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Abstract

We present a displacement-based Galerkin meshfree method for the analysis of nearly-

incompressible linear elastic solids, where low-order simplicial tessellations (i.e., 3-

node triangular or 4-node tetrahedral meshes) are used as a background structure for

numerical integration of the weak form integrals and to get the nodal information

for the computation of the meshfree basis functions. In this approach, a volume-

averaged nodal projection operator is constructed to project the dilatational strain

into an approximation space of equal- or lower-order than the approximation space

for the displacement field resulting in a locking-free method. The stability of the

method is provided via bubble-like basis functions. Because the notion of an ‘ele-

ment’ or ‘cell’ is not present in the computation of the meshfree basis functions such

low-order tessellations can be used regardless of the order of the approximation spaces

desired. First- and second-order meshfree basis functions are chosen as a particular
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case in the proposed method. Numerical examples are provided in two and three

dimensions to demonstrate the robustness of the method, its ability to avoid vol-

umetric locking in the nearly-incompressible regime, and its improved performance

when compared to the MINI finite element scheme on the simplicial mesh.

Keywords: meshfree methods, nearly-incompressible elasticity, volumetric locking,

projection methods, volume-averaged pressure/strains, bubble functions

1. Introduction

Volumetric locking is a fundamental difficulty that displacement-based Galerkin

methods face when dealing with nearly-incompressible solids. Several procedures

have been devised to overcome volumetric locking and basically can be grouped

in mixed methods and displacement-based methods. Some relevant techniques in

mixed methods are mixed variational methods of Simo et al. [1], enhanced assumed

strain methods of Simo and Armero [2] and the mixed u-p formulation of Sussman

and Bathe [3]. Within displacement-based methods, discontinuous Galerkin finite

element methods [4, 5, 6] use independent approximations on different elements and

weakly enforce the continuity across boundaries of the elements. Nonconforming

finite element methods can also suppress volumetric locking [7, 8, 9]. Another widely

used displacement-based finite element method is the so-called B-bar method [10],

where the displacement is constructed on a 4-node quadrilateral and the strain is split

into its deviatoric and dilatational parts. The volumetric locking is then alleviated

by projecting the dilatational strain onto the constant space. A more recent version

of the B-bar method that uses higher-order approximations has been proposed for

NURBS basis functions [11], where the volumetric locking is alleviated by projecting

the dilatational strain onto a space that is one order lower than the displacement

space.
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Apart from the above methods, there has been a great interest for employing

simplicial meshes, particularly in three dimensions, because they facilitate the mesh

generation in complex domains. However, low-order triangles/tetrahedra are not

appropriate for practical use due to their poor performance in many instances such

as bending dominated problems, incompressible media and large deformations. In an

effort to cope with their poor performance, various techniques have been developed,

which can be classified in four approaches: mixed-enhanced elements [12, 13, 14],

pressure stabilization [15, 16, 17], composite pressure fields [18, 19, 20], and average

nodal pressure/strains [21, 22, 23, 24, 25, 26, 27, 28]. The last two approaches are

displacement-based methods and are broadly based on the idea of reducing pressure

(dilatational) constraints to alleviate volumetric locking in low-order meshes. Despite

the apparently good performance of the average nodal pressure/strains methods,

many of them have been reported to exhibit pressure oscillations and stabilization

via bubble functions has been proposed [28]. Recently, nodally integrated continuum

elements [29] and subsequent developments that led to patch-averaged assumed strain

finite elements [30] were developed based on the assumed-strain [31] concept and low-

as well as high-order meshes were considered. Another recent displacement-based

approach, which uses bubble functions for pressure stability on simplicial meshes, is

the edge-based smoothed finite element method [32].

Displacement-based approaches that are obtained by projection techniques can

be viewed within the inf-sup requirements of mixed methods, namely they should

satisfy the so-called inf-sup stability condition [33, 34, 35]. Simo and Hughes [31]

have established the links between projection (B-bar or assumed strain) methods

with mixed methods using the Hu-Washizu variational formulation. In particular,

the B-bar method of Refs. [10, 11] can be viewed as a u-p mixed formulation where

the pressure variable is hidden in the projected dilatational strain. Therefore, the
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projection space should be chosen such that the inf-sup stability condition is satisfied.

In this paper, a displacement-based Galerkin meshfree method is developed for

the analysis of nearly-incompressible linear elastic solids, where low-order simplicial

tessellations (i.e., 3-node triangular or 4-node tetrahedral meshes) are used as a

background structure for numerical integration of the weak form integrals and to

get the nodal information for the computation of the meshfree basis functions. The

procedure is a projection method designed in the spirit of the B-bar approach. To

this end, a projection operator is constructed from the pressure constraint of the u-p

mixed formulation, which encompasses the volume-averaged nodal pressure technique

of Ortiz et al. [26]. We refer to this operator as the Volume-Averaged Nodal Projection

(VANP) operator. In the proposed VANP approach we retain the excellent performance

of the method of Ortiz et al. [26] for solving the nearly-incompressible elasticity

problem on low-order triangular and tetrahedral tessellations. As in the original

technique developed in Ref. [26], bubble-like enrichment is essential for stability in

the VANP approach.

The advances made in the present paper compared to the method of Ortiz et

al. [26] is that it is possible to use higher-order meshfree approximations for the

analysis of nearly-incompressible solids using only nodal information from the low-

order triangular/tetrahedral tessellations. This extension is non-trivial particularly

with respect to ensuring the robust integration of the higher-order meshfree basis

functions. First and second-order meshfree approximations are considered to exem-

plify the VANP approach in this paper.

In the VANP formulation, the numerical integration of the weak form integrals

is performed over a background mesh of finite elements. The integration domain is

therefore a finite element cell which typically does not coincide with the region that is

defined by two overlapping meshfree basis function supports. In addition, meshfree
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basis functions are rational (non-polynomial) functions. These are two combined

issues that introduce numerical errors when using standard Gauss integration. There

have been many efforts to rectify the integration error in meshfree methods. For an

early view of the problem the interested reader is referred to the work of Dolbow

and Belytschko [36], and for a theoretical background to the work of Babuška and

co-workers [37, 38].

