
Abstract

Honeycomb sandwich structures are used in a wide variety of applications. Never-
theless, due to manufacturing defects or impact loads, these structures can be subject
to imperfect bonding or debonding between the skin and the honeycomb core. The
presence of debonding reduces the bending stiffness of the composite panel, which
causes detectable changes in its vibration characteristics. This paper presents a new
supervised learning algorithm to identify debonded regions in aluminium honeycomb
panels. The algorithm uses a linear approximation method handled by a statistical
inference model based on the maximum-entropy principle. The merits of this new ap-
proach are twofold: training is avoided and data is processed in a period of time that
is comparable to the one of neural networks. The honeycomb panels are modelled
with finite elements using a simplified three-panel shell model. The adhesive layer
between the skin and core is modelled using linear springs, the rigidities of which are
reduced in debonded sectors. The algorithm is validated using experimental data of
an aluminium honeycomb panel under different damage scenarios.

Keywords: sandwich structures, debonding, honeycomb, damage assessment, maxi-
mum entropy.

1 Introduction

The applications of sandwich structures continue to increase rapidly and range from
satellites, aircraft, ships, automobiles, rail cars, wind energy systems and bridge con-
struction, among others [1]. Sandwich panels typically consist of two thin face sheets
or skins and a lightweight thicker core, which is sandwiched between two faces to
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obtain a structure of superior bending stiffness. Nevertheless, due to manufacturing
defects or impact loads, these structures can experience imperfect bonding or debond-
ing between the skin and the honeycomb core. Debonding in a sandwich structure may
severely degrade its mechanical properties, which can produce a catastrophic failure
of the overall structure. Therefore, it is important to detect the presence of debonding
at an early stage.

A disadvantage of sandwich structures is that their structural failures, especially
in the core, cannot always be detected by traditional non-destructive detection meth-
ods. A global technique called vibration-based damage detection has been rapidly
expanding over the last few years [2]. The basic idea is that vibration characteris-
tics (natural frequencies, mode shapes, damping, frequency response function, etc.)
are functions of the physical properties of the structure. Thus, changes to the mate-
rial and/or geometric properties due to damage will cause detectable changes in the
vibrations characteristics.

Jiang et al. [3] used a commercial finite element software to investigate the be-
haviour of debonded honeycomb structures. The honeycomb structure was modelled
as a three-layer structure using 3D solid elements. The debonding between the skin
and the core was modelled as a non-contacting area. Their results show that natural
frequencies are sensitive indicators to the presence of debonding. Kim and Hwang [4]
studied the effect of internal face-layer debonding in the natural frequencies and fre-
quency response functions (FRFS) of a honeycomb beam. They use a continuous
sandwich beam model to investigate the reduction in flexural-bending rigidity due to
debonding of the sandwich beam. Their results reveal that the extent of the debond-
ing plays an important role in determining the natural frequencies and mode shapes
of the debonded sandwich beam. Burlayenko et al. [5, 6] studied the influence of
skin/core debonding on the vibrations of honeycomb panels. The debonded region is
modelled by creating a small gap between the face and the core. Spring elements were
introduced between the double nodes in the debonded area. The authors investigated
the influence of the debonding type, size, and location on the modal parameters of
damaged sandwich panels with different boundary conditions. They concluded that
the size of the debonded zone strongly influences the panel modal parameters; it re-
duces the natural frequencies and creates a discontinuity in the mode shapes. This
influence is stronger for higher frequency modes. Mohanan et al. [7] studied the sen-
sitivity of natural frequencies, mode shapes and modal strain energy to debonds and
dents in metallic honeycomb beams. They used layered shell finite elements to model
the beam. Their results indicate that natural frequencies and mode shapes are sensi-
tive indicators to the presence of damage but less sensitive in identifying its location
and size; modal strain energy was more effective in identifying the elements affected
by the damage. Shahdin et al. [8] presented an experimental study on the effects of
impact damage and core-only damage in honeycomb sandwich beams. Their results
show that the damage produces a decrease in the natural frequency accompanied by an
increase in the damping ratio. Furthermore, the damping ratio is a more sensitive pa-
rameter for damage detection than the natural frequencies, although it is much harder
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to estimate it compared to the natural frequency.

