (Jtr (VOVE™H)) F + aViv. (B.7)

On substituting (B.7) into (B.6) leads to the final expression for the modified Green-

Lagrange strain tensor:

DE(y)[v] = %19 (Jtr (VOVF 1)) FTF + a(FTV ). (B.8)
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B.2 Second Variation of the Modified Energy Functional

The detailed derivation of (5.39) is presented. The directional derivative of the modified
second Piola-Kirchhoff stress tensor is first derived. In this process, we use (5.40) in con-

junction with (B.8) and proceed as follows:

psian = B (B(y) : DE[AY
= C:DE(x)[Au]
_ %19(Jtr(VOAuF_1))C_:(FTF)+aC_:(FTVOAu)Sym. (B.9)

Next, the definition of the directional derivative of the inverse of a tensor [I82] is used to

write

DF!(x)[Au] = ~-F 'V AuF~, (B.10)

which is employed along with (B.2)) in the derivation of the following directional derivative:

D (Jtr (VOVE™1)) [Au] = DJ(x)[Aujtr (VOVE™) + Jtr (VOVDF ' (x)[Au])
= Jtr (VOVF_l) tr (VOAuF_l) —tr (VOVF_lvoAuF_l)] .

(B.11)

The next expressions that need to be developed are the directional derivatives of the opera-

tors that were defined in (5.35). With the aid of (B.II)) the following expression is obtained

for the operator (5.35h):

DO (Jtr (VOVE™Y)) [Au] = 0 (Jtr (VIVE ) tr (VP AuFt))

— 0 (Jtr (VOVE ' VO AuF 1)) . (B.12)
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Now, we apply the directional derivative on the operator ([G.35b) and make use of (B.I2l)
along with (B.2)), (B.4) and (B.II) to arrive at the following expression:
_ 1 _ _
DY (Jtr (VIOVE 1)) [Au] = - =50 (Jtr(VOVE™1)) 6 (Jtr(VPAuF 1))
+ %_9 (Jtr(VOVE Dt (VP AuF 1))
—%_ (Jtr(VOVE WO AuF 1))

+tr(VOVF IV AuF ). (B.13)

Next, observing that D (FTF) [v] = 2DE[v] and employing (B3], yields the following

directional derivative:

—

D (9 (Jtr (VOVF™)) FIF)[Au] = - =0 (Jtr(VOVE 1)) 6 (Jtr(VOAuF 1)) F'F

[\

+ =0 (Jtr(VOVE H)tr(VOAuF 1)) F'F

0 (Jtr(VOVF ' VAuF 1)) F'F

ST N

+ tr(VIVF 'V AuF HFTF
+ gé‘ (Jte(VOVF)) 9 (Jtr(VOAUF ) FTF

+ 209 (Jtr(VOVE ™)) (FT'V°Au)gym.  (B.14)

One more directional derivative is needed to complete the derivation. To this end, (B.5]) and (B.7)

are considered in the derivation of

1
3a2J

— %a(FTVOV)Symtr(VOAuF_I)

+ %a(]?‘TVOV)Symv&l (Jtr(VOAuF 1))

+ a? ((VOAu)TVOV)

D (a(FTVOV)Sym) [Au] = + (FTVOV)ymb (Jtr(VOAuF 1))

(B.15)

sym *
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The last step is to take the second variation of (B30), or equivalently, the directional
derivative of (5.37)). The derivation is split into a material and a geometric part and

motion-independent external forces are assumed. This leads to

mat 3

(D2M(x)[v, Au)) = + L /Q 9 (Jtr(VOVE ™)) (FTF) : DS(x)[Au] dQ

+ / A(FTVOV)gym : DS(y)[Au] d2, (B.16)
Q

1

(D), Au)), . = + 2 / §:D (9 (Jir (VOVE)) FTF) [Aul
3 Ja

geo

—I—/ S:D (a(FTVOV)Sym) [Au] dQ. (B.17)
Q

Finally, on substituting (B.9)) into (B.16]) yields the material part of the second variation

that was presented in (5.39b):