In this paper, we are interested in integration schemes that are based on strain

smoothing/averaging techniques to alleviate integration errors. Chen et al. [39] pro-

posed a strain correction within the framework of nodal integration techniques that

provides patch test satisfaction and significantly reduces integration errors. Ortiz et

al. [26] presented a strain correction based on a combined smoothing/averaging pro-

cedure for linear approximations on triangular and quadrilateral background meshes

and extended these ideas to tetrahedral background meshes in Ref. [40]. Duan et

al. [41] proposed a smoothing procedure for second-order approximations on trian-

gular background meshes. Chen et al. [42] proposed a variationally consistent inte-

gration method for high-order meshfree approximations that generalizes the notion

of nodal integration and is usable for Gauss quadrature on triangles and squares.

Recently, Duan et al. [43] used the Hu-Washizu three-field variational principle to

demonstrate the variational consistency of the second-order accurate integration

scheme for meshfree methods previously presented in Ref. [41] and an extension

of this scheme to third-order accuracy is also provided. The corresponding second-

order accurate integration scheme for tetrahedral meshes is presented in Duan et

al. [44].

The weak form integrals in the VANP formulation are more involved and high-

order meshfree basis functions are used. To achieve optimal rates of convergence,

it is critical to use the third-order variationally consistent accurate integration rule
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of Duan et al. [43].We use this rule directly for triangular meshes and develop an

extension to three dimensions to perform integration on tetrahedral meshes.

The contributions of the VANP method proposed in this paper for the analysis of

nearly-incompressible linear elastic solids are listed as follows:

• The projection method developed permits the use of low-order triangular and

tetrahedral tessellations irrespective of the desired approximation order. This

is not possible in existing finite element displacement-based approaches for

nearly-incompressible solids such as nodally-integrated continuum elements [29]

and patch-averaged assumed strain elements [30].

• Optimal accuracy in the energy and L2 norms can be obtained for second order

meshfree approximations yet using the nodal positions from low-order triangu-

lar/tetrahedral tessellations. To the best of our knowledge, there are no mesh-

free or finite element displacement-based methods for nearly-incompressible

elasticity exhibiting this feature.

• Smoother pressure fields2 can be obtained on low-order triangular/tetrahedral

tessellations using first and second order meshfree approximations. This fea-

ture is not present in similar methods such as node-based uniform strain ele-

ments [22] and meshfree-enriched simplex elements [45] as these methods pro-

duce constant strains on the elements.

• In comparing the VANP approach with its finite element counterpart on low-

order simplicial tesellations, the MINI element [46], the VANP method delivers

more efficient and more accurate solutions with smoother pressure fields.

2Even though the VANP approach is a displacement-based method, the pressure field can be

recovered from the computed displacement solution.
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The outline of this paper is as follows. Section 2 presents a summary of the

maximum-entropy and RPIM basis functions, which are used as particular choices in

our meshfree method. The VANP formulation and discrete equations are developed

in Section 3. Section 4 is devoted to numerical integration in the VANP method. The

performance and accuracy of the VANP formulation are assessed through numerical

examples in Section 5. Some concluding remarks are given in Section 6.

2. Meshfree basis functions

For robustness of the VANP formulation, meshfree basis functions that allow direct

imposition of essential boundary conditions are considered. In this respect, first-

and second-order maximum-entropy (max-ent) basis functions [47, 48, 49, 50] are

selected since they permit direct imposition of essential boundary conditions at the

nodes located on the boundary of a convex domain [48, 50].

Other meshfree basis functions that appear to be usable for direct imposition of

essential boundary conditions are RPIM basis functions [51]. Although these func-

tions are known to be incompatible [52], they are endowed with the Kronecker delta

property, which only guarantees the vanishing of the interior basis functions at the

boundary nodes. According to Ref. [52], this property is sufficient for direct imposi-

tion of essential boundary conditions. However, this is not theoretically correct since

the Galerkin weak statement demands the vanishing of the interior basis functions

not only at the boundary nodes, but also between them (i.e., along the whole bound-

ary). Notwithstanding these theoretical deficiencies, RPIM basis functions have been

used many times in Galerkin-based methods [52] with good performance, and so we

adopt them as an alternative in the VANP formulation.
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2.1. First-order maximum-entropy basis functions

Consider a convex domain represented by a set of n scattered nodes and a prior

(weight) function wa(x) associated with node a. By using the Shannon-Jaynes en-

tropy functional [49], the set of max-ent basis functions {φa(x) ≥ 0}na=1 that define

the approximation function uh(x) =
∑

a φaua with ua the nodal coefficient variables,

is obtained via the solution of the following convex optimization problem:

max
φ∈R

n
+

−
n∑

a=1

φa(x) ln

(
φa(x)

wa(x)

)
(1a)

subject to the linear reproducing conditions:

n∑
a=1

φa(x) = 1

n∑
a=1

φa(x)x̃a = 0, (1b)

where x̃a = xa−x are shifted nodal coordinates and R
n
+ is the non-negative orthant.

Typical priors that can be used include kernel or window functions that are well-

known in the meshfree literature. In this paper, we use a C2 quartic polynomial

given by

wa(q) =

⎧⎨
⎩ 1− 6q2 + 8q3 − 3q4 0 ≤ q ≤ 1

0 q > 1
, (2)

where q = ‖xa − x‖/ρa and ρa = γha is the support radius of the basis function of

node a; γ is a parameter that controls the support-width of the basis function, and

ha is a characteristic nodal spacing associated with node a.

On using Lagrange multipliers, the solution of the variational statement (1) is [49]:

φa(x) =
Za(x;λ

∗)

Z(x;λ∗)
, Za(x;λ

∗) = wa(x) exp(−λ∗ · x̃a), (3)

where Z(x;λ∗) =
∑

b Zb(x;λ
∗), and for instance in three dimensions x̃a = [x̃a ỹa z̃a]

T

and λ∗ = [λ∗

1 λ∗

2 λ∗

3]
T. In (3), the Lagrange multiplier vector λ∗ is the minimizer of
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the dual optimization problem:

λ∗ = arg min
λ∈Rd

lnZ(x;λ), (4)

which leads to a system of d nonlinear equations:

f(λ) = ∇λ lnZ(λ) = −
n∑
a

φa(x)x̃a = 0, (5)

where d is the order of the spatial dimension of the convex domain and ∇λ stands

for the gradient with respect to λ. Once the converged λ∗ is found, the basis func-

tions are computed from (3). The gradient of the basis functions is obtained by

differentiating (3). The interested reader can find the final expression in [53].