Traditional vibration-based damage assessment approaches include the use of feed-
forward neural networks. However, the slow learning speed of these networks and the
large number of parameters that need to be tuned have been a major bottleneck in their
application. Most of the damage assessment algorithms based on neural networks are
restricted to problems where only a couple of variables need to be identified, such
as the detection of a single crack over a beam. Islam and Craig [9] trained a back-
propagation neural network with the first five natural frequencies of a composite beam
to determine the location and size of any delamination. Natural frequencies were ob-
tained through a modal analysis, which was performed using piezoceramic patches as
both sensors and actuators. Back-propagation neural networks were used by Okafor
et al. [10] to predict delamination size in composite beams based on changes in their
natural frequencies. In this case, the delamination is assumed to be at the middle of the
beam. The network was able to accurately predict dimensionless delamination sizes
between 0.22 and 0.82 but under-predicted delamination sizes below 0.08. A similar
approach is used by Valoor and Chandrashekhara [11] to predict delamination loca-
tions and sizes in a thick composite beam. They found that the errors were highest for
delaminations located near the beam end and that in symmetrical structures, the net-
work can only predict the possible location in each symmetrical segment. Hence, to
locate the damage in symmetrical structures, more information, such as mode shapes,
is needed. Ishak et al. [12] trained a multilayer perceptron network (MLP) to identify
the location, depth and length of interfacial delamination in carbon/epoxy laminated
composite beams. The network inputs are experimental displacement responses mea-
sured with a scanning laser vibrometer. Chakraborty [13] proposed a neural network
approach to predict the size, shape and location of delamination in composite pan-
els using natural frequencies. The method was validated using simulated data from
a composite panel. The results show that the network works reasonably well when
tested with unknown data. Nevertheless, the authors stated that the actual efficacy of
the approach can be determined only when the network is trained and tested with ex-
perimental data. Su et al. [14] compared the efficiency of neural networks and genetic
algorithms (GAs) for the evaluation of delaminations in composite beams based on the
change in their natural frequencies. The response of the beams is measured using fibre
Bragg grating sensors. The authors concluded that both algorithms are able to eval-
uate the delamination location, size and depth, but neural networks are more stable.
Zhang et al. [15] examined three different inverse algorithms to predict the location
and size of delamination in a composite beam: a direct solution using a graphical
method, neural networks and surrogate optimisation based on GA. Their results show
that the three algorithms can predict the delamination parameters, but neural networks
are more sensitive to experimental noise.

A new nonparametric method for supervised learning is presented by Gupta et
al. [16, 17]. This method generalizes linear approximation by using the maximum-
entropy (max-ent) principle [18] for statistical inference. A similar approach is adopted
by Erkan [19] for semi-supervised learning problems, where a decision rule is to
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be learned from labeled and unlabeled data. By using max-ent methods, training is
avoided and data is processed in a period of time that is comparable to the one of
neural networks. In addition, it only requires one parameter to be selected. Hence,
max-ent methods become very appealing for real-time health monitoring applications.
Gupta [16] demonstrated the application of the max-ent approach to color manage-
ment and gas pipeline integrity problems. In the present paper, we demonstrate the
applicability of max-ent methods in structural damage assessment.

The primary contribution of this research is the development of a real-time damage
assessment algorithm for honeycomb panels that uses a linear approximation method
in conjunction with the mode shapes and natural frequencies of the structure. The lin-
ear approximation is handled by a statistical inference model based on the maximum-
entropy principle [18]. The honeycomb panels are modelled with finite elements using
a simplified three-panel shell model. The adhesive layer between the skin and core is
modelled using linear springs, with reduced rigidities for the debonded sectors. The
algorithm is validated using experimental data from an aluminium honeycomb panel
containing different damage scenarios.

