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Abstract 

Real-time monitoring systems that can automatically locate and identify impacts as they occur 

have become increasingly attractive for ensuring safety and preventing catastrophic accidents 

in airspace structures. In most cases, a set of piezoelectric transducers distributed over the 

structure captures strain–time data, which are preprocessed to extract relevant features that are 

fed to a supervised learning algorithm to detect, locate, and quantify impacts. The best results 

achieved to date in feature extraction for impact identification have been obtained with the use 

of principal component analysis (PCA). However, this technique cannot handle complex 

nonlinear data. The primary contribution of this study is the implementation of a novel impact 

identification algorithm that uses a supervised learning algorithm called linear approximation 

with maximum entropy (LME) in conjunction with different linear and nonlinear 

dimensionality reduction techniques, including PCA, kernel PCA, Isomap, local linear 

embedding (LLE), and multilayer autoencoders. The performance of LME with the different 

reduction techniques is tested with two experimental applications. The results show that the 

techniques that do not employ graphs, such as PCA, kernel PCA, and autoencoders, perform 

better, and the method that provides the best results is LME in conjunction with autoencoders. 

It is further demonstrated that LME with autoencoders works better than the algorithms 

available in the literature for similar problems. 

Keywords: impact identification, nonlinear dimensionality reduction techniques, linear 

approximation with maximum entropy, autoencoders 

 

1. Introduction 

Impacts caused by foreign objects during manufacturing, 

operation, or maintenance are a threat to airspace structures 

because their properties can be significantly degraded by 

impact-induced damage. Therefore, real-time monitoring 

systems that can automatically locate and identify impacts as 

they occur have become increasingly attractive for ensuring 

safety and preventing catastrophic accidents. These systems 

usually work with a network of sensors built into the structure, 

whose information is processed by an artificial intelligence 

algorithm.  

Recently, various impact identification systems have been 

developed with artificial neural networks (ANNs) being the 

most popular [1–5]. However, ANNs are susceptible to 

overfitting and they are often stuck in local minima. 

Alternatively, least-squares support-vector machines (LS-

SVMs) solve convex linear optimization problems, which 

have a single minimum [6]. Another option is an extreme 

learning machine (ELM), which is much faster and provides 
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good generalization. Xu [7] showed that, for impact 

identification, kernel-ELM provides similar results to those 

from LS-SVMs while requiring less computational time. The 

time-reversal approach that measures the correlation between 

two signals by their convolution has also been applied in 

impact localization [8–11]. In [12], Sanchez and Meruane 

demonstrated that, for impact identification, the linear 

approximation with maximum entropy (LME) performs better 

than ANN and LS-SVM. 

In impact identification, a set of piezoelectric transducers 

distributed over the structure captures strain–time data, which 

is preprocessed to extract relevant features that are fed to a 

supervised learning algorithm to detect, locate, and quantify 

impacts. The features can be manually extracted by selecting 

the maximum amplitude or the time of arrival, among other 

parameters [12]. Another strategy is to use techniques capable 

of finding a set of representative parameters by themselves, 

such as principal component analysis (PCA). Fu et al. [13, 14] 

and Meruane et al. [15] demonstrated that PCA significantly 

improves the impact localization results. PCA is a linear 

dimensionality reduction technique that facilitates the 

compression of high-dimensional data. However, this 

technique cannot handle complex nonlinear data.  

In recent years, many nonlinear dimensionality reduction 

techniques have been proposed [16] that perform better in the 

cases of real data with non-linear manifolds. Kernel PCA is a 

nonlinear extension of PCA that projects the data in a higher-

dimensional feature with the use of a kernel function [17]. 

This allows the formation of nonlinear mappings. Classical 

PCA scaling retains pairwise Euclidean distances, which does 

not take into account the distribution of adjacent data points. 

Isomap [18] resolves this problem by considering the pairwise 

geodesic distance, which is the distance between a pair of 

points measured over the manifold. Local linear embedding 

(LLE) [19], on the other hand, maps non-convex manifolds by 

considering local data properties. Some other nonlinear 

feature-reduction techniques include Hessian LLE [20], 

Laplacian eigenmaps [21], and local tangent space alignment 

[22], among others. 

More recently, deep learning has been used successfully in 

nonlinear dimensionality reduction thanks to the good 

performance of multilayer autoencoders [23]. Multilayer 

autoencoders are neural networks that are trained to 

reconstruct high-dimensional input vectors. The central layer 

of a multilayer autoencoder has a small number of neurons, 

thus forcing the network to learn a compressed representation 

of the input data. Unlike nonparametric methods (such as 

kernel PCA, Isomap, and LLE), autoencoders can embed new 

high-dimensional data into the existing low-dimensional 

representation without errors, and they can be applied to very 

large data sets. Maaten et al. [24] investigated the performance 

of twelve nonlinear dimensionality reduction techniques in 

artificial and natural datasets and showed that, in the case of 

natural datasets, PCA and autoencoders outperformed the 

other techniques.  