2.2. Second-order maximum-entropy basis functions

Following the discussion in Ref. [50], second-order max-ent basis functions are

positive and can be defined analogously to the first-order max-ent functions on the

convex hull of a set of n scattered nodes. To this end, the following optimization

problem is solved instead of (1):

max
φ∈R

n
+

−
n∑

a=1

φa(x) ln (φa(x)) (6a)

subject to the quadratic reproducing conditions:

n∑
a=1

φa(x) = 1

n∑
a=1

φa(x)x̃a = 0,

n∑
a=1

φa(x)x̃a ⊗ x̃a = G(x), (6b)

where ⊗ denotes a dyadic product and G(x) is the so-called gap function, which is

required because for G(x) = 0 the optimization problem (6) can be shown to have

no solution except for at the nodes themselves. To overcome this so-called feasibility
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problem and obtain yet optimal convergence rates of the resulting approximation

scheme, the following gap function was identified in Ref. [50] as a proper choice:

G(x) =
n∑

a=1

φlin
a (x)W a (7)

with the linear max-ent basis functions φlin
a introduced in the previous section and

the nodal gap weights being

W a =

nface∑
i=1

α
h2
a

4
tai. (8)

Here nface is the dimension of the lowest-dimensional face of the domain to which

the node xa belongs, ha is the nodal spacing and tai is the i-th unit basis vector of

the tangent space to this face. The gap parameter α determines the magnitude of

the gap function and is chosen as α = 4 [50]. The following semi-analytical solution

for the variational statement (6) is obtained using Lagrange multipliers:

φa(x) =
Za(x;λ

∗;μ∗)

Z(x;λ∗;μ∗)
, Za(x;λ

∗;μ∗) = exp(−λ∗ · x̃a−μ∗ : [x̃a ⊗ x̃a −G(x)]), (9)

where Z(x;λ∗;μ∗) =
∑

b Zb(x;λ
∗;μ∗) and the colon denotes a double contraction

tensor product; the Lagrange multiplier λ∗ is the same as the one used in the linear

max-ent; the additional Lagrange multiplier μ∗ as well as the gap function G(x) can

be written as a symmetric (d × d)-matrix. The Lagrange multipliers λ∗ and μ∗ are

the minimizers of the dual optimization problem:

{λ∗,μ∗} = arg min
λ∈Rd,μ∈Rd×d

lnZ(x;λ;μ), (10)

which can be solved similarly to the first-order dual problem (4). The additional

Lagrange multiplier μ∗ ensures a rapid Gaussian-like decay of the basis functions

around their respective nodes as it does the locality parameter γ for first-order
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max-ent functions. As a rule of thumb it can be stated that the effective sup-

port of the second-order max-ent functions increases with the gap parameter α. For

the formulae for the derivatives of the second-order max-ent functions the reader is

referred to Ref. [50].

2.3. RPIM basis functions

Consider an approximation uh(x) of a function u(x) in an influence domain. The

influence domain is defined by the region within a radius ρ from x and covers a set

of N nodes with locations {xa}Na=1. The Radial Basis Function (RBF) interpolation

is defined as [54]:

uh(x) =

N∑
a=1

caϕ(‖x− xa‖2), (11)

where ca are coefficients to be found, ϕ is a radial basis function, and ‖·‖2 denotes

the Euclidean norm in R
d. In this work, Buhmann’s CSRBFs [55] are used for ϕ.

In order to construct the RPIM basis functions with a given polynomial consistency,

a polynomial extension is added to the RBF [51] so that the approximation is written

as

uh(x) =
N∑
a=1

caϕ(‖x− xa‖2) +
M∑
b=1

dbpb(x), (12)

where pb(x) is a monomial of a polynomial of order m with M terms in x and db is

a further set of coefficients to be found. The approximation is required to exactly

interpolates the function at the nodes giving the condition at every node with location

xk as follows [54]:

uh(xk) = c1ϕ(‖xk − x1‖2) + · · ·+ cNϕ(‖xk − xN‖2) = uk (13)

together with
M∑
k=1

dkpk(xk) = 0 (14)
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to ensure a unique solution [54]. This procedure gives rise to the following system of

equations [54]: ⎡
⎣ A P

PT 0

⎤
⎦
⎡
⎣ c

d

⎤
⎦ =

⎡
⎣ y

0

⎤
⎦ , (15)

where

A =

⎡
⎢⎢⎢⎣

ϕ(‖x1 − x1‖) . . . ϕ(‖x1 − xN‖)
...

. . .
...

ϕ(‖xN − x1‖) . . . ϕ(‖xN − xN‖)

⎤
⎥⎥⎥⎦ , P =

⎡
⎢⎢⎢⎣
p1(x1) . . . pm(x1)

...
. . .

...

p1(xN) . . . pm(xN )

⎤
⎥⎥⎥⎦ , (16)

c = [c1 . . . cN ]
T , d = [d1 . . . dM ]T , y = [u1 . . . uN ]

T . (17)

It can be shown that the above system of equations is non-singular and has a unique

solution [54]. On defining

G =

⎡
⎣ A P

PT 0

⎤
⎦ , u =

[
y 0

]T
, (18)

the consistent approximation in matrix form can be written as

uh(x) =
[
ϕT(x) pT (x)

]
G−1u. (19)

From (19), the basis function row vector is computed as

φ(x) =
[
ϕT(x) pT(x)

]
G−1, (20)

where ϕ(x)T = [ϕ(‖x− x1‖) . . . ϕ(‖x− xN‖)] and p(x)T = [p1(x) . . . pM(x)]. Fi-

nally, the gradient of the basis functions is computed by differentiating (20).

3. Formulation and discrete equations

Consider an elastic body situated in d = {2, 3} dimensional space with open

domain Ω ⊂ R
d that is bounded by the d − 1 dimensional surface Γ whose unit
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outward normal is n. The boundary is assumed to admit decompositions Γ = Γu∪Γt

and ∅ = Γu∩Γt, where Γu is the Dirichlet boundary and Γt is the Neumann boundary.