The remainder of this paper is structured as follows: Section 2 presents the pro-
posed damage assessment algorithm and provides general antecedents and related re-
search on the max-ent linear approximation method. Section 3 describes the construc-
tion of the numerical model for the honeycomb sandwich panel. Section 4 presents
the experimental structure and the correlation between the experimental and numeri-
cal modes. Section 5 describes the setting up of the database. Sections 6 presents the
case studies and the damage assessment results. Finally, conclusions and forthcoming
work are presented in Section 7.

2 Damage assessment using linear approximation with
maximum entropy

The main problem of vibration-based damage assessment is to ascertain the presence,
location and severity of structural damage given a structure’s dynamic characteristics.
This principle is illustrated in Fig. 1; the vibration characteristics of the structure,
which in this case correspond to mode shapes and natural frequencies, act as the in-
put to the algorithm, and the outputs are the damage indices of each element in the
structure.

Let the observation vector Yi = {Y i
1 , Y

i
2 , . . . , Y

i
m} ∈ Rm represent the ith damage

state of the structure, where m is the number of structural elements. Let the feature
vector Xi = {X i

1, X
i
2, . . . , X

i
n} ∈ Rn represent a set of vibration characteristics of the

structure associated with the damage state Yi.
The variables X and Y have joint distribution PX,Y . Let a set of k independent

and identically distributed samples be drawn from PX,Y . These samples represent the
database (X1,Y1), (X2,Y2), ..., (Xk,Yk). The central problem in supervised learn-
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Figure 1: Principle of a vibration-based damage assessment algorithm.

ing is to form an estimate of PY |X , i.e. given a certain feature X, estimate the corre-
sponding observation Y. Let Ŷ denote the estimated value of Y. Linear approxima-
tion takes the N nearest neighbors to a test point X and uses a linear combination of
them to represent X as

X =
N∑
i=1

wi(X)Xi(X),
N∑
i=1

wi(X) = 1, (1)

where w1, w2, . . . , wN are weighting functions, and X1(X),X2(X), . . . ,XN(X) are
the N closest neighbors to a test point X out of the database set. The equations given
in (1) can be expressed as the following system of linear equations:

Aw = b, w ≥ 0, (2)

with A =


X1

1 X2
1 . . . XN

1

X1
2 X2

2 . . . XN
2

...
... . . . ...

X1
n X2

n . . . XN
n

1 1 . . . 1


(n+1)×N

, b =


X1

X2
...
Xn

1


(n+1)×1

, w =


w1

w2
...
wN


N×1

.

After w is obtained from (2), Ŷ is estimated as

Ŷ =
N∑
i=1

wi(X)Yi(X), (3)

where Y1(X),Y2(X), . . . ,YN(X) are the corresponding observations to the N se-
lected neighbors. Typically, the system of equation (2) is undetermined, and its solu-
tion is tackled via a constrained optimization technique of the family of least-squares
(nonnegative least-squares [20]). An alternative that provides the least-biased solution
is obtained via the maximum-entropy (max-ent) variational principle [18]. Recently,
max-ent methods have become quite popular in the computational mechanics commu-
nity as a powerful tool for numerical solution of PDEs [21, 22, 23, 24, 25, 26, 26, 27,
28, 29], and their applications in the solution of ill-posed inverse problems have also
been explored [30, 31].
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The notion of entropy in information theory was introduced by Shannon as a mea-
sure of uncertainity [32]. Later, on using the Shannon entropy, Jaynes [18] postulated
the maximum-entropy principle as a rationale means for least-biased statistical in-
ference when insufficient information is available. The maximum-entropy principle
is suitable to find the least-biased probability distribution when there are fewer con-
straints than unknowns and is posed as follows:

Consider a set of N discrete events {x1, . . . , xN}. The possibility of each event
is pi = p(xi) ∈ [0, 1] with uncertainty − ln pi. The Shannon entropy H(p) =
−
∑N

i=1 pi ln pi is the amount of uncertainty represented by the distribution {p1, . . . , pN}.
The least-biased probability distribution and the one that has the most likelihood to
occur is obtained via the solution of the following optimization problem (maximum-
entropy principle):

max
p∈RN

+

−
N∑
i=1

pi ln pi, (4a)

subject to the constraints:

N∑
i=1

pi = 1,
N∑
i=1

pigr(xi) =< gr(x) >, (4b)

where RN
+ is the non-negative orthant and< gr(x) > is the expectation of the function

gr(x).
The optimization problem (4) assigns probabilities to every xi in the set. Now,

assume that the probability pi has an initial guess mi known as a prior, which reduces
its uncertainty to − ln pi + lnmi = − ln(pi/mi). An alternative problem can be
formulated on using this prior in (4) [33]:

max
p∈Rn

+

−
N∑
i=1

pi ln

(
pi
mi

)
, (5a)

subject to the constraints:

n∑
i=1

pi = 1,
n∑

i=1

pigr(xi) =< gr(x) > . (5b)

In (5), the variational principle associated with +
∑N

i=1 pi ln
(

pi
mi

)
is known as the

principle of minimum relative (cross) entropy [34, 35]. Depending upon the prior
employed, the optimization problem (5) will favor some xi’s in the set by assigning
more probability to them, and eventually, assigning non-zero probability (pi > 0) to
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a selected number of xi (i < N ) in the set. It can be easily seen that if the prior is
constant, the Shannon-Jaynes entropy functional (4) is recovered as a particular case.

Due to its general character and flexibility, we adopt the relative entropy approach
for our problem, where the probability pi is replaced with the weighting function wi

of the linear approximation problem 1. This reads:

max
w∈RN

+

[
H(w) = −

N∑
i=1

wi(X) ln

(
wi(X)

mi(X)

)]
, (6a)

subject to the constraints:

N∑
i=1

wi(X)X̃i = 0,
N∑
i=1

wi(X) = 1, (6b)

where X̃i = Xi −X has been introduced as a shifted measure for stability purposes.
A typical prior distribution is the smooth Gaussian [21]

mi(X) = exp(−βi‖X̃i‖2), (7)

where βi = γ/h2i ; γ is a parameter that controls the radius of the Gaussian prior at Xi,
and therefore its associated weight function; and hi is a characteristic n−dimensional
Euclidean distance between neighbors that can be distinct for each Xi. In view of the
optimization problem posed in (6) for supervised learning, maximizing the entropy
chooses the weight solution that commits the least to any one in the database samples
[17].

The solution of the max-ent optimization problem is handled by using the proce-
dure of Lagrange multipliers, which yields [33]:

wi(X) =
Zi(X;λ∗)

Z(X;λ∗)
, Zi(X;λ∗) = mi(X) exp(−λ∗ · X̃i), (8)

where Z(X;λ∗) =
∑

j Zj(X;λ∗), X̃i = [X̃ i
1 . . . X̃

i
N ]

T and λ∗ = [λ∗1 . . . λ
∗
N ]

T.
In (8), the Lagrange multiplier vector λ∗ is the minimizer of the dual of the opti-

mization problem posed in (6) [33]:

λ∗ = arg min
λ∈RN

lnZ(X;λ), (9)

which gives rise to the following system of nonlinear equations:

f(λ) = ∇λ lnZ(λ) = −
N∑
i

wi(X)X̃i = 0, (10)

where ∇λ stands for the gradient with respect to λ. Once the converged λ∗ is found,
the weight functions are computed from (8).
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3 Numerical model

Figure 2 shows a scheme for a honeycomb sandwich panel, consisting of two thin
face sheets or skins and a honeycomb core, which are bonded together by an adhesive
layer. The panel can be modelled by a detailed 3D finite element model, but the com-
putational effort increases very rapidly as the number of cells increases. Therefore, it
is more convenient to develop equivalent simplified models for the honeycomb core
to reduce the required computational time.

Adhesive layer

Skin

Honeycomb core

Figure 2: Scheme of a honeycomb sandwich panel.