The primary contribution of this study is the 

implementation of a novel impact identification algorithm that 

uses LME in conjunction with different dimensionality 

reduction techniques, including PCA, kernel PCA, Isomap, 

LLE, and multilayer autoencoders. The results show that the 

techniques that do not employ graphs, such as PCA, kernel 

PCA, and autoencoders, perform better, and the method that 

provides the best results is LME in conjunction with 

autoencoders. It is further demonstrated that LME with 

autoencoders works better than the algorithms available in the 

literature for similar problems. 

The remainder of this paper is structured as follows. 

Section 2 describes the different dimensionality reduction 

techniques implemented. Section 3 briefly describes the LME 

algorithm. The methodology followed in this study is 

presented in Section 4. Section 5 describes the experimental 

applications and results. Section 6 compares the results of 

LME with autoencoders with those of other impact 

identification algorithms applied in similar problems. Finally, 

conclusions and recommendations for future research are 

presented in Section 7. 

2. Dimensionality reduction 

Let us assume we count with a dataset represented by a P 

× q matrix Z that consists of q vectors zi with dimension P × 

1. In this case, each vector corresponds to the envelope of the 

strain–time response given by a piezoelectric sensor bonded 

to the structure’s surface. This response captures the stress 

waves generated by an impact force over the structure. Figure 

1 presents an example strain–time signal envelope obtained 

from an impact test. The envelope was computed using a 

Hilbert transform. 

 

Figure 1 Envelope of a strain–time signal obtained from 

an impact test. 
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The dataset represented by Z has an intrinsic dimension p, 

with p < P. Dimensionality reduction techniques transform the 

dataset Z into a new dataset S with dimension p × q. In most 

cases, the intrinsic dimension p is unknown, and therefore, its 

value must be assumed. The following reduction techniques 

for impact identification are described in this section: (1) PCA, 

(2) kernel PCA, (3) Isomap, (4) LLE, and (5) multilayer 

autoencoders.  

2.1 PCA  

Principal component analysis (PCA) reduces the 

dimensions of the dataset while maximizing preservation of 

its variation. PCA projects the data into a new orthogonal 

coordinate system, yielding a set of uncorrelated features 

identified as principal components (PCs). Then the sets of PCs 

with greater contributions to the variance are selected.  

Therefore, the objective is to find a matrix 𝑷 ∈ ℝ𝑝×𝑃 that 

provides a linear mapping from the initial dimension P to a 

reduced dimension p. A new matrix 𝑺 ∈ ℝ𝑝×𝑞, called the 

score matrix, is obtained from  

𝑺 = 𝑷𝒁.      (1) 

The matrix P contains the main p eigenvectors of the 

covariance matrix of Z, which is defined by  

𝑪 =
1

𝑝−1
𝒁𝒁𝑻.                                                              (2) 

 

2.2 Kernel PCA 

Kernel PCA is a nonlinear extension of PCA that projects 

the data in a higher-dimensional feature with the use of a 

kernel function [17]. This allows the formation of nonlinear 

mappings. 

In Kernel PCA, a nonlinear transformation 𝜙(𝒛𝑖) from the 

initial dimension P to a reduced dimension p is defined. We 

define 𝒛𝑖  as the i-th column of the matrix Z, and the covariance 

matrix of the projected features is then calculated as follows: 

𝑪̅ =
1

𝑞
∑ 𝜙(𝒛𝑖)𝜙(𝒛𝑖)

𝑇𝑞
𝑖=1 .                                     (3) 

The eigenvalues λ > 0 and eigenvector V of the covariance 

matrix satisfy 𝜆𝑽 = 𝑪̅𝑽, which be written equivalently as 

𝜆𝜙(𝒛𝑖)𝑽 = 𝜙(𝒛𝑖)𝑪̅𝑽                                             (4) 

The solutions for V lie in the span 𝜙(𝒛1),… , 𝜙(𝒛𝑞). 

