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Abstract. This article presents a novel impact identification algorithm that uses a

linear approximation handled by a statistical inference model based on the maximum-

entropy principle, termed linear approximation with maximum entropy (LME). Unlike

other regression algorithms as Artificial Neural Networks (ANN) and Support Vector

Machines (SVM), the proposed algorithm requires only parameter to be selected and

the impact is identified after solving a convex optimization problem that has a unique

solution. In addition, with LME data is processed in a period of time that is comparable

to the one of other algorithms. The performance of the proposed methodology is

validated by considering an experimental aluminum plate. Time varying strain data

is measured using four piezoceramic sensors bonded to the plate. To demonstrate the

potential of the proposed approach over existing ones, results obtained via LME are

compared with those of ANN and Least Square Support Vector Machines (LSSVM).

The results demonstrate that with a low number of sensors it is possible to accurately

locate and quantify impacts on a structure and that LME outperforms other impact

identification algorithms.
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1. Introduction

Detecting, locating and quantifying incipient damage on a structure generates a

wide interest in the mechanical, aeronautical, aerospace and civil engineering fields.

Structural damage assessment guarantees the integrity of the structure, which has

a tremendous potential for life-safety and/or economic benefits. Damage due to an

external impact is a concern in structural design. For example, aircraft are susceptible

to impacts from collisions of birds, runway stones and tools dropped during maintenance.

To avoid catastrophic failures it is of critical importance to detect the presence of an

impact damage as soon as it occurs. However, this type of damage, known as Barely
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Visible Impact Damage (BVID), is usually internal and there are no visible indications

of its presence on the surface.

BVID can be detected by Non-Destructive Testing (NDT) techniques such as x-

ray, c-scan or visual inspections. Nevertheless, these techniques are time-consuming,

require access to the portion of the structure being inspected and can only be

performed when the system is out of service, which can be impractical in some cases.

Impact identification methodologies have been proposed as a complement to NDT.

These methodologies would continuously monitor the structure, detecting, locating and

quantifying impacts as they occur. For impact damage, its extend is correlated with

the impact energy. Therefore, by locating and quantifying impacts over a structure it is

feasible to predict possible damage locations, which allows to schedule inspections only

when they are necessary and to perform a localized search, saving inspection time.

Impact identification methodologies can be divided into two groups: model-based

[1, 2] and data-driven [3–13] algorithms. Model-based impact identification involves the

solution of a nonlinear inverse problem that requires to evaluate the numerical model

several times, which can be exceedingly slow for real-time applications. In addition,

model-based algorithms rely on the precision of the numerical model, and any error

in the numerical model will be interpreted as an impact identification error. Within

data-driven algorithms, methodologies based on classification, pattern recognition and

regression have been proposed, being Artificial Neural Networks (ANN) the most

frequently used. Worden and Staszewski [3] and Staszewski et al. [14] used two feed-

forward Multi-Layer Perceptron (MLP) networks to identify impacts on a composite

plate. The first network was trained to detect the impact location, whereas the

second network quantifies the impact magnitude. Haywood et al. [5] investigated two

approaches to locate impacts in a composite panel with embedded piezoceramic sensors:

MLP network and GA-based triangulation. They concluded that both approaches

provide a similar degree of accuracy. LeClerc et al. [6] applied a two-step impact

detection algorithm to an aircraft component. First, a classification network finds the

region of the impact and afterwards another network localizes its position. With this

methodology the researchers were able to obtain better results than those of a single

neural network. Sharif-Khodaei et al. [8] trained a neural network to detect impacts

location on a composite stiffened panel. The network was trained and tested with data

obtained from a finite element model of the structure and the numerical model was

validated with experimental data.