Burton and Noor [36] studied the performance of nine different modelling ap-
proaches based on two-dimensional shell theories to predict the static response of
sandwich panels. The results are compared to those from a detailed three-dimensional
model. Their study showed that the global response can be accurately predicted by
discrete three-layer models, predictor-corrector approaches and even first-order shear
deformation theory, provided that proper values for the shear correction factors are
used. According to Birman and Bert [37], a key factor in the practical application of
the first-order shear deformation theory is the determination of the shear correction
factor. The analysis presented by these researchers concluded that the shear correc-
tion factor should be taken with a value equal to unity for sandwich structures, as a
first approximation. The work presented by Burton and Noor [38] showed that con-
tinuum layer models for the honeycomb core provide solutions that are close to those
calculated by using detailed finite element models. Tanimoto et al. [39] used beam el-
ements to model the honeycomb core and the adhesive layer. The proposed model was
validated by experimental vibration tests. Burlayenko and Sadowski [40] performed
an analysis of sandwich plates with hollow and foam-filled honeycomb cores using
a commercially available finite element code. The sandwich plates were modelled
on the basis of a simplified three-layered continuum model using a mixed shell/solid
approach. Consequently, the prediction of the dynamic response of the honeycomb
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panels can be accomplished by equivalent continuum models. In the present study,
the honeycomb panels are modelled with finite elements using a simplified three-panel
shell model and the adhesive layer between the skin and core is modelled using lin-
ear springs. Because the properties of the skin are known, the attention is focused on
modelling the effective properties of the adhesive layer and the core material.

A debonded region between the skin and core of a honeycomb panel is similar to
a delamination in laminated composites. There are a considerable amount of analyt-
ical and numerical methods used to model delaminated composite laminates. Della
and Shu [41] provide an extensive review of them. The majority of these methods
can be categorised into two classes. The first is a region approach where the laminate
is divided into sub-laminates and continuity conditions are imposed at the junctions,
whereas the second is a layer-wise model where delamination is introduced as an em-
bedded layer or as a discontinuity function in the displacement field. On the other
hand, modelling vibrations in sandwich structures with debonding is generally ac-
companied by contact problems between the interfaces of the debonded region [42].
Burlayenko and Sadowski [5, 6] modelled the debonded region by creating a small
gap between the face and the core and by introducing bi-linear spring elements be-
tween the double nodes in the debonded area. The springs have a stiffness equal to
zero in tension and a large value in compression, simulating a contact condition. A
piecewise-linear model does not predict a unique mode shape as in a linear system,
but the mode shape depends on the vibration amplitude. In this study, the adhesive
layer between the skin and core is modelled using linear springs, with reduced rigidity
in debonded sectors, as shown in Fig. 3.

Skin Adhesive layer
Honeycomb core

Debonded region

a)

b)

Figure 3: Lateral view of the numerical model: a) undamaged panel, b) panel with a
debonded region.

The numerical model is built in Matlab R© using the SDTools Structural Dynamics
Toolbox [43], the skins and honeycomb panel are modelled with standard isotropic 4-
node shell elements. The final model shown in Fig. 4 has 10,742 shell and 7,242 spring
elements. The mechanical properties of the sandwich construction depend upon the
adhesives, temperature and pressure used during curing. In addition, the anisotropic
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nature of the honeycomb core makes testing the sandwich specimens mandatory to
determine their properties with accuracy. Here, the mechanical properties of the ad-
hesive layer and the honeycomb core are determined by updating the finite element
model with the experimental mode shapes and natural frequencies for both undam-
aged cases and those with debonding.

Figure 4: Finite element model of the sandwich panel.

4 Experimental structure

The experimental structure consists of a sandwich panel of 0.25×0.35m2 made of an
aluminium honeycomb core bonded to two aluminium skins, each with a thickness of
0.8 mm. The properties of the core are summarised in Table 1. The skins are bonded
to the honeycomb core using an epoxy adhesive that provides a high performance
solution to ambient temperature cure bonding of aluminium honeycomb to a wide
range of skin materials. Figure 5(a) shows an aluminium sheet with a layer of epoxy
adhesive, the circular region without adhesive is introduced to simulate debonding. To
ensure perfect bonding, the panel is cured using a vacuum bagging system, as shown
in Fig. 5(b).