(DXI(y)[v, Au]) . = +$ / 9 (Jtr(VOVF)) 0 (Jer(VOAUF ) (FTF) : € : (FTF) dQ
Q

mat
+ %/ ad (Jtr(VOVE ™)) (FTF) : C: (FTVOAu)gym dQ
Q

+ %/ a(FTVOV)ym : C: (FTF) 0 (Jtr(VOAuF_l)) dQ
Q

—I—/ AA(FTVV)gym 1 €t (FTVOAR) gy dO, (B.18)
Q
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and on substituting (B.I4]) and (B.I3) into (BI7) leads to the corresponding geometric

part that was presented in (2.39k):

—_

Wl =

S~ — 55—

(D[, Ad)), =

geo

— 0 (Jtr(VVF 1)) 0 (Jtr(VPAuF 1)) S : (F'F) dQ

+

0 (Jtr(VOVF Htr(VPAuF ™)) S : (F'F) dQ

S N S
[\

0 (Jtr(VOVF'VPAuF 1)) S : (F'F)d

tr(VOVF ' V0AuF 1S : (FTF)dQ

_|_

3 (Jtr(VOVE ) 9 (Jtr(VPAuF 1)) S : (FTF) dQ

+
WIN WIN Ol W Wl W

ad (Jtr(VIVF1)) S (FTVOAu)gym dO

_|_

A(FTVOV)gym : SO (Jtr(VPAuF 1)) dQ

_|_

a®S 1 [(V'V)T VO Aulgy dO. (B.19)

+
S~



Appendix C

Newton-Based Methods for the

Solution of Nonlinear Systems

C.1 Introduction

The methodology to solve nonlinear system of equations by means of Newton’s method was
summarized in Appendix[A2l Here, different approaches are considered to implement the
Newton’s formula (A.5]). The Newton’s formula corresponding to the problems considered

in this dissertation is given in (5.41]). For convenience, it is rewritten here again as follows:

HATR (i) Ay() = AR _ tHAtp(i=1) (C.1a)

K = Kuat + Kgeo, (C.1b)

where t + At is to indicate that the material and geometric tangent stiffness matrices,
Kat and Kgeo, respectively, and the external and internal nodal force vectors, F and
T, respectively, are computed incrementally by application of boundary conditions (forces
and displacements) in increments. An increment defines a step. On the other hand, i

stands for the equilibrium iterations that are involved within a step. An initial tangent
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stiffness matrix and an initial residual force vector are usually computed in the reference
configuration (u = 0) to start the iterations. The tangent stiffness matrix and residual
force vector are updated (reformed) as iterations go on. The reformation of the residual
force vector is carried out at every iteration with the most updated solution. However,
the reformation of the tangent stiffness matrix can take place after a selected number of
iterations or steps. Moreover, the tangent stiffness matrix can be approximated, again at
every iteration or after a selected number of iterations or steps. These options to compute
the tangent stiffness matrix lead to different procedures. Some of them are summarized in
the following sections of this appendix. Once the iterations are started, they are continued
until appropriate convergence criteria are satisfied. Some of these criteria are discussed

later in this appendix. The solution is then computed as
u™ = u® 4 aAu®, (C.2)

where 0 < a < 1 is a relaxation parameter that attempts to find the length of the Newton
direction Au that gives a better solution update. This slows convergence but increases the
possibility to converge to a solution, especially when convergence is difficult to achieve with
a = 1. To find «, so-called line search techniques are employed. In this dissertation, the

[linois algorithm [I83] has been employed as the line search technique.

C.2 Newton-Raphson Method

In the Newton-Raphson method (also known as full Newton or Newton’s method), the ma-
terial and geometric tangent stiffness matrices are reformed (assembled) at every iteration.
The Newton’s formula for the Newton-Raphson method reads exactly as in (CI). Although
reformation at every iteration can be an expensive task, the Newton-Raphson method is
attractive since it provides quadratic convergence to the solution if the initial guess (usually

chosen as u = 0) is sufficiently close to the solution.
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C.3 Modified Newton-Raphson Method

A more inexpensive alternative to the Newton-Raphson method is the modified Newton-
Raphson method. The main idea consists in reforming the tangent stiffness matrix only
few times during the analysis. For instance, the tangent stiffness matrix can be computed
one time in the initial (reference) configuration (u = 0), and be employed as is for the rest
of the analysis. The foregoing method is referred to as the initial stress method [16] and its

Newton’s formula becomes
oKmatAu(i) _ AR t—I—AtT(i—l)’ (C.3)

where YK .t stands for the material tangent stiffness matrix evaluated in the initial (refer-
ence) conﬁguratio. However, the convergence of this method is slowed, and therefore it
requires greater number of iterations within each step to achieve convergence.