Although ANN can process data very quickly, the slow learning speed and the large

number of parameters that need to be tuned within the training stage are drawbacks

in their application. In the parametric study performed by Sharif-Khodaei et al. [8]

it was demonstrated that the performance of a neural network for impact localization

strongly depends on the network architecture (number of layers and number of hidden

nodes) and network properties (transfer functions and training algorithm). In addition,

ANN have the disadvantage of over-fitting and getting stuck in local minimum. An

alternative are Support Vector Machines (SVM), which exhibit the advantage of global
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optimization and higher generalization capabilities than ANN. Least Squares Support

Vector Machines (LSSVM) further simplifies the regression to a problem that can be

solved from a set of linear equations [15]. Xu [13] implemented a LSSVM to locate

and quantify impacts in an aluminum plate and the results are compared with those of

an ANN approach, demonstrating that LSSVM reaches more accurate results. Fu and

Xu [9] proposed a two-layer SVM to predict the location of impacts on an aluminum

plate structure. Input data is obtained from a Principal Component Analysis (PCA)

of the strain time signal of piezoelectric sensors located over the plate. The results are

compared with those of an ANN, concluding that SVM are capable of accomplishing

better impact localization accuracy than ANN. To overcome the slow learning speed of

ANN, Huang et al. [16] proposed a new learning algorithm called the extreme learning

machine (ELM), which is suitable for single-layer feed-forward networks. This algorithm

provides good generalization at fast learning speeds, and the only parameter that needs

to be tuned is the number of hidden nodes. Since it was first introduced in 2004, the

ELM algorithm has attracted the attention of increasing number of researchers [17]. Xu

[12] compared the algorithm performance among a basic ELM, kernel-ELM and LSSVM

to localize impacts in an aluminum plate. Xu concluded that kernel-ELM is as precise as

LSSVM with lower training and evaluation times. Fu et al. [11] implemented a kernel-

ELM for impact localization using PCA to extract features. Results in accuracy are

similar to those of the SVM, but the kernel-ELM is faster, making it suitable for real-

time applications. The time-reversal approach as been presented as a precise alternative

for impact localization [18–21]. This a one-class nearest neighbor algorithm, in which

the correlation between different impacts is measured by the signals convolution.

A new nonparametric method for supervised learning was presented by Gupta et al.

[22, 23]. This method generalized linear approximation by using the maximum-entropy

(max-ent) principle for statistical inference [24]. Meruane et al. [25, 26] demonstrated

the applicability of the Linear Approximation with Maximum Entropy (LME) method in

structural damage identification. They showed that LME achieves more accurate results

than ANN at a similar evaluation speed. Herein, we demonstrate the applicability of

LME to the impact identification problem.

The primary contribution of this research is the development of a novel impact

identification algorithm that uses a linear approximation method. The linear

approximation is handled by a statistical inference model based on the maximum-

entropy principle [24]. The merits of this approach are threefold: only one parameter

needs to be selected, the impact is identified after solving a convex optimization problem

that has a unique solution and data is processed in a period of time that is comparable

to the one of other regression algorithms such as ANN and SVM. In addition, LME

does not require classical training in which the algorithm is trained once and then the

training data is discarded, but performs a linear interpolation using the training data to

estimate the impact. The main advantage is that new data can be easily incorporated

to the training database with no need of re-training the algorithm as in the case of ANN

and SVM. The performance of the proposed methodology is validated by considering an
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experimental aluminum plate. To demonstrate the potential of the proposed approach

over existing ones, results obtained via LME are compared with those of an ANN and

a LSSVM [13].

In general, with an appropriate number of sensors distributed over the structure it

is possible to accurately locate and quantify impacts. Nevertheless, the objective of an

impact identification algorithm is to locate and quantify impacts with precision using

the minimum number of sensors possible, thus minimizing the instrumentation cost and

avoiding unnecessary wiring. Here, time varying strain data is measured using only four

piezoceramic sensors bonded to the plate.

The remainder of this work is structured as follows: Section 2 presents the proposed

impact identification methodology. Section 3 describes the experimental setup. Section

4 presents the impact identification results using three approaches: LME, ANN and

LSSVM. Finally, conclusions and forthcoming work are presented in Section 5.

2. Impact identification methodology

2.1. Signal processing and feature extraction

The principle of an impact identification algorithm is to detect, locate and quantify

an impact force, with the use of a passive system consisting of sensors distributed over

the structure. Figure 1 illustrates a typical experimental setup for impact identification,

where piezoelectric sensors bonded to the structure detect surface stress waves generated

by the impact.