The closure of the domain is Ω ≡ Ω ∪ Γ . The vector u : Ω → R
d describes the

displacement of a point x ∈ Ω of the elastic body when the body is subjected to

external tractions t̂ : Γt → R
d and body forces b : Ω → R

d. The Dirichlet (essential)

boundary conditions are û : Γu → R
d.

The kinematic relation between the small strain tensor ε and the displacement

vector u is:

ε = ∇su =
1

2

(
∇u+ (∇u)T

)
. (21)

The elastic body is assumed to be homogeneous and isotropic allowing the stress

σ to be related to the strain ε by

σ(ε) = 2με+ λ trεI = 2μ∇su+ λ(∇ · u)I, (22)

where λ and μ are the Lame’s first and second parameters, respectively. These

parameters are related to the Young’s modulus E and Poisson’s ratio ν by

λ =
Eν

(1 + ν)(1− 2ν)
, (23a)

μ =
E

2(1 + ν)
. (23b)

The elastic body becomes nearly-incompressible when ν → 1/2, which results in

the following divergence-free (or incompressibility) constraint to be satisfied by the

displacement field:

∇ · u = tr ε = εkk = εvol ≈ 0, (24)

which can be used to approximate the hydrostatic pressure field p : Ω → R as [56]

p = −λ∇ · u = −λ tr ε = −λεkk = −λεvol. (25)
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Typically, when placed under such an strong constraint the numerical solution via

displacement-based weak formulation cannot describe movement whilst satisfying (24);

thus volumetric locking occurs. The volumetric locking can be suppressed using

the u-p mixed formulation, which includes the effect of the divergence-free con-

straint (24).

3.1. u-p mixed weak form

Let U := {u : u ∈ H1(Ω), u = û on Γu} and V := {δu : δu ∈ H1(Ω), δu = 0 on Γu}

be the trial and test spaces for the displacement field, respectively. Since the pressure

is unique only up to a constant, we define P :=
{
p : p ∈ L2(Ω),

∫
Ω
p dΩ = 0

}
and

let p ∈ P and δp ∈ P be the trial and test functions for the pressure variable,

respectively. By substituting (25) into (22), the stress tensor can be rewritten as

σ(ε) = −pI + 2μ∇su. (26)

Using the foregoing definitions, the u-p mixed weak form reads [56]:

Problem 1. Find u ∈ U and p ∈ P such that

2μ

∫
Ω

∇su : ∇sδu dΩ −

∫
Ω

p∇ · δu dΩ

=

∫
Ω

b · δu dΩ +

∫
Γt

t̂ · δu dΓ ∀ δu ∈ V ,
(27a)

∫
Ω

δp
(
∇ · u+

p

λ

)
dΩ = 0 ∀ δp ∈ P. (27b)

In the discrete equivalent of (27), solutions uh ∈ Uh ⊂ U and ph ∈ Ph ⊂ P are

sought. In addition, the pair (uh,ph) should satisfy a uniform inf-sup condition that

is independent of the discretization size and λ to ensure stability and convergence [34,

35, 33].
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3.2. Modified displacement-based weak form

An alternative locking-free approach, where the only variable is the displacement

field, can be obtained using the additive decomposition of the deformation strain into

its deviatoric and dilatational parts, and projecting the latter into another space.

This is the approach used by Elguedj et al. [11] and has the good feature that yields

a symmetric tangent stiffness matrix when the approach is extended to nonlinear

elasticity. The VANP formulation is also based on this approach.

The additive decomposition of the discrete strain is:

εh(uh) = εh(uh)−
1

3
tr εh(uh)I︸ ︷︷ ︸

deviatoric

+
1

3
tr εh(uh)I︸ ︷︷ ︸
dilatational

= (1−
1

3
tr)εh(uh)I+

1

3
tr εh(uh)I

= (1−
1

3
tr)εh(uh)I+

1

3
εvolh (uh)I

= εdevh (uh) + εdilh (uh), (28)

which is used to define a discrete modified strain denoted by εh(uh), where the bar

indicates the application of a projection operator πh on its unmodified dilatational

part, i.e.

εh(uh) = εdevh (uh) + πh

[
εdilh (uh)

]
= εdevh (uh) + εdilh (uh). (29)

The projection operator in (29) has not been applied to the deviatoric part since the

dilatational part is the responsible for the volumetric locking. The modified dilata-

tional strain is to be understood as an improved strain that precludes volumetric

locking. A modified potential energy functional will be defined using (29).

Problem 2. The displacement uh ∈ Uh ⊂ U can be found as the unique minimum

point of the modified potential energy functional Π:

Π(uh) = inf
uh

∫
Ω

ψ[εh(uh)] dΩ −

∫
Ω

b · uh dΩ −

∫
Γt

t̂ · uh dΓ. (30)
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On taking the first variation of the modified functional leads to the following

general modified discrete weak form:

Problem 3. Find the displacement uh ∈ Uh ⊂ U such that∫
Ω

σh(εh(uh)) : εh(δuh) dΩ

=

∫
Ω

b · δuh dΩ +

∫
Γt

t̂ · δuh dΓ ∀ δuh ∈ Vh ⊂ V .
(31)

By means of (22) and (28), the modified stress in (31) becomes:

σh = 2μεh + λεvolh I. (32)

By substituting (29) and (32) into (31) yields the following modified discrete weak

form for nearly-incompressible linear elastostatics:

Problem 4. Find the displacement uh ∈ Uh ⊂ U such that∫
Ω

[
2μεh(uh) + λεvolh (uh)I

]
:

[
(1−

1

3
tr)εh(δuh)I+

1

3
εvolh (δuh)I

]
dΩ

=

∫
Ω

b · δuh dΩ +

∫
Γt

t̂ · δuh dΓ ∀ δuh ∈ Vh ⊂ V .