Cell size 19.1mm
Foil thickness 5× 10−5 m
Thickness 10mm
Density 20.8 kg/m3

Compressive strength 0.448MPa
Shear strength in longitudinal direction (σxy) 0.345MPa
Shear modulus in longitudinal direction (Gxy) 89.63MPa
Shear strength in width direction (σyz) 0.241MPa
Shear modulus in width direction (Gyz) 41.37MPa

Table 1: Properties of the honeycomb core
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(a) layer of epoxy adhesive over the
skin

(b) vacuum bagging of the panel

Figure 5: Fabrication of the experimental panel

Figure 6 shows the experimental setup used to simulate a free boundary condition.
The honeycomb sandwich panel is suspended by soft elastic bands. The out of plane
vibration is captured by four miniature piezoelectric accelerometers located in three
corners and in the centre of the panel. The panel is excited by an impact hammer at
the 117 points described in Fig. 6(b), resulting in 468 measured Frequency Response
Functions.

(a) panel suspended by elastic bands

1       2      3       4       5      6        7      8       9

10     11    12     13    14     15     16   17     18

19     20    21     22    23     24     25   26     27

28     29    30     31    32     33     34   35     36

37     38    39     40    41     42     43   44     45

46     47    48     49    50     51     52   53     54

55     56    57     58    59     60     61   62     63

64     65    66     67    68     69     70   71     72

73     74    75     76    77     78     79   80     81

82     83    84     85    86     87     88   89     90

91     92    93     94    95     96     97   98     99

100  101  102  103  104   105  106  107  108

109  110  111  112  113   114  115  116  117

(b) distribution of measurement point

Figure 6: Experimental set-up
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The identified modal parameters of the experimental structure are used to update
the numerical model. The parameters that were updated in the numerical model are
the following: the density and Young’s Modulus of the skins; the density, bending
stiffness and shear correction factor of the core; and the stiffness of the springs repre-
senting the adhesive layer.

Figure 7 shows the first six experimental mode shapes compared to those from the
numerical model after updating. The correlation between two mode shapes is mea-
sured by the Modal Assurance Criterion (MAC). The results show that the correlation
between the numerical and experimental modes is almost perfect for the first three
modes, with MAC values higher than 0.99. The fifth mode presents the lowest cor-
relation, with a MAC value of 0.83. In this case, the first-order shear approximation
may not be sufficient. The maximum difference between the experimental and the
numerical natural frequencies is 11%.

Figure 8 presents the correlation between the numerical and experimental modes
for the case with a circular debonded region at the centre of the plate. The modes are
plotted over the surface of the debonded skin. Here, the numerical model was updated
again considering the spring stiffness in the debonded region as updating parameter.
Although the correlation is not as good as in the undamaged case, both the numerical
and experimental models show the same behaviour in the presence of damage, which
is a reduction in the natural frequencies, and a strong discontinuity at the debonded
region for mode 3.

n=520.9, e=483.1, MAC=0.998

Numerical Experimental

n=600.8, e=621.0, MAC=0.994

Numerical Experimental

n=1089.5, e=986.7, MAC=0.995

Numerical Experimental

n=1105.1, e=1214.6, MAC=0.984

Numerical Experimental

n=1406.8, e=1377.0, MAC=0.831

Numerical Experimental

n=1598.5, e=1528.9, MAC=0.967

Numerical Experimental

Figure 7: Numerical and experimental undamaged mode shapes.
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n=520.9, e=477.4, MAC=0.998

Numerical Experimental

n=598.8, e=618.2, MAC=0.993

Numerical Experimental

n=1088.8, e=947.2, MAC=0.975

Numerical Experimental

n=1029.4, e=1158.4, MAC=0.841

Numerical Experimental

n=1276.4, e=1306.9, MAC=0.698

Numerical Experimental

n=1598.3, e=1505.7, MAC=0.989

Numerical Experimental

Figure 8: Numerical and experimental mode shapes with a debonded region at the
center of the panel.

5 Construction of the database

Database samples are generated using the numerical model of the structure. The
database contains mode shape and natural frequencies changes associated to different
damage scenarios, which are used to assess the experimental damage. The patterns
are generated by considering single damage scenarios with thirteen debonded radius
equally distributed between 0.01 and 0.07 m.