Structure

Sensors

Impact hammer

Figure 1. Scheme of an experimental setup for impact identification.

Figure 2 presents an example of a strain-time signal obtained from an impact test.

It also shows the frequency spectrum computed from the Fourier transform and the

signal envelope obtained through the Hilbert transform [27].

The amount of strain-time data collected by the sensors is too large to be used

directly in a classification or regression algorithm. Therefore, preprocessing of the

data is necessary to extract characteristics features. In the literature, different features
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extracted from the signals in the time or frequency domain have been studied. Some

example are [5]:

• Maximum and minimum signal amplitude.

• Times at maximum and minimum amplitude.

• Real and imaginary parts of each spectrum integrated over frequency.

• Maximum and minimum of signal envelope.

• Times at maximum and minimum of signal envelope.

• Times of beginning and end of signal envelope.
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(c) Signal envelope.

Figure 2. Example of a strain time signal along with its frequency spectrum and

envelope.

Various studies have shown that the best features for impact identification are the

time and magnitude of the maximum, and the time of arrival measured as the time the

signal exceeds a certain threshold [3, 5, 8]. In the present investigation, after testing

different combinations, it was concluded that the best results are obtained when the

following features are used:

(i) Maximum of signal envelope.

(ii) Time of arrival of signal envelope. The threshold value was defined as a 10% of

the maximum signal amplitude. This time is computed as the elapse time between

the arrival of the first strain signal (among all sensors) and the arrival of the current

signal.
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(iii) Time of the first peak. Defined as the time of the first peak with an amplitude

equal or higher than 50% the maximum of the signal envelope, a peak is defined as

a local maxima in the signal envelope. This time is computed as the elapse time

between the arrival of the first strain signal (among all sensors) and the time of the

first peak in the current signal.

As an example, Figure 3 illustrates the identification of the time of the first peak

and time of arrival in two different signals. The horizontal red line indicates 50% of the

maximum amplitude in the signal, and a red cross shows the first peak that exceeds

the threshold impose by the red line. The horizontal blue line indicates 10% of the

maximum amplitude and a blue cross shows the first time the signal reaches this value.

It should be noted that the time of arrival and the time of the first peak are defined

relative to the time of the first strain signal, which depends on the sensors and impact

location. An absolute reference would be the time of the impact or a fixed reference

sensor, but in a real application the impact is not measured and the only information

available is the signal given by the sensors. On the other hand, using always the same

sensor as reference would result in negative arrival times.
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(b) Example 2

Figure 3. Identification of the first peak and time of arrival.

2.2. Linear approximation with maximum entropy

Let define the observation vector Yj =
{
Y j
1 , Y

j
2 , Y

j
3

}
∈ R3 representing the jth

impact to a structure, where Y j
1 , Y

j
2 are the x and y coordinates of the force location

and Y j
3 is the force magnitude. Let the feature vector Xj =

{
Xj

1 , X
j
2 , . . . , X

j
n

}
∈ Rn

represent a set of characteristics response parameters associated to the impact Yj. In

the present case, the structure has four piezoelectric sensors, and three features are

extracted from the signal envelope of each sensor, as described in the previous section.

Therefore, the feature vector Xj contains 12 parameters.

Assuming that a database with a set of N impact is constructed (X1,Y1), (X2,Y2)

, . . . , (XN ,YN), then the central problem in impact identification is: given a certain

feature X, estimate the corresponding impact Y. The nearest neighbor regression
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estimate of Y is given by

Ŷ =
k∑

j=1

wj(X)Yj, (1)

where Y1,Y2, . . . ,Yk are the observation vectors associated to the k closest neighbors to

the test vector X, and w1(X), w2(X), . . . , wk(X) are weighting functions. The k nearest

neighbor (k-NN) algorithm weights each neighbor equally, thus wi(X) = 1/k, for i =

1 to k. Whereas, a kernel nearest neighbor algorithm base weightings on the distance

from the test vector X to each vector in the database [28].