(33)

The final step is the construction of an appropriate operator πh that defines the

‘barred’ quantities in (33) such that volumetric locking is alleviated. In brief, the

idea is to find such an operator from the pressure constraint (27b). This adopts the

form of an L2 projection. To this end, (27b) can be rearranged and later solved for

ph to arrive at the following expression:

ph =− λπh(∇ · uh) = −λπh(tr εh(uh))

=− λ trπh(εh(uh)) = −λ tr εh(uh) = −λεvolh (uh).
(34)

If an expression like (34) is available, the pressure can be eliminated from the

formulation making the system uniquely determined by the displacement field; fur-

thermore, the space Ph becomes a function of the space Uh, namely Ph(Uh).
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3.3. Volume-averaged nodal projection operator

The explicit form of the projection operator is derived from the volume-averaged

nodal pressure technique introduced in the work of Ortiz et al. [26]. To this end, let

the domain tessellation with simplices be denoted by T (Ω). The tessellation consists

of 3-node triangular or 4-node tetrahedral cells denoted by C. The vertices of the

tessellation, denoted by V(T ), are then used to define the standard node set N s. In

addition to the standard node set, we define a barycenter node set as N b with nodes

located at the barycenter of each cell C in the tessellation T (Ω). So, an enhanced

node set is defined as N+ = N s ∪ N b. Fig. 1 depicts a schematic representation of

a two-dimensional simplicial tessellation used in the VANP method.

C T (Ω)

Fig. 1: Schematic representation of a two-dimensional simplicial tessellation for the VANP method.

In our approach, the simplicial tessellation T (Ω) that connects the standard

node set N s is generated using a meshing software and the Gauss points locations

are computed based on this mesh. The enhanced node set N+ is constructed when

needed by adding the extra required nodes to the standard node set N s. This poses

no problem or additional complexity in the method since the flexibility of meshfree

methods permits the addition of nodes to the simplicial mesh very easily.
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To obtain the projection operator, the pressure constraint (27b) is discretized

using

ph(x) =

n∑
b=1

φb(x)pb, (35a)

δph(x) =
n∑

c=1

φc(x)δpc, (35b)

where n is the number of nodes in the node set N s, whose associated meshfree

basis functions φi (i = b, c) have a nonzero discrete value at the sampling point of

Cartesian coordinate x. If Gauss integration is used, the coordinates of the sampling

point are the Cartesian coordinates of a given Gauss point. By substituting (35) into

the pressure constraint (27b), it can be shown that after relying on the arbitrariness

of nodal pressure test functions and performing row-sum on the discrete pressure

term leads to the following volume-averaged nodal pressure [26]:

pc = −λ

∫
Ωc

φc(x)∇ · uh dΩ∫
Ωc

φc(x) dΩ
= −λ

∫
Ωc

φc(x)ε
vol
h dΩ∫

Ωc
φc(x) dΩ

, (36)

where the integration volume Ω has been replaced with Ωc to indicate that due to

the row-sum procedure the integration volume is the union of cells that are attached

to node c associated with the pressure degree of freedom pc (see Fig. 2). Eq. (36)

gives rise to the VANP operator as

πc[·] =

∫
Ωc

φc(x)[·] dΩ∫
Ωc

φc(x) dΩ
, (37)

As can be inferred from (36), the nodal operator applied to εvolh gives its nodal

representation as

εvolc = πc[ε
vol
h ] =

∫
Ωc

φc(x)[ε
vol
h ] dΩ∫

Ωc
φc(x) dΩ

. (38)
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Finally, by the linear combination ph =
∑

c φcpc, the bar operator is given by the

following projection operator:

π[·] =
n∑

c=1

φc(x)πc[·] =
n∑

c=1

φc(x)

{∫
Ωc

φc(x)[·] dΩ∫
Ωc

φc(x) dΩ

}
. (39)

Thus, εvolh is computed as follows:

εvolh = π[εvolh ] =

n∑
c=1

φc(x)πc[ε
vol
h ] =

n∑
c=1

φc(x)

{∫
Ωc

φc(x)ε
vol
h dΩ∫

Ωc
φc(x) dΩ

}
=

n∑
c=1

φc(x)ε
vol
c .

(40)

c
Ωc

Fig. 2: Schematic representation of an integration volume for the computation of the VANP operator

associated with node c.

Because the VANP method has its roots in the u-p mixed formulation, it is impor-

tant to consider the inf-sup stability [33, 34, 35]. However, inf-sup stability is difficult

to prove in meshfree methods. Therefore, we do not provide an analytical proof for

the inf-sup condition, but rather we mimic well-known inf-sup stable finite element

schemes. To this end, first-order meshfree basis functions are used to construct the

space Uh with the enhanced node set N+ and the space Ph(Uh) with the standard

node set N s. This mimics the inf-sup stable MINI finite element [46]. For high-order
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approximations, two inf-sup stable finite elements are considered: the second-order

conforming Crouzeix & Raviart element [57] and the Taylor-Hood element [58]. The

former is mimicked using second-order meshfree basis functions to construct the

space Uh with the enhanced node set N+ and first-order meshfree basis functions

to construct the space Ph(Uh) with the standard node set N s. The Taylor-Hood

element is mimicked using second-order meshfree basis functions to construct the

space Uh and first-order meshfree basis to construct the space Ph(Uh) both with

the standard node set N s. It is stressed that this is done only for stability purposes.

Ultimately, it is our interest to compare the VANP approach with the MINI element

because both use the same tessellation.

For implementation purposes of the VANP operator, it should be noted that the use

of the aforementioned meshfree discretizations for construction of Uh and Ph(Uh)

spaces imply that the basis functions that appear in the operator (39) are computed

using the standard node set N s, but εvolh in (40) using either the enhanced node set

N+ or the standard node set N s depending on whether bubble enrichment is used

or not, respectively, since εvolh is computed from the displacement field.