Therefore, there exist coefficients 𝛼1, … , 𝛼𝑞, such that 

𝑽 = ∑ 𝛼𝑖
𝑞
𝑖=1 𝜙(𝒛𝑖).                                                   (5) 

Substituting Equations (3) and (5) into Equation (4), we 

obtain 

𝑲𝟐𝜶 = 𝑞𝜆𝑲𝜶,                                                                  (6) 

where α denotes the column vector with entries 𝛼1, … , 𝛼𝑞, 

and the matrix kernel K is defined as 

𝐾𝒊𝒋 = 𝜅(𝒛𝑖 , 𝒛𝑗) = 𝜙(𝒛𝑖)
𝑇𝜙(𝒛𝑗).                                     (7) 

The vector α can be solved by 

𝑲𝜶 = 𝑞𝜆𝜶.                                                                  (8) 

To extract the principal components, the dataset is 

projected onto the matrix 𝑽̃ that contains the main p 

eigenvectors according to 

𝑺 = 𝑲(𝒁)𝑽̃.                                                                   (9) 

A commonly used kernel function is the Gaussian kernel 

with the parameter  [25]: 

𝜅(𝒛𝑖 , 𝒛𝑗) = 𝑒𝑥𝑝 (
−‖𝒛𝑖 − 𝒛𝑗‖

2

2𝜎2
⁄ ).                          (10) 

 

2.3 Isomap 

Classical PCA scaling retains pairwise Euclidean distances, 

which does not take into account the distribution of adjacent 

data points. If high-dimensional data lies on a curved 

manifold, classical scaling may interpret two data points as 

being close together, whereas their distance over the manifold 

is longer. Isomap [18] resolves this problem by considering 

the pairwise geodesic distance, which is the distance between 

a pair of points measured over the manifold  

First, a neighborhood graph G, where every data point is 

connected with its h-nearest neighbors is constructed. Then, 

all of the shortest paths in G are computed using an estimate 

of the geodesic distance, yielding a distance matrix 𝑫̃. The 

entries of the Gram matrix, K, are obtained by double-

centering the distance matrix as, 

𝐾𝒊𝒋 = −
1

2
(𝐷̃𝑖𝑗

2 −
1

𝑞
∑ 𝐷̃𝑖𝑙𝑙 −

1

𝑞
∑ 𝐷̃𝑖𝑙𝑙 −

1

𝑞2
∑ 𝐷̃𝑙𝑚

2
𝑙𝑚 ).      (11) 

Let 𝜆𝑖`and 𝑣𝑖 be the i-th eigenvalue and eigenvector (in 

decreasing order) of the matrix K, respectively. The i-th 

reduced dimension vector is equal to 𝒔𝑖 = √𝜆𝑖  𝑣𝑖. 
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2.4 LLE 

Similar to Isomap, local linear embedding (LLE) [19] also 

builds a graph of the data points. Nevertheless, in this case, the 

global linear structure is approximated by local linear 

regressions, thus avoiding the computation of pairwise 

distances between widely separated data points. The local 

regression is constructed by defining each data point as a 

linear combination of its h-nearest neighbors:  

𝒛𝑖 = ∑𝑤𝑖𝑗 𝒛𝑗 .                                                                (12) 

Considering that the manifold is locally linear, we can 

assume that the weights 𝑤𝑖𝑗  used to reconstruct the data point 

𝒛𝑖 from its neighbors in the high-dimensional space likewise 

reconstruct the data point 𝒔𝑖 from its neighbors in the low-

dimensional space. Therefore, the embedding of each high-

dimensional vector 𝒛𝑖  into the low-dimensional vector 𝒔𝑖 is 

achieved by minimizing the following function: 

𝛷(𝒔) = ∑ |𝒔𝑖 − ∑𝑤𝑖𝑗 𝒔𝑗|
2

𝑖 .                                   (13) 

2.5 Multilayer autoencoders 

Multilayer autoencoders are feed-forward neural networks 

with an odd number of hidden layers, which are trained to 

reconstruct high-dimensional input vectors. The central layer 

of a multilayer autoencoder has a small number of neurons, 

thus forcing the network to learn a compressed representation 

of the input data [23].  

An example of a multilayer autoencoder is presented in 

Figure 2. The network is trained to minimize the mean square 

error between the network’s input and output, thus attempting 

to equalize the network output and input. Training the network 

on the data points 𝒛𝑖 yields a network in which the middle 

layer gives a low-dimensional representation of the datapoints 

that preserves, as much as possible, the structure of 𝒛𝑖. 
Therefore, the low-dimensional representation 𝒔𝑖 is obtained 

by extracting the output of the middle hidden layer when 𝒛𝑖  is 

given as an input. To allow the encoder to make nonlinear 

mappings, nonlinear activation functions, such as sigmoid, are 

generally used. 

 

 Figure 2 Schematic structure of a multilayer autoencoder. 

