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Abstract

Recently, there has been interest in the study of a new class of constitutive rela-
tion, wherein the linearized strain tensor is assumed to be a function of the stresses.
In this communication, some boundary value problems are solved using the finite
element method, and the solid material being described by such a constitutive rela-
tion, where the stresses can be arbitrarily ‘large’, but strains remain small. Three
problems are analyzed, namely the traction of a plate with hyperbolic boundaries, a
plate with a point load and the traction of a plate with an elliptic hole. The results
for the stresses and strains are compared with the predictions that are obtained by
using the constitutive equation of the classical linearized theory of elasticity.

1 Introduction

Some new types of constitutive relations have been proposed recently for the modelling
of elastic bodies [26, 27, 28, 29, 30, 31, 2, 5, 6, 25]. One of such classes corresponds
to an implicit relation of the form F(T,B) = 0, where T is the Cauchy stress tensor
and B is the left Cauchy-Green strain tensor. As presented, for example, in Section 2.2
of [25], if one considers the case |∇u| ∼ O(δ), δ ≪ 1, the approximation B ≈ 2ε + I

is obtained and from F(T,B) = 0 we have the relation ε = f(T). The latter class of
constitutive equation is very interesting on its own and has been studied in different works
[5, 6, 7, 8, 31, 24, 25, 13, 21, 9, 10, 3, 4]. About some possible applications of ε = f(T),
we mention, for example, the modelling of some metal alloys [32, 34], rock1 [17] and the
analysis of cracks in brittle bodies [13, 21, 3, 4]. For brittle bodies, expressions for f

such that ε remains small independently of how big |T| is, can be of great interests in

∗Corresponding author. Fax:+56-2-6896057; e-mail: rogbusta@ing.uchile.cl
1If in a first approximation we assume that rock can be modeled as an elastic material.
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the study of stress concentration problems, where from the experimental point of view
‘large’ stresses2, elastic behaviour and small strains are expected (see [31] for a thorough
discussion on the potential use of ε = f(T)).

Considering the number of possible applications for the new class of constitutive equa-
tion ε = f(T), it is important to solve different boundary value problems using such
relations. This has been done, for example, in [7, 8, 24, 25, 19, 9] using exact and numeri-
cal methods. In the present work the finite element method is used in order to study three
problems where strain limiting behaviour and concentration of stresses are present. The
paper is organized as follows: In Section 2 a summary of the important equations is pre-
sented giving some details about the new class of above-mentioned constitutive relations for
elastic bodies. Section 3 provides results for a thin plane plate with hyperbolic boundaries
(see Section 3.1), for the problem of a semi-infinite medium (plane stress case) under the
influence of a concentrated load (see Section 3.2), and finally Section 3.3 provides results
for the case of a plate with an elliptic hole under traction, where one of the semi-axes is
very small in comparison with the other, thereby complementing the results for the same
problem that were presented in [25].

This work is based on the results that are presented in the Master’s thesis by Montero
[22].

2 Basic equations

2.1 Kinematics and equation of equilibrium

Let X denotes a point of a body B. The reference configuration is denoted κr(B), and
the position of each particle in that configuration is denoted by X. The position of the
same particle at a time t in the current deformed configuration is denoted by x, where the
current configuration is κt(B). It is assumed there exists a one-to-one mapping χ such
that x = χ(X, t). The deformation gradient F, the left Cauchy-Green deformation tensor
B, the displacement field u and the linearized strain tensor ε are defined respectively as

F =
∂x

∂X
, B = FFT, u = x−X, ε =

1

2
(∇Xu+∇Xu

T), (1)

where it is assumed that J = detF > 0 and where ∇X is the gradient operator with respect
to the reference configuration3. More details about the kinematics of deformable bodies
can be found, for example, in [11, 36].

2In order to be able to speak about large or small stresses, we need to compare |T| with some charac-
teristic values for the stresses, which can be denoted by σ0.

3In the present communication, it is assumed that |∇Xu| ∼ O(δ), δ ≪ 1, which implies that only small
strains and displacements are considered; therefore, it is not necessary to make an explicit distinction
between the gradient operator with respect to the reference configuration ∇X and the gradient operator
with respect to the current configuration ∇.
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In this paper time effects are not considered. The Cauchy stress tensor is denoted by
T and must satisfy the equilibrium equation (quasi-static deformations)

divT+ ρb = 0, (2)

where ρ is the density of the body and b corresponds to the body forces in the current
configuration.