3.4. Discrete equations

The discrete modified weak form is obtained by introducing the following approx-

imations into (33):

uh(x) =
n∑

a=1

φa(x)ua, (41a)

δuh(x) =
n∑

b=1

φb(x)δub, (41b)
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where φa(x) and φb(x) are meshfree basis functions. Thus, the corresponding discrete

strains that appear in the modified weak form (33) (in Voigt notation) become

εh(uh) =
n∑

a=1

Ba(x)ua, (42)

εh(δuh) =

n∑
b=1

Bb(x)δub, (43)

εvolh (uh) =

n∑
c=1

φc(x)πc

[
mT

n∑
a=1

Ba

]
ua, (44)

εvolh (δuh) =

n∑
c=1

φc(x)πc

[
mT

n∑
b=1

Bb

]
δub, (45)

where in two dimensions

m =
[
1 1 0

]T
, (46)

Ba =

⎡
⎢⎢⎢⎣

φa,x 0

0 φa,y

φa,y φa,x

⎤
⎥⎥⎥⎦ , (47)

and in three dimensions

m =
[
1 1 1 0 0 0

]T
, (48)

Ba =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φa,x 0 0

0 φa,y 0

0 0 φa,z

φa,y φa,x 0

φa,z 0 φa,x

0 φa,z φa,y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (49)
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Finally, on collecting all these discrete quantities and replacing them into the mod-

ified weak form (33), and appealing to the arbitrariness of nodal variations leads to

the following system of equations:

(
K1 + K2 + K3 + K4

)
u = f, (50a)

where u is the column vector of nodal coefficients and

K1
ab =

∫
Ω

BT
a I

T
devCμBb dΩ, (50b)

K2
ab = λ

∫
Ω

BT
a I

T
devm

n∑
c=1

φcπc

[
mTBb

]
dΩ, (50c)

K3
ab =

1

3

∫
Ω

(
m

n∑
c=1

φcπc

[
mTBa

])T

CμBb dΩ, (50d)

K4
ab =

λ

3

∫
Ω

(
m

n∑
c=1

φcπc

[
mTBa

])T

m

n∑
c=1

φcπc

[
mTBb

]
dΩ, (50e)

fa =

∫
Ω

φab dΩ +

∫
Γt

φat̂ dΓ (50f)

with the following matrices due to the Voigt notation:

Idev = I−
1

3
mmT (I is the identity matrix) , (50g)

and the material matrix being

Cμ =

⎡
⎢⎢⎢⎣

2μ 0 0

0 2μ 0

0 0 μ

⎤
⎥⎥⎥⎦ (50h)
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in two dimensions, or

Cμ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2μ 0 0 0 0 0

0 2μ 0 0 0 0

0 0 2μ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50i)

in three dimensions. Once the nodal coefficients are obtained from (50a), the nodal

displacement at node i of Cartesian coordinates xi is computed by evaluating (41a)

at x = xi.

4. Numerical integration

The cell-based integration of discrete quantities that depend on basis functions

derivatives introduces integration errors when standard Gauss integration is used.

To alleviate these integration errors in the VANP method, a special procedure is

performed to correct the values of the nodal basis functions derivatives at the Gauss

points.

A strain correction technique that alleviates integration errors in meshfree meth-

ods, ensures patch test satisfaction to machine precision and converges optimally

for first-order meshfree approximations, was developed in Ref. [26]. In the present

paper, second-order max-ent basis functions and second-order RPIM basis functions

are used. Particularly, the derivatives of the latter ones are much more complicated

than the derivatives of the former ones. Thus, the first-order correction presented

in Ref. [26] is not sufficiently accurate for integration of the weak form integrals.

As a remedy, the third-order variationally consistent accurate integration scheme
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Fig. 3: Geometric entities for the third-order accurate integration scheme. (a) Simplicial tessellation,

where the shaded region represents an integration cell whose domain is denoted by Ωe and its

boundary by ∂Ωe = ∂Ωe

1

⋃
∂Ωe

2

⋃
∂Ωe

3 ; and (b) the integration cell and nodes, where the interior

Gauss points are depicted as + and the boundary Gauss points as ∗. Note that depending on the

support size of the nodal basis functions, nodes that are beyond the cell can contribute at a Gauss

point if their basis functions take a nonzero value at that point.

presented in Ref. [43] is adopted to correct the nodal basis functions derivatives on

triangular meshes and we extend this rule to tetrahedral meshes.

The third-order integration scheme needs an integration cell that is obtained from

a simplicial tessellation. Fig. 3 depicts a typical tessellation and a representative

integration cell in two dimensions for this scheme; the enhanced node set N+ is also

shown to remark that the nodal basis functions derivatives are to be computed using

the enhanced node set since they stem from the displacement field.

The third-order accurate integration scheme for correction of nodal basis functions

derivatives follows. For simplicity, the derivations are given in detail only for two-
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dimensions. The Cartesian coordinate system is chosen, where for convenience x ≡ x1

and y ≡ x2. In addition, nj (j = 1, 2) is the j-th component of the unit outward

normal to a cell edge in the Cartesian coordinate system.

For the cubic approximation basis

p(x) = [1 x1 x2 x1x1 x1x2 x2x2 x1x1x1 x1x1x2 x1x2x2 x2x2x2]
T, (51)

the corresponding stress field is quadratic. That is, the stress can be represented

using a quadratic basis as

σij = a0 + a1x1 + a2x2 + a3x1x1 + a4x1x2 + a5x2x2. (52)

Hence, the quadratic basis is

f(x) = [1 x1 x2 x1x1 x1x2 x2x2]
T, (53)

whose derivative (δij is the Kronecker delta symbol) is

f,j(x) = [0 δ1j δ2j 2x1δ1j x2δ1j + x1δ2j 2x2δ2j ]
T, (54)

The corrected nodal derivatives (see Eq. (35) in Ref. [43]) can be expressed as∫
Ωe

φa,jf(x) dΩ
e =

∫
Γ e

φaf(x)nj dΓ
e −

∫
Ωe

φaf,j(x) dΩ
e, (55)

leading to the following integration constraints that are to be met by the meshfree
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basis functions derivatives:∫
Ωe