3. Linear Approximation with Maximum Entropy (LME) 

The database is expressed as pairs of observation and 

feature vectors as: (𝑿1, 𝒀1), … , (𝑿𝑁 , 𝒀𝑁). The feature 

vector 𝑿𝑗 is obtained from the j-th column of S and represents 

a set of features associated with the j-th observation vector 𝒀𝑗. 

On the other hand, the observation vector, 𝒀𝑗 =

{𝑌1
𝑗
, 𝑌2

𝑗
, 𝑌3

𝑗
}  ∈  ℝ3, contains information related to the impact 

location and magnitude, where 𝑌1
𝑗
, 𝑌2

𝑗
 are the x and y 

coordinates of the force location and 𝑌3  
𝑗

is the force 

magnitude. We assume that we measure the response to an 

impact and extract its features as the vector X. Then, the 

problem is to provide an estimation of the force magnitude and 

location as given by the corresponding observation Y. The 

nearest neighbor estimation of Y is given by 

𝒀̂ = ∑ 𝑤𝑗
𝑘
𝑗=1 (𝑿)𝒀𝑗 ,                                                (14) 

where 𝒀1, 𝒀2, … , 𝒀𝑘 are the observation vectors 

associated with the k-closest neighbors of the feature vector 𝑿, 

and 𝑤1(𝑿), 𝑤2(𝑿), … , 𝑤𝑘(𝑿) are weighting functions. 

One alternative is to weight each neighbor equally, as the k-

nearest neighbor (k-NN) algorithm does. Another alternative 

is to make the weights proportional to the distance from the 

test vector 𝑿 to each vector in the database [26]. In linear 

approximation, X is represented by a linear combination of its 

nearest neighbors: 

𝑿 = ∑ 𝑤𝑗
𝑁
𝑗=1 (𝑿)𝑿𝑗 , ∑ 𝑤𝑗

𝑁
𝑗=1 (𝑿) = 1,                    (15) 
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where 𝑿1 , 𝑿2, … , 𝑿𝑁 are the N nearest neighbors of X in 

the training database. Once 𝑤1(𝑿), 𝑤2(𝑿), … , 𝑤𝑘(𝑿) 

are computed, 𝒀 is estimated from Equation (14) with k = N.  

Equation (15) can be solved through least-squares, but the 

solution yields some negative weights, which have no physical 

meaning. Here, the weights are obtained via the maximum-

entropy (max-ent) variational principle, which ensures 

positive solutions [15]; the optimization problem is defined as 

follows:  

𝑚𝑎𝑥
𝒘

[𝐻(𝒘) = −∑ 𝑤𝑗(𝑿)
𝑁
𝑗=1 𝑙𝑛 (

𝑤𝑗(𝑿)

𝑚𝑗(𝑿)
)]      (16) 

subject to the constraints  

∑ 𝑤𝑗
𝑁
𝑗=1 (𝑿)𝑿̃𝑗 = 0, ∑ 𝑤𝑗

𝑁
𝑗=1 (𝑿) = 1,                   (17) 

where 𝑿̃𝑗 = 𝑿𝑗 − 𝑿 and 𝑚𝑗(𝑿)  is a prior distribution. For 

impact identification, the best performance is obtained by 

using the smooth Gaussian prior function [12],  

𝑚𝑗(𝑿) = 𝑒𝑥𝑝 (−𝛽𝑗‖𝑿̃
𝑗‖
2
),                                   (18) 

where 𝜷𝒋 = 𝜸 𝒉𝒋
𝟐⁄ ; 𝜸 is a parameter that controls the support 

of the Gaussian prior at 𝑿𝒋 and therefore its associated to the 

number of neighbors that contribute to the solution; and 𝒉𝒋 is 

a characteristic n-dimensional Euclidean distance between 

neighbors that can be distinct for each 𝑿𝒋.  

4. Methodology 

The general methodology consists of three main parts: 

building of the datasets, selection of parameters, and 

evaluation of the impact identification methods. 

4.1 Building of the datasets 

Three sets of impact data are acquired: one for training, one 

to set up the parameters of the identification algorithm, and 

one to evaluate the algorithm. These databases are referred to 

as training, testing, and evaluation sets, respectively. In the 

three cases, each location in the structure is impacted once 

using an instrumented impact hammer. The structure is linear, 

and consequently, the response is proportional to the 

magnitude of the force. Therefore, the responses to impacts of 

different magnitudes can be determined by simply multiplying 

the measured response by scaling factors. By using this 

methodology, the initial training set is expanded to a new set 

with impacts of magnitudes between 5 and 250 N. 