2.2 Constitutive relations

Rajagopal and co-workers [26, 28, 29, 30] have proposed some new classes of constitutive
relations for elastic bodies, which cannot be classified as neither Cauchy nor Green elastic
bodies. Let us consider in particular the implicit relation

F(T,B) = 0, (3)

which in case that F is an isotropic relation (see [33]) becomes

α0I+ α1B+ α2B
2 + α3T+ α4T

2 + α5(BT+TB) + α6(BT2 +T2B) + α7(B
2T+TB2)

+α8(B
2T2 +T2B2) = 0, (4)

where αj , j = 0, 1, 2, ..., 8 are scalar functions that depend on the invariants trB, 1
2
trB2,

1
3
trB3, trT, 1

2
trT2, 1

3
trT3, tr(BT), tr(B2T), tr(T2B), tr(T2B2) and I is the identity

tensor. In [25] (see Section 2.2 therein) it has been proved that when |∇u| ∼ O(δ), δ ≪ 1,
and using the approximation B ≈ 2ε+ I, Eq. (4) can be used to obtain

ε = f(T) = γ0I+ γ1T+ γ2T
2, (5)

where γ0, γ1 and γ2 are scalar functions that depend on the invariants (see, for example,
[25])

I1 = trT, I2 =
1

2
trT2, I3 =

1

3
trT3. (6)

If the existence of a scalar function W = W (T) is assumed such that ε = f(T) = ∂W
∂T

,
where W is an isotropic function, we obtain

ε = W1I+W2T+W3T
2. (7)

In (7), Wi =
∂W
∂Ii

, where i = 1, 2, 3 and Ii has been defined previously.
Eq. (6) can be very useful to model the behaviour of elastic bodies, where stress

concentration may appear but strains are always small. Let us consider in particular the
expression:

W (I1, I2) = −α
β
ln[cosh(βI1)] +

γ

ι

√

1 + 2ιI2, ⇒ ε = −α tanh(βI1)I+
γ√

1 + 2ιI2
T,

(8)
where α, β, γ, ι are constants given in Table 1.
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The results for the boundary value problems using (8) will be compared with those
obtained using the linearized constitutive equation for an isotropic elastic body

ε = − ν

E
I1I+

(ν + 1)

E
T, (9)

where E is the Young’s modulus and ν is the Poisson’s ratio. The values of E and ν are
presented in Table 1, and are adjusted such that when |T| → 0 the behaviour of an elastic
body that results from using (8) and (9) are coincident (see Figures 1 and 2 in [10]). As

α β γ ι E ν
1/Pa 1/Pa 1/Pa2 Pa

0.01 9.277× 10−8 4.020× 10−9 10−14 3.234× 108 0.3

Table 1: Values for the constants used in (8) and (9).

remarked in Section 2.3 of [10] (see also Section 2.2 of [25] for a similar expression of W ),
this particular form for W has not been obtained from real experimental data, because (5)
and (7) have been proposed very recently in the literature.

The particular expression for W presented in (8) has been proposed in [10] (see, in
particular, Figures 1, 2 Section 2.3 therein) to study the behaviour of bodies that present
‘large’ stresses, but where strains are always small. In Figure 1 we show some plots,
where on the left results are presented for the axial εz and radial εr components of the
strain, for a cylinder deforming under the influence of the uniform stress tensor distribution
T = σez ⊗ ez, comparing (8) (denoted NL) and (9) (denoted L). On the right, results are
presented for the shear deformation of a block deforming under the influence of the uniform
shear stress T = τ(e1 ⊗ e2 + e2 ⊗ e1), also comparing the results considering (8) and (9)
(denoted as NL and L, respectively).

In Figure 2 results are presented for the axial component of the strain εz for the same
cylinder described above, under an axial uniform stress σ, considering different sets of
values for the different constants that appear in (8), where for each case the values of
the other parameters remain constant and are given in Table 1. This plot can help us to
understand better the influence of the different material parameters in that model.