φa,1 dΩ
e =

∫
Γ e

φan1 dΓ
e, (56a)∫

Ωe

φa,1x1 dΩ
e =

∫
Γ e

φax1n1 dΓ
e −

∫
Ωe

φa dΩ
e, (56b)∫

Ωe

φa,1x2 dΩ
e =

∫
Γ e

φax2n1 dΓ
e, (56c)∫

Ωe

φa,1x1x1 dΩ
e =

∫
Γ e

φax1x1n1 dΓ
e −

∫
Ωe

φa2x1 dΩ
e, (56d)∫

Ωe

φa,1x1x2 dΩ
e =

∫
Γ e

φax1x2n1 dΓ
e −

∫
Ωe

φax2 dΩ
e, (56e)∫

Ωe

φa,1x2x2 dΩ
e =

∫
Γ e

φax2x2n1 dΓ
e (56f)

for φa,1, and ∫
Ωe

φa,2 dΩ
e =

∫
Γ e

φan2 dΓ
e, (56g)∫

Ωe

φa,2x1 dΩ
e =

∫
Γ e

φax1n2 dΓ
e, (56h)∫

Ωe

φa,2x2 dΩ
e =

∫
Γ e

φax2n2 dΓ
e −

∫
Ωe

φa dΩ
e, (56i)∫

Ωe

φa,2x1x1 dΩ
e =

∫
Γ e

φax1x1n2 dΓ
e, (56j)∫

Ωe

φa,2x1x2 dΩ
e =

∫
Γ e

φax1x2n2 dΓ
e −

∫
Ωe

φax1 dΩ
e, (56k)∫

Ωe

φa,2x2x2 dΩ
e =

∫
Γ e

φax2x2n2 dΓ
e −

∫
Ωe

φa2x2 dΩ
e (56l)

for φa,2.

The integration constraints (56) are solved using Gauss integration on the integra-

tion cell shown in Fig. 3(b), which leads to the following system of linear equations:

Qdj = fj, j = 1, 2 (57a)
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where Q and fj are given in Ref. [43] (see Eq. (42) therein), and the j-th corrected

basis function derivative at the six interior Gauss points of coordinates xi (i =

1, 2, ..., 6) is given by the solution vector

dj =
[
φa,j(x1) φa,j(x2) φa,j(x3) φa,j(x4) φa,j(x5) φa,j(x6)

]T
. (57b)

In the preceding equations, the index a runs through the combined nodal contribu-

tion3 that results from the union of nodal contributions corresponding to each of the

interior and edge Gauss points in the cell.

The corrected derivatives given in (57b) are used to define the deformation matrix

(Eq. (47) or (49)) that appears in the stiffness matrices of the VANP method.

Finally, in three dimensions the integration cell is a tetrahedron and the integra-

tion constraints can be derived from the quadratic basis

f(x) = [1 x1 x2 x3 x1x1 x2x2 x3x3 x1x2 x1x3 x2x3]
T, (58)

and its derivative

f,j(x) = [0 δ1j δ2j δ3j 2x1δ1j 2x2δ2j 2x3δ3j x2δ1j+x1δ2j x3δ1j+x1δ3j x3δ2j+x2δ3j ]
T.

(59)

The third-order integration scheme has not been developed for tetrahedral cells

in Ref [43]. Therefore, the quadratures that are needed for tetrahedral cells are given

in Appendix A.

5. Numerical examples

In this section, the performance and accuracy of the VANP formulation are assessed

via numerical examples. The following notation is adopted for presenting the VANP

3The nodal contribution at a given Gauss point of coordinate x is defined as the indices of the

nodes whose basis functions have a nonzero value at x.
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results: VANP-T a
p /Tq-b, where Tp is the approximation space of polynomial order p

for the displacement field and Tq is the approximation space of polynomial order q in

which the dilatational strain is projected; the superscript a is set as follows: a = +

when bubble enrichment is specified (N+ is the node set used) or it is removed in

case bubble enrichment is not considered (N s is the node set used); and b stands for

the type of meshfree basis function that is used for the approximation spaces. Thus,

b = m is used for max-ent basis functions, whereas b = r for RPIM basis functions. By

using the preceding definitions the following VANP schemes are considered: VANP-

T+
1 /T1-m, VANP-T+

2 /T1-m, VANP-T+
2 /T1-r, VANP-T2/T1-m, VANP-T2/T1-r.

In all the VANP computations, the third-order variationally consistent accurate

integration scheme detailed in Section 4 is used and the nodal pressure is obtained

from the computed nodal coefficients using (36). The base background mesh, which

only contains the node set N s, is generated using a meshing software. The enhanced

node set N+ is constructed when needed by adding the extra required nodes to the

standard node set N s.

5.1. Cantilever beam

To show the accuracy and convergence of the VANPmethod in nearly-incompressible

elasticity, a cantilever beam of unit thickness with a parabolic end load P is con-

sidered. Fig. 4 presents the geometry of the beam. A regular background mesh of

3-node triangles with a mesh pattern of 2n divisions along the length of the beam and

n divisions along the height of the beam is chosen for the definition of node set N s.

The coarsest mesh is obtained with n = 4. The essential boundary conditions on the

clamped edge are applied according to the analytical solution given by Timoshenko
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and Goodier [59]:

ux = −
Py

6ĒI

(
(6L− 3x)x+ (2 + ν̄)y2 −

3D2

2
(1 + ν̄)

)
, (60a)

uy =
P

6ĒI

(
3ν̄y2(L− x) + (3L− x)x2

)
, (60b)

where Ē = E/ (1− ν2) with the Young’s modulus set to E = 210000 MPa and

ν̄ = ν/ (1− ν) with the Poisson’s ratio set to ν = 0.4999; L = 200 mm is the length

of the beam, D = 100 mm is the height of the beam, and I the second-area moment

of the beam section. The total load on the traction boundary is P = −5000 N.

y

x
P100 mm

200 mm

Fig. 4: Cantilever beam problem. Model geometry and boundary conditions

The convergence rates in the energy and L2 norms of the error are depicted in

Fig. 5. In the convergence plots, the nodal spacing is set to the length of the element

side and denoted by h. The convergence rates in the energy norm of the error are

presented in Fig. 5(a). The optimal convergence rates in the energy norm of the

error are 1 for linear displacements and 2 for quadratic displacements [56]. From

Fig. 5(a), it is observed that both the MINI element and VANP-T+
1 /T1-m schemes

deliver the optimal rate of convergence, but the latter is more accurate than the

former. With respect to the second-order maxent approaches, the VANP-T+
2 /T1-m
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scheme delivers the optimal convergence rate, whereas the VANP-T2/T1-m slightly

loses the optimal convergence due to the absence of bubble enrichment. On the

other hand, the second-order RPIM schemes, VANP-T+
2 /T1-r and VANP-T2/T1-r, only

exhibit linear convergence.