The information related to the impact’s location and 

magnitude is stored in observation vectors and the envelope of 

the sensor’s time response is normalized and stored in the 

matrices 𝒁𝑡𝑟𝑎𝑖𝑛
𝑖 ∈  ℝ𝑃𝑥𝑞1 , 𝒁𝑡𝑒𝑠𝑡

𝒊 ∈  ℝ𝑃𝑥𝑞2 and 𝒁𝑒𝑣𝑎𝑙
𝒊 ∈  ℝ𝑃𝑥𝑞3 , 

where 𝑖 is the sensor number, 𝑃 is the number of datapoints in 

the time response, and 𝑞1, 𝑞2 and 𝑞3 are the number of 

elements in the training, testing, and evaluation sets, 

respectively. Using the dimensionality reduction techniques 

described in section 2, the matrices are transformed to 𝑺𝑡𝑟𝑎𝑖𝑛
𝑖 ∈

 ℝ𝑝𝑥𝑞2 , 𝑺𝑡𝑒𝑠𝑡
𝒊 ∈  ℝ𝑝𝑥𝑞2 , and 𝑺𝑒𝑣𝑎𝑙

𝒊 ∈  ℝ𝑝𝑥𝑞2, with 𝑝 < 𝑃. 

Lastly, the matrices of all sensors are assembled together: 

𝑺𝑡𝑟𝑎𝑖𝑛 =

{
 

 
𝑺𝑡𝑟𝑎𝑖𝑛
1

𝑺𝑡𝑟𝑎𝑖𝑛
2

⋮
𝑺𝑡𝑟𝑎𝑖𝑛
𝑟 }

 

 

, 𝑺𝑡𝑒𝑠𝑡 =

{
 

 
𝑺𝑡𝑒𝑠𝑡
1

𝑺𝑡𝑒𝑠𝑡
2

⋮
𝑺𝑡𝑒𝑠𝑡
𝑟 }

 

 
, 𝑺𝑒𝑣𝑎𝑙 =

{
 

 
𝑺𝑒𝑣𝑎𝑙
1

𝑺𝑒𝑣𝑎𝑙
2

⋮
𝑺𝑒𝑣𝑎𝑙
𝑟 }

 

 
,  (19) 

where r is the number of sensors. 

4.2 Selection of parameters 

The first parameter to be defined is the intrinsic dimension 

p, which is defined using PCA by selecting the number of 

eigenvalues that retain a cumulative percentage variance of 

99.99%. Depending on the dimensionality reduction 

technique, other parameters and functions must be selected, as 

listed in Table 1.  

 

Table 1 Parameters and functions associated with the 

dimensionality reduction techniques 

Method Parameters 

PCA None 

Kernel PCA  σ (Gaussian kernel) 

Isomap h 

LLE h 

Multilayer 

autoencoders 

Number of hidden layers, 

activation functions, 

regularization, and sparsity.  

Additionally, other parameters that must be selected are the 

number of time steps in the time response signal and the 

number of neighbors, k, in the LME algorithm. All the 

parameters are defined to optimize the impact identification 

algorithm performance, as quantified by the following error 

functions: 

𝐸𝑥 =
1

𝑛𝑡
∑ |𝑌̂1

𝑗
− 𝑌1

𝑗
|

𝑛𝑡
𝑗=1 ,                                                 (20) 

𝐸𝑦 =
1

𝑛𝑡
∑ |𝑌̂2

𝑗
− 𝑌2

𝑗
|

𝑛𝑡
𝑗=1 ,                                                 (21) 
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𝐸𝐹 =
1

𝑛𝑡
∑

|𝑌̂3
𝑗
−𝑌3

𝑗
|

𝑌3
𝑗

𝑛𝑡
𝑗=1 × 100,                                   (22) 

𝐸𝐴 =
𝐸𝑥×𝐸𝑦

𝐴
× 100 =

∑ |𝑌̂1
𝑗
−𝑌1

𝑗
|

𝑛𝑡
𝑗=1

∑ |𝑌̂2
𝑗
−𝑌2

𝑗
|

𝑛𝑡
𝑗=1

𝑛𝑡
2𝐴

× 100,      (23) 

where 𝑛𝑡 is the number of elements in the database; 𝐴 is the 

area of the plate; 𝐸𝑥 and 𝐸𝑦 are the mean errors in the force 

estimation in the 𝑥 and 𝑦 coordinates; 𝐸𝐹  is the percentage 

error in the estimation of the force magnitude, and 𝐸𝐴 is the 

percentage area localization error. The impact identification 

error is defined as 

𝐸𝐼 = 𝐸𝐴 × 𝐸𝐹 .                                                               (24) 

4.3 Evaluation of the impact identification algorithm 

The last step is to evaluate the performance of the algorithm 

using the testing database, which consists of the following 

steps: 

1. Extract a feature vector from the testing database 

𝑺𝑡𝑒𝑠𝑡 . 