2.3 Boundary value problem

The boundary value problem consists in finding T and u from equations (2), (7) and (1)3,
which for clarity of the exposition are written again, as follows:

divT+ ρb = 0, (10)

ε = W1I+W2T+W3T
2, (11)

∇u+∇uT = 2ε, (12)

with the boundary conditions

Tn = t̆ x ∈ ∂κr(B)t, u = ŭ x ∈ ∂κr(B)u, (13)
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Figure 1: On the left behaviour of εz and εr for a cylinder under the influence of an axial
uniform stress σ Pa. On the right behaviour of the shear deformation for a block deforming
due to the application of a uniform shear stress τ Pa.

where t̆ is a given known external traction applied on the surface ∂κr(B)t, n is the unit
outward normal vector to ∂κr(B)t, ŭ is a known displacement field on ∂κr(B)u and ∂κr(B)
is the boundary of the body κr(B)t. In addition, it is assumed that ∂κr(B)t ∪ ∂κr(B)u =
∂κr(B) and ∂κr(B)t ∩ ∂κr(B)u = Ø.

3 Numerical examples

In Sections 3.1, 3.2 and 3.3 the boundary value problem (10)–(13) is solved using the finite
element implementation presented in4 Section 3 of [25] and we use the expression for W
shown in (8), as well as this, we assume b = 0. Three problems are analyzed: the traction
of a thin flat plate with hyperbolic boundaries; a semi-infinite medium (plane stress case)
with a concentrated load applied on it; and a thin flat plate with an elliptic hole under
traction applied sufficiently far from the hole. The numerical results obtained using (7)
can be compared with the results considering (9), using well known exact solutions that
can be found, for example, in [35, 14, 18].

4It is necessary to mention that there is a typo in Eq. (20) of [25] where
∂Tij

∂εkl
is presented. The correct

expression there should be

∂Tij

∂εkl
= − αβ

(1 + βI1)2
δijδkl −

αγι

(1 + 2ιI2)3/2
TijTkl +

αγ√
1 + 2ιI2

(δikδjl + δjkδil),

where the constants α, β, γ and ι belong to a different model for W as the one used in the present
communication.
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Figure 2: εz as a function of σ Pa considering different possible values for constants in (8).
(a) α (b) β × 10−8 1/Pa (c) γ × 10−9 1/Pa (d) ι× 10−15 1/Pa2.

3.1 Plane plate with hyperbolic boundaries

A sketch of a flat plate with hyperbolic boundaries is presented in Figure 3. This plate is
under the action of a uniform load σ∞ acting sufficiently far from the hyperbolic boundaries.
The dashed line represents the tangent line to the hyperbolic boundary at point A. It is
assumed that L is sufficiently large (in comparison with a and b) such that the stresses
and strains are uniform sufficiently far from the hyperbolic boundaries, and the thickness
of the plate is very small in comparison with a and b. As a result, this problem is solved
assuming a plane stress condition. In the present work, L and b are fixed and different
values are considered for a as presented in Table 2.

L = 1m b = 0.1m a
b
: 1/10 1/5 1/2 1 2 3

Table 2: Values for the dimensions of the plate with hyperbolic boundaries.

For a very large plate with hyperbolic boundaries and using (9), the boundary value
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Figure 3: Sketch of a plane plate with hyperbolic boundaries under traction.

problem (10)–(13) has the exact solution5 (see Figure 3)

Tξξ + Tηη = 4ℜ[ψ′(z)], (14)

Tηη − Tξξ + 2iTξη = 2e2iα[z̄ψ′′(z) + χ′′(z)], (15)

where

ψ(z) = −Aiζ
2
, χ(z) = −Aiζ

2
− Bci sinh(ζ), (16)

and

ζ = ξ + iη, A = − σ∞L

π − 2η0 + sin(2η0)
, B = −A cos2(η0), (17)

where L is the width of the plate (see Figure 3), α is the angle between the tangent line
defined by η = constant and the axis x, and

c =
√
a2 + b2, η0 = arctan(b/a). (18)

When η = 0, the coordinate ξ coincides with x and Tξξ = T11, Tηη = T22 and Tξη = T12.
Because of symmetry, only a quarter of the plate is considered for the finite element

model. Linear quadrilateral elements have been used for this and for the rest of the
examples presented in this paper.