In a more general view, the Newton’s formula for the modified Newton-Raphson method
is given as

TR (1) = AR At (i-1) (C.4)

where 7 corresponds to one of the accepted equilibrium configurations at time 0, At, 2At,
..., ort. The modified Newton-Raphson method involves less tangent stiffness reformations
than in the Newton-Raphson method. However, its convergence is slowed. The number
of reformations depends on the degree of nonlinearity in the system response. The more

nonlinear the response, the more often the reformations should be performed.

C.4 Broyden’s Method

Instead of reforming the tangent stiffness matrix, an approximation to it can be employed.

The approximation is termed secant matrix because in one dimension it reduces to a secant

'Notice that the geometric tangent stiffness matrix is a null matrix in the initial configuration, and
therefore it does not appear in (C.3)).



C.5. BFGS Method 110

method. Procedures that attempt to approximate the tangent stiffness matrix are grouped
within so-called quasi-Newton methods. Broyden’s method [I84] is one alternative that
belongs to quasi-Newton methods. Its Newton’s formula is (Cl) with K being a secant
matrix rather than a tangent matrix. The secant matrix is updated every time on using the
last known solution. However, the update is inexpensive since it only involves an assembly
procedure on an initial tangent stiffness matrix, which is usually chosen as “K... The
secant matrices are then computed using a recursive formula on the initial tangent stiffness

matrix. The Broyden’s update is computed as follows:

RO-D _ _ <t+AtT(i—l) _ t+AtF) 7 (C.5)
Aul=D = g — -1, (C.6)

(ARG-D — K61 . Aul-D) © Aul-)
Au(i—l) . Au(i—l) '

K0 — K1) 4 (C.8)

C.5 BFGS Method

The BFGS method [I78] is another alternative that belongs to quasi-Newton methods. It
operates similarly to Broyden’s method. The only distinction is that the update procedure
is computed as follows:

ARGED @ ARG (K(i—l) .Au(i—l)) ® (K(i—l) .Au(i—l))

() — gG=1) _
K K + ARG . Auli—1) Aul—1) . K(@=1) . AuG-1)

(C.9)

C.6 Convergence Criteria

Typical convergence criteria are based on displacement or residual norms. A displacement

criterion is the following:

Au® - Aul®
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whereas a residual criterion is

en = SVRO RO, (C.11)

n

where n is the total number of nodes in the domain of analysis. The equilibrium itera-
tions are terminated when preset tolerances are satisfied. A common technique is to check
convergence on both norms as ep < Dtol and er < Rtol, where Dtol and Rtol are the
displacement and residual tolerances, respectively. However, most of the times the former

suffices.

C.7 Practical Implementation of Nonlinear Solvers

Numerical tests reveal that a combination of the nonlinear solvers described above performs
better than any of the solvers by themselves. Most of the examples in this dissertation
have been solved using a nonlinear solver in which the modified Newton-Raphson method
is combined with the Broyden’s or BFGS method. The second combination performed
better in most of the cases. Additionally, the geometric part of the tangent or secant
stiffness matrix is usually disregarded. A typical sequence starts at the beginning of a step
with a reformation of the tangent stiffness matrix with the last known solution. In the
rest of the iterations of that step, and in all the iterations of the next 5 or 10 steps, only
BFGS updates are employed. That sequence is repeated during the entire analysis. If at
some point the solution diverges before the preset number of BFGS steps is completed, a
reduction in that number is considered until convergence is restored. This scheme usually
requires many more steps and iterations than the Newton-Raphson method. However, the
inexpensive computations that are involved in the Broyden’s or BEFGS updates vastly reduce

the analysis time, which makes the scheme robust for nonlinear analysis.
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