2. Select 𝛽𝑗 in Equation (18) so that k neighbors 

contribute to the solution. 

3. Compute the vector weight functions 𝒘 as the 

solution of the optimization problem given in 

Equations (16) and (17). 

4. Read the observation vectors in the database and 

estimate the experimental impact using Equation 

(14). 

5. Compute the force, area, and impact identification 

errors using Equations (22), (23), and (24). 

6. Repeat steps 1 to 5 for all the feature vectors in the 

testing database. 

 

5. Experimental application 

5.1 Aluminum sandwich panel 

The structure was tested by Meruane et al. [15] and consists 

of an aluminum sandwich panel of 700 mm × 400 mm × 24 

mm. The core consists of triangular stiffeners that cross the 

panel in the two principal directions. The thickness of the 

skins is 2 mm and the thickness of the stiffeners is 1 mm. 

Figure 3 shows the internal structure and the assembled panel. 

The experimental setup is shown in Figure 4. The panel has 

clamped–free–clamped–free (CFCF) boundary conditions and 

is excited by an instrumented impact hammer. The response is 

captured by six piezoelectric discs bonded to the surface of the 

structure.  

(a) 

 

(b) 

 

Figure 3 Aluminum sandwich panel. (a) Internal structure; 

(b) panel. 

  

Figure 4 Experimental setup for the aluminum sandwich 

panel. 

Data from the six piezoelectric sensors and impact hammer 

are recorded with a sampling rate of 24 kHz. The hammer is 

used as a trigger, and 20 data points before the impact and 

3500 data points after the impact are recorded. The training set 

consists of a uniform grid of 91 points, as shown in Figure 

5(a). The testing and evaluation sets consist of 20 and 40 

random impacts distributed over the panel, as shown in Figure 

5(b), and (c), respectively. 
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(a) 

  

(b) 

 

(c) 

Figure 5 Location of the experimental impacts applied to 

the aluminum sandwich panel. (a) Training; (b) Testing; (c) 

Evaluation. 

The first parameters to be defined are the number of time 

steps, P, and the intrinsic dimension, p. First, PCA is 

implemented as a dimensionality reduction technique with a 

different number of time steps in the response. The intrinsic 

dimension is defined by selecting the number of eigenvalues 

that retain a cumulative percentage variance of 99.99% and 

the results are presented in Table 2. Next, the performance of 

the impact identification algorithm is evaluated using PCA for 

the different number of time steps. The results of the impact 

identification algorithm depend on the number of neighbors, 

k, that contribute to the solution. Therefore, the performance 

is evaluated as a function of k, as shown in Figure 6. The 

performance does not change significantly with more than 800 

time steps and the best results are obtained with 1600 time 

steps. Consequently, the selected parameters are P = 1600 and 

p = 84. 

The testing set is used for all parameter definitions, whereas 

the evaluation set is used to evaluate the final algorithm 

performance. 

Table 2 Intrinsic dimensions obtained for different 

numbers of time steps. 

Number of time steps, P Intrinsic dimension, p 

200 66 

400 81 

800 84 

1600 84 

3200 84 

 

Figure 6 Performance of the impact identification 

algorithm with PCA as a function of k for different number 

of time steps. 

For the multilayer autoencoder, the definition of the 

activation functions, regularization, and sparsity were 

performed to optimize the signal reconstruction using an 

autoencoder with one hidden layer. The final parameters are 

listed in Table 3, whereas Figure 7 shows an example of an 

input signal from the evaluation dataset and its autoencoder 

reconstruction. The signal is well reconstructed using only 84 

parameters. 

Table 1 Parameters of the optimized autoencoder. 

Parameter or function Value 

Encoder transfer function logsig 

Decoder transfer function purelin 

L2 weight regularization 0.001 

Sparsity regularization 1 
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Sparsity proportion 0.6 

 

Figure 7 Original and reconstructed signal using an 

autoencoder for the aluminum sandwich panel. 

The number of hidden layers in the autoencoder and the 

parameters associated with the other dimensionality reduction 

techniques, as shown in Table 4, are defined by optimizing the 

performance of the impact identification algorithm. Figure 8 

illustrates the performance of the impact identification 

algorithm using all dimensionality reduction techniques as a 

function of the number of neighbors, k, that contribute to the 

solution. The best performance using each dimensionality 

reduction technique is summarized in Table 5. The best results 

overall are obtained with autoencoders, although kernel PCA 

yields a lower error in the force magnitude estimation. Figure 

9 presents the impact identification results for the evaluation 

set using autoencoders and LME. 