In Figure 6.30 of [22] results are presented6 for T̄22 =
T22

σ∞

and ε22 in terms of the natural
logarithm of the degrees of freedom DOF where for a refined mesh, the results would be

5See, for example, [14] and also the original works by Griffith [15] and Neuber [23].
6The results are presented for point B (see Figure 3) and for a

b = 3.
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independent of the element size. More details regarding the mesh used for the different
cases presented in Table 2 can be also found in pp.79–86 of [22]. For brevity such results
are not presented here.

As mentioned in the Introduction, one of the possible uses of (7) is in problems involving
concentrations of stresses for brittle bodies, where we can expect that ‘large’ stresses can
be obtained, while strains remain small. In Figure 4, results are presented for the fields
ε22 and T22 near point7 B (see Figure 3) and for a

b
= 1

10
, a

b
= 1 and a

b
= 3, respectively. It

is observed that when a
b
= 3, which represents the case where the concentration of stresses

near B are higher, the strains remain small and the distribution is less concentrated around
B.

For the results presented in Figure 5, the origin of the co-ordinate system has been
translated to point B. In those plots, results for ε22 and T22 are presented, for the full
spectrum of the ratio a

b
given in Table 2, and compared with the results that are predicted

by the linearized theory of elasticity (14)–(18). In these plots,

x̄ =
x− xa
xa

, xa = a
[

cosh
(π

2

)

− 1
]

. (19)

Finally, in Figure 6 results are presented for ε22 and T22 for
a
b
= 3 with different external

traction σ∞.

7In the contour plots presented here and in the next sections, the components ε22, T22, ε11 and T11 are
denoted as e22, s22, e11 and s11, respectively.
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Figure 4: (a1) and (a2) are the contour plots for ε22 and T22 (in Pa), respectively, with
σ∞ = 2.5×107 Pa, and a

b
= 1

10
; (b1) and (b2) are the contour plots for ε22 and T22 (in Pa),

respectively, with σ∞ = 5 × 106 Pa and a
b
= 1; (c1) and (c2) are the contour plots for ε22

and T22 (in Pa), respectively, with σ∞ = 2.6× 106 Pa and a
b
= 3.
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Figure 5: Plate with hyperbolic boundaries. Results for T̄22 (see scales on the left) and ε22
(in %, see scales on the right) for different relations for a

b
, with the material described by

the nonlinear constitutive relation (8) (denoted by NL), and the results obtained from the
linearized theory (9) (denoted by L). (a) a

b
= 1

10
with σ∞ = 2 × 107 Pa; (b) a

b
= 1

5
with

σ∞ = 107 Pa; (c) a
b
= 1

2
with σ∞ = 107 Pa; (d) a

b
= 1 with σ∞ = 5 × 106 Pa; (e) a

b
= 2

with σ∞ = 5× 106 Pa; (f) a
b
= 3 with σ∞ = 2.5× 106 Pa.
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Figure 6: (a1) and (a2) are the contour plots for ε22 and T22 (in Pa), respectively, with
σ∞ = 250000 Pa; (b1) and (b2) are the contour plots for ε22 and T22 (in Pa), respectively,
with σ∞ = 1250000 Pa; (c1) and (c2) are the contour plots for ε22 and T22 (in Pa),
respectively, with σ∞ = 2250000 Pa.
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3.2 Concentrated force at a point on a straight boundary

In this section some results are presented for the classical problem of a semi-infinite medium
deforming due to the application of a point load, as depicted in Figure 7. The body is
assumed to be very thin in the direction z, so the plane-stress formulation is appropriate
for this setting.

P

L

L
2

x

y

Figure 7: Semi-infinite medium with a point load applied on it.