On the other hand, linear interpolation takes the N feature vectors in the database

and uses a linear combination of them to represent X as [29]

X =
N∑
j=1

wj(X)Xj,
N∑
j=1

wj(X) = 1, (2)

where X1,X2, . . . ,XN are the feature vectors in the database set. Once the weighting

functions are determined, then Y is estimated from (1) with k = N . Typically Equation

(2) is undetermined, and its solution can be tackled via an unconstrained optimization

technique of the family of least-squares. However, these methods produce some negative

weights, which lacks physical meaning. An alternative that produces positive weights is

obtained via the maximum-entropy (max-ent) variational principle [24].

The notion of entropy in information theory was introduced by Shannon as a

measure of uncertainity [30]. Later on using the Shannon entropy, Jaynes [24] postulated

the maximum-entropy principle as a rationale means for least-biased statistical inference

when insufficient information is available. The maximum-entropy principle is suitable

to find the least-biased probability distribution when there are fewer constraints than

unknowns and is posed as follows:

Consider a set of N discrete events {x1, . . . , xN}. The possibility of each event

is pi = p(xi) ∈ [0, 1] with uncertainty − ln pi. The Shannon entropy H(p) =

−
∑N

i=1 pi ln pi is the amount of uncertainty represented by the distribution {p1, . . . , pN}.
The least-biased probability distribution and the one that has the most likelihood to

occur is obtained via the solution of the following optimization problem (maximum-

entropy principle):

max
p∈RN

+

[
H(p) = −

N∑
i=1

pi ln (pi)

]
, (3a)

subject to the constraints:
N∑
i=1

pi = 1,
N∑
i=1

pigr(xi) =< gr(x) >, (3b)

where RN
+ is the non-negative orthant and < gr(x) > is the known expected value of

functions gr(x) (r = 0, 1, . . . ,m), with g0(x) = 1 being the normalizing condition.
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The optimization problem (3) assigns probabilities to every xi in the set. Now,

assume that the probability pi has an initial guess mi known as a prior, which reduces its

uncertainty to − ln pi + lnmi = − ln(pi/mi). An alternative problem can be formulated

by using this prior in (2) [31]:

max
p∈Rn

+

[
H(p) = −

N∑
i=1

pi ln

(
pi
mi

)]
, (4a)

subject to the constraints:
n∑

i=1

pi = 1,
n∑

i=1

pigr(xi) =< gr(x) > . (4b)

In (4), the variational principle associated with
∑N

i=1 pi ln
(

pi
mi

)
is known as the

principle of minimum relative (cross) entropy [32, 33]. Depending upon the prior

employed, the optimization problem (4) will favor some xi in the set by assigning more

probability to them, and eventually, assigning non-zero probability (pi > 0) to a selected

number of xi (i < N) in the set. It can be easily seen that if the prior is constant, the

Shannon-Jaynes entropy functional (3) is recovered as a particular case.

Because of its general character and flexibility, we adopt the relative entropy

approach for our problem, where the probability pi and the discrete event xi is replaced

with the weighting function wi and the feature vector Xi of the linear approximation

problem posed in (2), respectively. This reads:

max
w∈RN

+

[
H(w) = −

N∑
i=1

wi(X) ln

(
wi(X)

mi(X)

)]
, (5a)

subject to the constraints:
N∑
i=1

wi(X)X̃i = 0,
N∑
i=1

wi(X) = 1, (5b)

where X̃i = Xi − X has been introduced as a shifted measure for stability purposes.

Different prior distributions can be used, typical ones are: Gaussian, cubic spline, quartic

spline or constant [34]. Here we tested the four distributions and the best performance

was obtained with a smooth Gaussian,

mi(X) = exp(−βi‖X̃i‖2), (6)

where βi = γ/h2i ; γ is a parameter that controls the support of the Gaussian prior at Xi,

and therefore its associated weight function; and hi is a characteristic n−dimensional

Euclidean distance between neighbors that can be distinct for each Xi. In view of

the optimization problem posed in (5) for supervised learning, maximizing the entropy

chooses the weight solution that commits the least to any one in the database samples

[23].
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The solution of the max-ent optimization problem is handled by using the procedure

of Lagrange multipliers, which yields [31]:

wi(X) =
Zi(X;λ∗)

Z(X;λ∗)
, Zi(X;λ∗) = mi(X) exp(−λ∗ · X̃i), (7)

where Z(X;λ∗) =
∑

j Zj(X;λ∗), X̃i = [X̃ i
1 . . . X̃

i
N ]T and λ∗ = [λ∗1 . . . λ

∗
N ]T.