Table 2 Dimensionality reduction technique parameters. 

Method Parameters 

Kernel PCA  σ = 3 

Isomap h = 15 

LLE h = 5 

Multilayer 

autoencoders 

Number of hidden layers = 1  

 

 

Figure 8 Performance of the impact identification 

algorithm using all dimensionality reduction techniques as a 

function of k. 

Table 5 Best performance of the impact identification 

algorithm using the different dimensionality reduction 

techniques 

Method EA (%) EF (%) EI (%) 

PCA 0.044 11.84 0.521 

Kernel PCA 0.050 6.66 0.333 

Isomap 0.058 12.50 0.725 

LLE 0.054 11.39 0.615 

AE 0.019 8.16 0.155 

 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 9 Evaluation results for the aluminum sandwich 

panel using the LME + AE algorithm. (a) Force amplitude; 

(b) X coordinate; (c) Y coordinate; (d) localization. 

5.2 Steel cylinder 

The structure consists of a steel cylinder with the diameter 

of 300 mm, height of 300 mm, and thickness of 5 mm. As 

shown in Figure 10, the cylinder is suspended by springs to 

simulate a free–free boundary condition. An instrumented 

hammer applies the impact forces and the response is captured 

by six piezoelectric discs bonded to the surface.  

  

Figure 10 Experimental setup for the steel cylinder. 

Data from the six piezoelectric sensors and impact hammer 

are recorded with a sampling rate of 25.6 kHz. The hammer is 

used as a trigger, and 20 data points before the impact and 

3500 data points after the impact are recorded. The training set 

consists of a uniform grid of 91 points, as shown in Figure 

11(a). Because the structure is a cylinder, a cylindrical 

coordinate system is used. The testing and evaluation sets 

consist of 20 and 30 random impacts distributed over the 

cylinder, as shown in Figure 11(b) and (c), respectively. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 11 Location of the experimental impacts applied to 

the steel cylinder. (a) Training; (b) testing; (c) evaluation. 

Similar to the aluminum sandwich panel case, the intrinsic 

dimension is defined by selecting the number of eigenvalues 

that retain a cumulative percentage variance of 99.99%. The 

results for the different number of time steps are presented in 

Table 6. Next, the performance of the impact identification 

algorithm for the different number of time steps is evaluated 

using PCA. The results of the impact identification algorithm 

depend on the number of neighbors, k, that contribute to the 

solution. Therefore, the performance is evaluated as a function 

of k, as shown in Figure 12. The performance does not change 

significantly with more than 800 time steps and the best results 
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are obtained with 3200 time steps. Consequently, the selected 

parameters are P = 3200 and p = 79. 

Table 6 Intrinsic dimensions obtained for different 

numbers of time steps 

Number of time steps, P Intrinsic dimension, p 

200 46 

400 63 

800 72 

1600 77 

3200 79 

 

Figure 12 Performance of the impact identification 

algorithm with PCA as a function of k for different numbers 

of time steps. 

The configuration of the autoencoder parameters and 

functions are the same as that listed in Table 3. An example of 

an input signal from the evaluation dataset and its autoencoder 

reconstruction is shown in Figure 13. The signal appears to be 

less dampened than in the case of the aluminum sandwich 

panel. This is because the structure is cylindrical and the 

waves travel around the cylinder and take longer to dampen 

themselves. However, the autoencoder still reconstructs the 

signal well using only 79 parameters. 

 

Figure 13 Original and reconstructed signal using an 

autoencoder for the steel cylinder. 

The number of hidden layers in the autoencoder and the 

parameters associated with the other dimensionality reduction 

techniques are defined by optimizing the performance of the 

impact identification algorithm. Table 7 presents the final 

parameters and Figure 14 illustrates the performance of the 

impact identification algorithm using all dimensionality 

reduction techniques as a function of the number of neighbors, 

k, that contribute to the solution. As shown in Figure 14, the 

autoencoder produces the best results, but only for a small 

value of k. The best performance using each dimensionality 

reduction technique is summarized in Table 8. The best results 

overall are obtained with autoencoders, although PCA 

provides a lower error in the force magnitude estimation. 

Figure 15 presents the impact identification results for the 

evaluation set using autoencoders and LME. 

Table 7 Dimensionality reduction technique parameters 

Method Parameters 

Kernel PCA– 

Gaussian 

σ = 240 

Isomap h = 30 

LLE h = 5 

Multilayer 

autoencoders 

Number of hidden layers = 1  

 

Figure 14 Performance of the impact identification 

algorithm using all dimensionality reduction techniques as a 

function of k. 