5.1 Feature vector

The jth feature vector Xj contains the experimental changes in the natural frequencies
and mode shapes with respect to the intact case:

Xj =



(
ωD − ωU

ω

)2

∑
j

(
φD

j − φU
j

)2
max

(∑
j

(
φD

j − φU
j

)2)
 , (11)

where ω represents a vector containing the natural frequencies and φj represents the
ith mode shape vector. The superscripts D and U refer to damaged and undamaged,
respectively. The vector of the mode shape changes is normalised with respect to
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its maximum value to reduce the difference between the numerical and experimen-
tal results. This difference is because the numerical model does not contain contact
conditions whereas the experimental model does.

5.2 Observation vector

Damage is modelled by circular-shaped debonded regions centred at some of the 117
points presented in Fig. 6(b). Debonding is restricted to the skin that is measured
during experiments. The jth observation vector is represented by Yj = {Y j

1 , Y
j
2 , . . .

. . . , Y j
117}, where the value Y j

i > 0 implies a debonded region with a radius Y j
i cen-

tered at the ith point, whereas a value Y j
i = 0 indicates that the ith point is undam-

aged.

6 Damage assessment results

The algorithm is tested for the three damage scenarios shown in Fig. 9. The first case
has a debonded region centred at point 59 (the centre of the panel), the second case
has a debonded region centred somewhere between points 30, 31, 39 and 40, and the
third case has a debonded region centred between points 31, 32, 40, 41. The radius
for the three debonded regions are 0.038, 0.039 and 0.045 respectively.

Two approaches are used to solve the linear approximation problem presented in
equation (1): max-ent and nonnegative least-squares. In both cases, the solution is
obtained by using the closest ten neighbors to the test point. The time needed to
assess damage is 0.7 and 0.03 seconds for the max-ent and nonnegative least-squares
approaches respectively.

1       2      3       4       5      6        7      8       9

10     11    12     13    14     15     16   17     18
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Figure 9: Experimental damage scenarios introduced to the panel; the circles indicate
the debonded regions.

Figures 10, 11 and 12 present the damage assessment results. The damage detected
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is represented as a black region where each pixel represents a debonded spring. The
actual damage introduced into the panel is presented as a circle. In the three cases,
the max-ent approach identifies debonded regions that are closer to the actual dam-
age when compared to the least-squares method. In the first case, the centre of the
experimental damage matches one of the 117 predefined positions. Thus, the max-ent
algorithm is able to detect the exact position of the debonded region. However, when
the actual centre of the damage does not match one of the 117 positions, as in the
second and third cases, the algorithm detects the damage at a position that is close to
the actual location but not at the exact position.

(a) Max-ent (b) Nonnegative least-
squares

Figure 10: Damage assessment results for the first damage scenario

(a) Max-ent (b) Nonnegative least-
squares

Figure 11: Damage assessment results for the second damage scenario
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(a) Max-ent (b) Nonnegative least-
squares

Figure 12: Damage assessment results for the third damage scenario

7 Conclusions

This paper presented a new methodology to identify debonded regions in aluminium
honeycomb panels using a linear approximation method handled by a statistical infer-
ence model based on the maximum-entropy principle. The algorithm was validated
using experimental data from an aluminium honeycomb panel subjected to different
damage scenarios.

The honeycomb panels were modelled with finite elements using a simplified three-
panel shell model. The adhesive layer between the skin and core was modelled using
linear springs, with the rigidity reduced in debonded sectors. This numerical model
was able to predict with reasonable accuracy the first six modes of the undamaged and
damaged panel. Nevertheless, the numerical model can be improved by using higher
order shear approximations.

In the three experimental cases, the linear approximation using the max-ent tech-
nique was successful in assessing the experimental damage. The detected damage
closely corresponds to the experimental damage in all cases. In addition, the damage
state of the panels is assessed in less than one second, thus providing the possibility
of continuously monitoring their condition. Further research is needed to adapt this
algorithm to cases with multiple debonded regions and to test its performance with
more complex configurations.
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