When the classical relation (9) is used and a force P = P1e1 + P2e2 is applied on the
semi-infinite medium, this problem has the exact solution (see, for example, [18] and the
original works by Boussinesq [1] and Flamant [12]):

T11 = −P1(1 + ν)

4π

x

(x2 + y2)

[

2

1 + ν
+

(x2 − y2)

(x2 + y2)

]

− P2(1 + ν)

4π

y

(x2 + y2)

[

2ν

1 + ν
+

(x2 − y2)

(x2 + y2)

]

, (20)

T22 = −P1(1 + ν)

4π

x

(x2 + y2)

[

2

1 + ν
− (x2 − y2)

(x2 + y2)

]

− P2(1 + ν)

4π

y

(x2 + y2)

[

2

1 + ν
− (x2 − y2)

(x2 + y2)

]

, (21)

T12 = −P1(1 + ν)

4π

x

(x2 + y2)

[

1− ν

1 + ν
+

2x2

(x2 + y2)

]

− P2(1 + ν)

4π

x

(x2 + y2)

[

1− ν

1 + ν
− 2y2

(x2 + y2)

]

, (22)

which predicts stresses whose magnitudes go to infinite as one approaches the point where
the load is applied; however, from (9) such a solution would also predict strains whose
magnitudes would go to infinite near the point of application of the load, which contradicts
the basic assumption of the linearized theory of elasticity (see [31] and the introduction
section in [3]).

In this section, we show that using (7) with the expression for W proposed in (8),
stresses can be very ‘large’ but strains remain small.

Equations (10)-(13) are solved using (8) and the finite element method. To deal with
the semi-infinite setting we use a finite size plate of sides L, L

2
, as depicted as dashed lines

in Figure 7. The hypothesis is that for L ‘large’ enough the results for εij and Tij near the
point of application of P , are not significantly affected by such value of L. That is indeed
the case as presented in Figures 6.42 of [22], which for brevity are not shown here. For the
results presented in this work, we have assumed that L = 4 m. Because of the symmetry
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of the problem (see the location of the co-ordinates x − y), only one-half of the plate is
considered for the numerical analysis.

In Figure 6.49 of [22] results are presented for ε22 and T̄22 = T22

σ∞

as functions of the

natural logarithm of the degrees of freedom DOF, where ε22 and T̄22 have been evaluated
at point (x, y) = (0, y) with y very close8 to 0. For brevity, again such results are not
presented in this communication.

In this problem, only one geometry is necessary for the numerical analysis. In Figure
8, results for ε11, ε22, T11 and T22 near the point of application of P = 104 N are presented.
It is interesting to observe the differences in the distributions for the normal components

Figure 8: (a1), (a2), (b1) and (b2) are the contour plots for ε22, T22, ε11 and T11 (compo-
nents of the stress in Pa), respectively, with P = 104 N.

8From the point of view of the numerical results, it is not possible to evaluate T22 exactly at (x, y) =
(0, 0), because in that point T22 is expected to go to infinite.
The stress σ∞ is calculated in the following way. Consider (20)–(22) with P1 = 0, P2 = P and evaluate

T22 at point (x, y) = (0, L) to obtain σ∞ = −P (3+ν)
4πL , which is the value used to obtain the dimensionless

expression T̄22 above.
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of the stress tensor, when compared with the way the longitudinal components of the
linearized strain tensor behave. In Figure 8, a zooming into the tip is shown to better
observe the ‘size’ of the zone of stresses and strains concentrations. We also observe that
strains remain small.

Figures 9 and 10 present results for ε11, T̄11 = T11

σ∞

as functions of x̄ = x
L
, and ε22,

T̄22 as functions of ȳ = y

L
, respectively, using the new constitutive theory (7), (8) and the

constitutive equation for the linearized theory of elasticity (9) (see (20)–(22)). In Figure
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4
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ε 2
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ȳ

Figure 9: Half-space with a point load applied on it. Results for T̄22 (see scale on the left)
and ε22 (in %, see scale on the right) for the line (0, y) with the material described by
nonlinear constitutive relation (8) (denoted as NL) and the linearized theory (9) (denoted
as L, see (20)–(22)). The external load is P = 104 N.

9 results are obtained for the line (0, y), whereas the results presented in Figure 10 are
obtained for the line (x, 0).