In (7), the Lagrange multiplier vector λ∗ is the minimizer of the dual optimization

problem posed in (5) [31]:

λ∗ = arg min
λ∈RN

lnZ(X;λ), (8)

which gives rise to the following system of nonlinear equations:

f(λ) = ∇λ lnZ(λ) = −
N∑
i

wi(X)X̃i = 0, (9)

where ∇λ stands for the gradient with respect to λ. Once the converged λ∗ is found,

the weight functions are computed from (6) and the impact force is estimated from (1)

with k = N . It should be noted that if the relationship between the vectors Xj and

Yj is linear, then (1) gives the exact solution for Y. In any other case, Ŷ is a linear

approximation of the vector Y. The quality of this approximation depends on the

topology of the relationship between the vectors Xj and Yj, and on the distance among

the neighbors vectors. Here we will study the proposed approximation using neighbors

with two different distances between them, and the results will be compared with other

algorithms such as ANN and LSSVM.

3. Experimental application

Figure 4 presents the experimental setup, which corresponds to an aluminum plate

with dimensions 490 mm x 390 mm x 2.5 mm that is simply supported by four screws.

The plate is excited by an instrumented impact hammer and the response is captured

by four piezoelectric discs of 20 mm diameter and 0.42 mm thickness bonded to the

surface. Data from the four sensors and impact hammer is recorded with a sampling

rate of 24 kHz. The hammer is used as trigger and 1000 data points before the impact

and 9000 data points after the impact are recorder.

The impact hammer has three interchangeable tips made of steel, aluminum and

plastic. Figure 5 presents examples of impacts in the time and frequency domain

obtained with the different tips. The main difference between impact with different

hammer tips is their width and frequency content.
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(a) Plate (b) Impact hammer

and tips

Figure 4. Experimental setup.
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(a) Plastic tip.
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(b) Aluminum tip.
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(c) Steel tip.

Figure 5. Examples of impacts obtained with different hammer tips.

Six sets of impact data are acquired, two for training, one to set up the parameters

of the identification algorithms and three to evaluate. The training sets consist of a

uniform grid of 117 and 36 points respectively, as shown in Figures 6(a) and 6(b). In

the first training set the spacial distance between impact point is 40 mm in the x-

direction and 30 mm in the y-direction, whereas for the second training set the distance

is 80 mm in the x-direction and 60 mm in the y-direction. In both cases, each point

is impacted once using the plastic tip. The third set consists of 20 random impacts

distributed over the plate as shown in Figure 6(c), each point is impacted once using

the plastic tip. The fourth, fifth and sixth sets consist of 35 random impacts distributed

over the plate as shown in Figure 6(d), each point is impacted once using the plastic,

aluminum and steel tips, respectively.



11

0 100 200 300 400 500
0

50

100

150

200

250

300

350

Coordinate X [mm]

C
oo

rd
in

at
e 

Y
 [m

m
]

 

 

Training impacts Sensors

(a) Training 1.
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(b) Training 2.
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(c) Setting up.
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(d) Testing.

Figure 6. Location of the experimental impacts applied to the plate.

The structure is linear, and in consequence the response is proportional to the

magnitude of the force. Therefore, the response to impacts of different magnitudes can

be determined by simply multiplying the measured response by scaling factors. With

this methodology the initial training sets of 117 and 36 impacts are expanded to two

sets of 1521 and 468 impacts with magnitudes between 5 N and 250 N.