Table 8 Best performance of the impact identification 

algorithm using the different dimensionality reduction 

techniques 

Method EA (%) EF  (%) EI  (%) 

PCA 0.117 16.93 1.98 

Kernel PCA 0.117 17.02 1.99 

Isomap 0.132 18.77 2.47 

LLE 0.847 29.18 24.70 

AE 0.095 17.09 1.62 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 15 Evaluation results for the steel cylinder using 

the LME + AE algorithm. (a) Force amplitude; (b) θ 

coordinate; (c) Z coordinate; (d) Localization. 

6. Discussion 

The performance of the dimensionality reduction 

techniques varied for each application case, which implies that 

despite the similarity of the problems (i.e., impact 

identification), the dataset manifolds depend on the structure 

type. The techniques that do not employ graphs, such as PCA, 

kernel PCA, and autoencoders, performed better, and the 

dimension reduction technique that provided the best results 

was the autoencoder. These results agree with what was shown 

by Maaten et al. [24] for natural datasets. This may be because 

the construction of neighborhood graphs is susceptible to the 

problems of dimensionality, overfitting, and presence of 

outliers (see [24] for a detailed explanation). Most likely, the 

good performance of autoencoders in both applications is due 

to their ability to learn structures with highly varying 

manifolds.  

Another possible reason for the autoencoder performance 

is its ability to embed new high-dimensional data points from 

the testing and evaluation sets into an existing low-

dimensional representation. In PCA, this transformation is 

defined by the linear mapping P that was applied to the 

original training data. For autoencoders, the trained network 

defines the transformation from the high-dimensional to the 

low-dimensional data representation. However, for the other 

nonlinear techniques (kernel PCA, Isomap, and LLE) only 

nonparametric methodologies are available, which lead to 

estimation errors. 

Table 9 presents the comparison of the results obtained for 

the aluminum sandwich panel using autoencoders and LME 

with those of other algorithms available in the literature. These 

algorithms were evaluated using similar structures of 

aluminum plates that were simply supported by four screws in 

[6], [7], [13], and [14] and an aluminum sandwich panel in 

[15]. The comparison results demonstrate that the proposed 

methodology has better precision.  
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Table 9 Comparison of impact identification algorithms available in the literature with those in the current work. SVM: 

support vector machine; LS-SVM: least-squares SVM; ELM: extreme learning machine; LME:  linear approximation with 

maximum entropy. 

Reference Algorithm Plate size 

(mm2) 

Number 

of 

sensors 

Number of 

training 

impact 

points 

Area error 

(%) 

Force error 

(%) 

Xu [6] LS-SVM Simple plate, 

490 × 390 

4 63 1.06 51.2 

Fu and Xu 

[13] 

PCA+SVM Simple plate, 

490 × 390 

4 63 0.13 - 

Xu [7] Kernel-ELM Simple plate, 

490 × 390 

4 63 0.74 - 

Fu et al. [14] PCA+ 

Kernel-ELM 

Simple plate, 

490 × 390 

4 63 0.24 - 

Sanchez et 

al. [12] 

LME Simple plate, 

490 × 390 

4 61 0.12 7.18 

Meruane et 

al. [15] 

PCA + LME Sandwich plate, 

700 × 400 

6 91 0.031 12.39 

Current 

work 

AE + LME Sandwich plate, 

700 × 400 

6 91 0.019 8.16 

7. Conclusions 

This study proposed the implementation of a novel impact 

identification algorithm that uses different nonlinear 

dimensionality reduction techniques in conjunction with the 

LME method. The algorithm performance was tested by 

considering two experimental cases of an aluminum sandwich 

panel and a steel cylinder. Time-varying strain data were 

measured using piezoceramic sensors bonded to the 

structures. 

The results indicate that, for this application, the techniques 

that do not employ graphs, such as PCA, kernel PCA, and 

autoencoders, perform better. Autoencoders provide the best 

results, most likely because they can learn the structures of 

highly varying manifolds and embed new high-dimensional 

data points into the existing low-dimensional representation 

without errors.  

The results of LME with autoencoders were compared with 

those of other impact identification algorithms available in 

literature. The results demonstrate the potential of LME with 

autoencoders over existing methods. 

The experimental applications represent structures that can 

be used, for example, in aeronautical applications. Therefore, 

precise results can be obtained for the location and 

quantification of impacts in realistic structures. Nonetheless, 

it remains necessary to validate the performance in more 

complex structures. 
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