In Figure 11, results for ε22 and T22 (contour plots) are presented for different external
loads P .
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Figure 10: Half-space with a point load applied on it. Results for T̄11 (see scale on the left)
and ε11 (in %, see scale on the right) for the line (x, 0) with the material described by the
nonlinear constitutive relation (8) (denoted as NL) and the linearized theory (9) (denoted
as L, see (20)–(22)). The external load is P = 104 N.
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Figure 11: (a1) and (a2) are the contour plots for ε22 and T22 (in Pa), respectively, with
P = 1000 N; (b1) and (b2) are the contour plots for ε22 and T22 (in Pa), respectively, with
P = 5000 N; (c1) and (c2) are the contour plots for ε22 and T22 (in Pa), respectively, with
P = 9000 N.
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3.3 Elliptic hole in an uniformly stressed plate

In this section, results are presented for the problem of a thin plate plate under uniform
traction σ∞ applied sufficiently far from a central elliptic hole. The results shown here
complement the solutions already published in [25] for the same problem. Here additional
relations between the semi-axes of the elliptic hole are considered. In Figure 12, a schematic

2a

2L

2L

2b

x

y

A

σ∞

σ∞

ξ

η

Figure 12: A thin flat plate with an elliptic hole under traction. Point A is located at
(x, y) = (b, 0).

depiction of the plate is presented. The semi-axes of the elliptic hole are denoted by a and
b. The list of cases that are considered are presented in Table 3. These cases complement

a
b

1/25 1/30 1/35 1/40 1/45 1/50

Table 3: Values for the semi-axes of the elliptic hole.

the results presented in [25], where the minimum value for a
b
was 1

20
.

When the linearized constitutive relation (9) is considered, the boundary value problem
has the same exact solution presented in the previous section, where in this case9

4ψ(z) = σ∞c
[

e2ξ0 cosh ζ +
(

1− e2ξ0−2iβ
)

sinh ξ
]

, (23)

4χ(z) = −σ∞c2
[

(cosh(2ξ0)− cosh(2β)) ζ +
1

2
e2ξ0 cosh(2(ζ − ξ0 − iβ))

]

, (24)

9See, for example, [35] and the original works by Inglis [16] and Kolosoff [20].
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with β = 0 and z, c, ζ and α already defined in Section 3.1. When η = 0, the axis ξ is
equivalent to x and Tξξ = T11, Tηη = T22 and Tξη = T12.

In this work, it is assumed that L = 1m and b = 0.1 m. On considering such dimensions,
it is possible to show that the model is close to what can be considered as an ‘infinite’ plate,
i.e., for L longer than 1 m there are slightly negligible differences among the distributions
of εij, Tij and ui (in terms of L) for a given σ∞ (see [22]).

Because of the symmetries of the problem only a quarter of the plate is considered.
Due to the expected high concentration of stresses for a

b
= 1

50
(see Table 3), it is necessary

to have refined meshes for the finite elements around point A (see Figure 12). In Figure
6.10 of [22], results are presented for ε22 and T22 evaluated at point A in terms of the
natural logarithm of the number of degrees of freedom DOF of the finite element model
for the cases a

b
= 1

25
, 1

30
, 1

35
, 1

40
and 1

50
. From that figure it is seen that the results become

approximately constant for larger number of DOF; however, the same is not apparent for
the cases a

b
= 1

45
and a

b
= 1

50
; therefore, for the results shown below, care must be taken

when considering those cases. As in the previous two sections, for brevity such results are
not presented here.

In Figure 13, results are presented for ε22 and T22 for different magnitudes of σ∞ near
the point A. To compare the size of the zone where the concentration of the stresses and
strains happens, special attention must be paid to the scale presented in each figure. Note
that in these three cases (see pp.65–67 and Figure 6.12 of [22] for similar results) the strains
remain small and the distributions for ε22 are ‘smoother’ than for T22.

Figure 14 presents results for ε22 and T̄22 = T22

σ∞

, for the line (x, y) = (x, 0), starting

from point A to the right, where x̄ = x−b
b
, and using the cases listed in Table 3. These

results are juxtaposed with the results that are obtained from the constitutive models (8)
and (9).