4. Results and discussions

Three regression algorithms for impact identification have been evaluated: LME,

LSSVM and ANN. To quantify the performance of the algorithms, the following error

functions are defined:

Ex =
1

n

n∑
j=1

∣∣∣Ŷj
1 −Yj

1

∣∣∣ , (10)

Ey =
1

n

n∑
j=1

∣∣∣Ŷj
2 −Yj

2

∣∣∣ , (11)

EF =
1

n

n∑
j=1

∣∣∣Ŷj
3 −Yj

3

∣∣∣
Yj

3

× 100, (12)
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EA =
Ex × Ey

A
× 100 =

∑n
j=1

∣∣∣Ŷj
1 −Yj

1

∣∣∣∑n
j=1

∣∣∣Ŷj
2 −Yj

2

∣∣∣
n2A

× 100, (13)

where n is the number of elements in the testing database; A is the area of the plate;

Ex and Ey are the mean errors in the estimation of the force in the x and y coordinates;

EF is the percentage error in the estimation of the force magnitude, and EA is the

percentage area localization error. The results for each algorithm are presented next.

4.1. LME

The procedure to identify impacts using LME is implemented as follows:

(i) Perform an experimental impact test on the plate and construct the feature vector

X.

(ii) Read the feature vectors in the database.

(iii) Select the parameter βi in the Gaussian prior (6), so that k neighbors contribute

to the solution.

(iv) Solve the system of nonlinear equations presented in (9).

(v) Compute the weight functions from (7).

(vi) Read the observation vectors in the database and estimate the experimental impact

from (1).

The only parameter that needs to be selected is the number of neighbors that contribute

to the solution. To select this parameter, the algorithm performance was evaluated with

different number of neighbors using the setting up database. Figures 7 and 8 present

the results for EF and EA as a function of the number of neighbors for the two training

databases. To minimize the area error while keeping a low force error, 260 neighbors

were selected in both cases. Figures 9 to 11 show the impact identification results using

both training databases and the three evaluation databases.
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Figure 7. Force and area error as a function of the number of neighbors in the LME

algorithm for the first training database.
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Figure 8. Force and area error as a function of the number of neighbors in the LME

algorithm for the second training database.
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Figure 9. LME results for the testing database with a plastic tip.
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(a) Training database 1.
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Figure 10. LME results for the testing database with an aluminum tip.
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Figure 11. LME results for the testing database with a steel tip.

4.2. LSSVM

The LSSVM was implemented in Matlab using the toolbox developed by Brabanter

et al. [35]. Since the LSSVM is a single-output variable algorithm, three LSSVM were

trained: the first to identify the force magnitude, and the second and third are trained

to locate the force in the x and y coordinates. The three algorithms have twelve input

parameters corresponding to the feature vector and one output. As selected in [13], the

kernel function is a radial basis function (RBF).

Two parameters need to be selected, the regularization parameter, γ, and the

kernel parameter, σ. To select them, the performance of the three LSSVM trained

with different combinations of γ and σ were evaluated using the setting up database.

The results for the area and force errors are presented in Figures 12 and 13. For the

first training database, the minimum area error is obtained for γ = 1.2 and σ = 3 and

the force error is minimized with γ = 0.9 and σ = 15.5. Therefore, in this case the

first LSSVM algorithm uses γ = 0.9 and σ = 15.5, and the second and third LSSVM

algorithms use γ = 1.2 and σ = 3.

For the second training database, the minimum area error is obtained for γ = 0.3

and σ = 10.5 and the force error is minimized with γ = 0.5 and σ = 16.5. Therefore,

in this case the first LSSVM algorithm uses γ = 0.5 and σ = 16.5, and the second and

third LSSVM algorithms use γ = 0.3 and σ = 10.5. Figures 14 to 16 show the impact

identification results using both training databases and the three evaluation databases.
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(a) Area error. (b) Force error.

Figure 12. Area and force error as a function of the parameters σ and γ in the

LSSVM algorithm for the first training database.

(a) Area error. (b) Force error.

Figure 13. Area and force error as a function of the parameters σ and γ in the

LSSVM algorithm for the second training database.
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Figure 14. LSSVM results for the testing database with a plastic tip.
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(a) Training database 1.
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(b) Training database 2.

Figure 15. LSSVM results for the testing database with an aluminum tip.
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(a) Training database 1.
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Figure 16. LSSVM results for the testing database with a steel tip.

4.3. ANN

The ANN used in the current investigation has the same parameters and

architecture than the one used by Xu [13]. Therefore, a three-layer ANN is trained using

the Levenberg-Marquardt algorithm. The training sets are used to train the network,

during training these sets are divided into two subsets of 80% for training and 20% for

validating. The algorithm trains the network using the early stopping technique, this

is, when the validation error increases for a number iterations, the algorithm stops the

training. The weights of the network at the minimum validation error become the final

weights. The transfer function in the hidden layer is hyperbolic tangent sigmoid and the

transfer function in the output layer is linear.

The network has twelve input neurons corresponding to the parameters of the

feature vector, and three output neurons corresponding to the force coordinates and

magnitude. The number of hidden neurons is selected after a sensitivity analysis; the

network is trained with different number of hidden neurons and the performance is

evaluated with the setting up database. The results for both training databases are

illustrated in Figures 17 and 18, the minimum force and area errors are obtained with

six hidden neurons for the first training database and with three hidden neurons for the
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second training database. Figures 19 to 21 show the impact identification results using

both training databases and the three evaluation databases.
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Figure 17. Area and Force error as a function of the number of neighbors in the ANN

algorithm for the first training database.
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Figure 18. Area and Force error as a function of the number of neighbors in the ANN

algorithm for the second training database.
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(a) Training database 1.
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Figure 19. ANN results for the testing database with a plastic tip.



18

0 100 200 300 400 500
0

50

100

150

200

250

300

350

Coordinate X [mm]

C
oo

rd
in

at
e 

Y
 [m

m
]

 

 

 E
x
= 56 mm

 E
y
= 50 mm

E
A
= 1.40%

E
F
= 11.1%

Experiment ANN result

(a) Training database 1.

0 100 200 300 400 500
0

50

100

150

200

250

300

350

Coordinate X [mm]

C
oo

rd
in

at
e 

Y
 [m

m
]

 

 

 E
x
= 48 mm

 E
y
= 56 mm

E
A
= 1.40%

E
F
= 8.41%

Experiment ANN result

(b) Training database 2.

Figure 20. ANN results for the testing database with an aluminum tip.
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(a) Training database 1.
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Figure 21. ANN results for the testing database with a steel tip.

4.4. Discussions

Tables 1 and 2 summarize the testing results for the three evaluated algorithms.

As expected, the accuracy of the impact identification algorithms dismisses when

the testing database is build with a different type of impacts (different hammer tip) than

those of the training database. This is because the features selected to identify impact

are affected by the frequency content of the signal, and by modifying the hammer tip

the frequency content of the impact and response signals changes.

In addition, the best results are obtained when the distance between impacts

in the database is smaller (training database 1). This is further studied in table 3,

where the localization error (Ex and EY ) is compared with the spatial distance between

training impacts (∆x and ∆y). It can be concluded that the localization error is directly

related to the distance between training impacts, and that the ratio between the LME

localization error and this distance is in the range 0.3-0.5 when the same hammer tip is

used in the training and testing databases.

In general, the best results are obtained for the LME and LSSVM algorithms.

Looking at the average results for the fist training database in table 1, the area error

of LME is 48% lower than the error of LSSVM and 65% lower than the error of ANN,

whereas the force error of LME is 11% lower than the error of LSSVM and 2% higher
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than the error of ANN. On the other hand, for the second training database, in average,

the area error of LME is 20% lower than the error of LSSVM and 55% lower than the

error of ANN, whereas the force error of LME is 14% higher than the error of LSSVM

and 1% lower than the error of ANN. It can be concluded that the LME algorithm

provides a lower area error and that the force error is similar for the three algorithms.

Table 1. Performance of the three impact identification algorithms for the first

training database.