18



Figure 13: (a1) and (a2) are the contour plots for ε22 and T22 (in Pa), respectively, with
σ∞ = 5000 Pa; (b1) and (b2) are the contour plots for ε22 and T22 (in Pa), respectively, with
σ∞ = 50000 Pa; (c1) and (c2) are the contour plots for ε22 and T22 (in Pa), respectively,
with σ∞ = 500000 Pa.
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Figure 14: Plate with an elliptic hole. Results for T̄22 (see scales on the left) and ε22 (in
%, see scales on the right) for different relations for a

b
with the material defined by the

nonlinear constitutive relation (8) (denoted as NL) and the linearized theory (9) (denoted
as L). (a) a

b
= 1

25
with σ∞ = 106 Pa; (b) a

b
= 1

30
with σ∞ = 106 Pa; (c) a

b
= 1

35
with

σ∞ = 7× 105 Pa; (d) a
b
= 1

40
with σ∞ = 7× 105 Pa; (e) a

b
= 1

45
with σ∞ = 7× 105 Pa; (f)

a
b
= 1

50
with σ∞ = 7× 105 Pa.
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4 Conclusions

In this work we have presented some numerical solutions for some boundary value prob-
lems, considering a relatively new class of constitutive relation, where the linearized strain
tensor is assumed to be a nonlinear function of the Cauchy stress, in the particular case
where we can observe limiting strain behaviour (see Figure 1). The hypothesis is that
such models could be used to study the behaviour of brittle bodies when there is stress
concentration. Three boundary value problems have been considered, where we observe
stress concentration but where we can see that strains remains small, unlike the case of
using the linearized constitutive relation (9), where strains can also be large (see, for ex-
ample, Figures 10 and 14), which is a contradiction with one of the main assumptions of
the linearized theory of elasticity.

In future works actual experimental data will be used to propose more realistic expressions
for the functions in (5), and more boundary value problems will be solved, in particular
considering time effects.
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[23] Neuber, H., 1933. Elastich-strenge lösungen zur kerbwirkung bei scheiben und um-
drehungskörpen. Z. angew. Math. Mech. 13, 439–442.

[24] Ortiz, A., Bustamante, R., Rajagopal, K.R., 2012. A numerical study of a plate with
a hole for a new class of elastic bodies. Acta Mech. 223, 1971–1981.

[25] Ortiz-Bernardin, A., Bustamante, R., Rajagopal, K.R., 2014. A numerical study of
elastic bodies that are described by constitutive equations that exhibit limited strains.
Int. J. Solids Struct. 51, 875–885.

[26] Rajagopal, K.R., 2003. On implicit constitutive theories. Appl. Math. 48, 279–319.

[27] Rajagopal, K.R., 2007. The elasticity of elasticity. Z. Angew. Math. Phys. 58, 309–317.

[28] Rajagopal, K.R., Srinivasa, A.R., 2007. On the response of non-dissipative solids.
Proc. R. Soc. A 463, 357–367.

[29] Rajagopal, K.R, Srinivasa, A.R., 2009. On a class of non-dissipative solids that are
not hyperelastic. Proc. R. Soc. A 465, 493–500.

[30] Rajagopal, K.R., 2011. Conspectus of concepts of elasticity. Math. Mech. Solids 16,
536–562.

[31] Rajagopal, K.R., 2014. On the nonlinear elastic response of bodies in the small strain
range. Acta Mech. 225, 1545–1553.

[32] Saito, T., Furuta, T., Hwang, J.H., Kuramoto, S., Nishino, K., Susuki, N., Chen, R.,
Yamada, A., Ito, K., Seno, Y. Nonaka, T., Ikehata, H., Nagasako, N., Iwamoto, C.,
Ikuhara, Y., Sakuma, T., 2003. Multifunctional alloys obtained via a dislocation-free
plastic deformation mechanism. Science 300, 464–467.

[33] Spencer, A.J.M., 1971. Theory of invariants. In Eringen A.C. (Ed.) Continuum
Physics, Vol. 1, Academic Press, New York, 239–353.

[34] Talling, R.J., Dashwood, R.J., Jackson, M., Kuramoto, S., Dye, D., 2008. Determina-
tion of C11 − C12 in Ti-36Nb-2Ta-3Zr-0.3O (xt.%) (Gum metal). Scripta Mater. 59,
669–672.

[35] Timoshenko, S.P., Goodier, J.N., 1970. Theory of elasticity. McGraw Hill 2nd Edition
Inc., New York.

23



[36] Truesdell, C.A., Toupin, R., 1960. The classical field theories. In Handbuch der Physik,
Vol.III/1. Berlin, Germany: Springer.

24