Identification algorithm

Testing Database LME LSSVM ANN

Plastic
Area Error (%) 0.12 0.18 0.32

Force Error (%) 7.18 6.87 8.65

Aluminum
Area Error (%) 0.52 0.90 1.40

Force Error (%) 15.02 16.70 11.1

Steel
Area Error (%) 0.70 1.50 2.10

Force Error (%) 17.30 20.90 19.10

Average
Area Error (%) 0.45 0.86 1.27

Force Error (%) 13.17 14.82 12.95

Table 2. Performance of the three impact identification algorithms for the second

training database.

Identification algorithm

Testing Database LME LSSVM ANN

Plastic
Area error (%) 0.38 0.46 0.48

Force error (%) 10.26 10.40 12.60

Aluminum
Area error (%) 0.97 0.89 1.40

Force error (%) 15.28 12.20 8.41

Steel
Area error (%) 1.00 1.60 3.40

Force error (%) 16.57 16.40 14.80

Average
Area error (%) 0.78 0.98 1.76

Force error (%) 11.85 10.42 11.94

Table 3. LME impact localization error as a function of the distance between training

impacts, plastic tip.

∆x (mm) ∆y (mm) Ex (mm) Ey (mm) Ex/∆x Ey/∆y

Training Database 1 40 30 20 12 0.50 0.40

Training Database 2 80 60 36 20 0.45 0.33

Table 4 compares the results of LME with those of other algorithms available in the

literature for similar structures (composite or aluminum plates). In this case, the results
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of the testing database with a plastic tip are presented, since other works in the literature

use the same tip in the training and testing database. Among these algorithms, LME

reaches the lowest combination of force and area error. The work of Fu and Xu [9] has

a similar area error with the same number of sensor and less training impact points and

the time-reversal algorithm [18] has a lower area error under the same circumstances.

However, these methods can only locate an impact and does not quantify it. It should

be noted that to assess possible damage in the structure, it is important to estimate the

magnitude of the impact. In this context, the proposed methodology is more accurate

than other algorithms available, with a force error 64% lower than that of the best

algorithm in Table 2.

Table 4. Comparison between impact identification algorithms available in the

literature and current work.

Reference Algorithm

Plate

size

(mm2)

Number

of sensors

Number

of training

impact

points

Area error

(%)

Force

error (%)

Worden and

Staszewski [3]
ANN 530x300 17 80 0.37 20.1

Haywood et al. [5] ANN 608x304 12 63 0.21 -

Xu [13] LSSVM 490x390 4 63 1.06 51.2

Fu and Xu [9] PCA+SVM 490x390 4 63 0.13 -

Xu [12] Kernel-ELM 490x390 4 63 0.74 -

Fu et al. [11]
PCA+Kernel-

ELM
490x390 4 63 0.24 -

Ing et al. [18]* Time-reversal 490x390 4 117 0.08 -

Current work LME 490x390 4 117 0.12 7.18

Current work LME 490x390 4 36 0.38 10.26

* The results of the time-reversal algorithm have been computed with our

experimental data following the procedure proposed by Ing et al. [18].

5. Conclusions

This article presented a new regression algorithm for impact identification that uses

a linear approximation handled by a statistical inference model based on the maximum-

entropy principle, termed linear approximation with maximum entropy (LME). The

performance of the proposed methodology was validated by considering an experimental

aluminum plate. Time varying strain data was measured using four piezoceramic sensors

bonded to the plate.

To demonstrate the potential of the proposed approach over existing ones, results

obtained via LME were compared with those of Artificial Neural Networks (ANN) and

Least Square Support Vector Machines (LSSVM). In terms of force localization (area
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error), the best performance is obtained with LME followed by LSSVM and last is ANN.

Regarding force quantification, the results of the three algorithms are similar.

The comparison with other impact identification algorithms available in literature

shows that the impact localization can be improved by using the time-reversal approach.

A subject of future research is to create a hybrid approach that combines times reversal

with LME.

Although the structure under investigation was a simple metallic plate, the results

demonstrated that with a low number of sensors it is possible to accurately locate and

quantify impacts and that LME outperforms others impact identification algorithms.

Nonetheless, it is necessary to study the performance in composite materials and in

structures with more complex geometries than a plate.
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