The convergence rates in the L2-norm of the error are shown in Fig. 5(b). The

optimal convergence rates in the L2-norm of the error are 2 for linear displacements

and 3 for quadratic displacements [56]. Once again, both the MINI element and the

VANP-T+
1 /T1-m schemes deliver the optimal rate of convergence, but the latter is

more accurate than the former; all the second-order VANP approaches exhibit the

optimal rate of convergence in the L2-norm of the error.
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Fig. 5: Convergence study for the cantilever beam problem. (a) Energy norm of the error and (b)

L2 norm of the error.

Finally, the computational efficiency of the different approaches is studied. In
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order to compare the first with second order methods, the energy and L2 norms of

the errors of the first order methods were computed with more refined meshes to

obtain accuracies comparable to the accuracies of the second order methods; and to

compare the VANP formulation with the MINI element, only the bubble-enriched VANP

methods are considered. The computational efficiency of the different approaches is

presented in Fig. 6. All the VANP methods are more efficient than the MINI element

in both the energy and L2 norms of the error when a certain level of accuracy is

desired, particularly, as the mesh is refined.
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Fig. 6: Computational efficiency for the cantilever beam problem. (a) Energy norm of the error

and (b) L2 norm of the error.

5.2. Cook’s Membrane

The membrane shown in Fig. 7(a) is used to test the behavior of the VANP for-

mulation under combined bending and shear (see for instance, Refs. [60, 18, 11] for
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previous use of this standard benchmark test). The left edge is clamped and the

right end is subjected to a uniformly distributed shear load of P = 6.25 N/mm (to-

tal shear load of 100 N). The following material parameters are set: E = 240.565

MPa and ν = 0.4999. A regular background mesh of 3-node triangles with a mesh

pattern of n × n divisions per side is chosen for the definition of node set N s. A

reference mesh for n = 20 is shown in Fig. 7(b). The unstructured background mesh

depicted in Fig. 7(c) is also considered for some tests.

A

B

C

48 mm

24 mm

44
 m

m
16

 m
m

P

(a) (b) (c)

Fig. 7: Cook’s membrane problem. (a) Model geometry and boundary conditions; (b) sample

regular background mesh; and (c) unstructured background mesh.

A first study is devoted to the convergence of the vertical tip displacement at point

A upon mesh refinement. The results are summarized in Fig. 8. The numerical results

reveal that the VANP approaches deliver better convergence than the MINI element

and that VANP-T+
1 /T1-m and VANP-T+

2 /T1-r are in good agreement between them

and both converge to the reference value (around 8 mm) obtained from Ref. [11].

The scheme without bubbles VANP-T2/T1-r also exhibits good convergence to the
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reference value, although slightly inferior to the convergence of the former VANP cases.
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Fig. 8: Cook’s membrane problem. Convergence of the vertical tip displacement.

A second study is performed to show the smoothness of the nodal pressure de-

livered by the VANP formulation. Here, the nodal pressure is measured along the

line BC (see Fig. 7(a)) using the structured mesh shown in Fig. 7(b). The results

are depicted in Fig. 9. It is observed that the MINI element exhibits small pres-

sure oscillations near the starting and ending points on the line BC, whereas the

VANP-T+
1 /T1-m scheme delivers smooth pressure along the whole line. The VANP-

T+
2 /T1-r approach also delivers smooth pressure along the whole line. However, the

VANP-T2/T1-r scheme, which has no bubble enrichment, presents severe pressure

oscillations. Finally, the nodal pressure is computed using the unstructured mesh

depicted in Fig. 7(c). The pressure smoothness delivered by the VANP formulation

is readily evident in the pictorial shown in Fig. 10, where only the VANP-T2/T1-r

scheme exhibits pressure oscillations due to the absence of bubble enrichment.
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Fig. 9: Cook’s membrane problem. Nodal pressure along the line BC.

5.3. Plane strain compression of a constrained block

This compression problem is used to evaluate the VANP formulation in a highly

constrained setting in two dimensions. Similar benchmark problems are found in

Refs. [18, 61, 62]. As shown in Fig. 11(a), a square block of dimensions 1 × 1 mm

and unit thickness is fully constrained on its Dirichlet boundary (bottom, left, and

right edges). A downward traction of 4000 N/mm is applied over the center portion

of the top edge covering 1/3 of the edge’s length. The following material parameters

are specified: E = 210000 MPa and ν = 0.4999. Plane strain condition is assumed.

A reference background mesh of 3-node triangles for the definition of the node set N s

is shown in Fig. 11(b) for a regular tessellation and in Fig. 11(c) for an unstructured

one. In this example, the non-bubble-enriched schemes are not shown since they

produce highly oscillatory pressure fields and therefore are not stable. This lack of

stability has already been demonstrated in the previous examples.

The compression level is defined as the ratio of the absolute value of the vertical
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(a) (b)

(c) (d)

Fig. 10: Cook’s membrane problem. Nodal pressure variable on the unstructured background mesh

for (a) MINI element, (b) VANP-T+

1 /T1-m, (c) VANP-T+

2 /T1-r, and (d) VANP-T2/T1-r.
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Fig. 11: Plane strain compression of a constrained block. (a) Model geometry and boundary

conditions; (b) sample regular background mesh; and (c) unstructured background mesh.

displacement at point A to the height of the block. In the first test, the convergence

of the compression level upon mesh refinement of the regular mesh is studied. The

results for the MINI element and first- and second-order VANP schemes are presented

in Fig. 12. All the schemes show convergence as the mesh is refined. However, the

MINI element scheme presents a slower convergence.

The second test is devoted to study the smoothness of the nodal pressure vari-

able. For this purpose the unstructured mesh shown in Fig. 11(c) is considered. The

nodal pressures are shown in Fig. 13. It is observed that the nodal pressure is reason-

able smooth for the MINI element formulation (Fig. 13(a)); however, the first-order

max-ent VANP scheme presents even smoother pressure fields (Fig. 13(b)). Smooth

pressure is also obtained for the second-order enriched VANP schemes (Figs. 13(c)

and 13(d)).
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Fig. 12: Plane strain compression of a constrained block. Convergence of the compression level at

point A.

5.4. Compression of a constrained block

Finally, a three-dimensional highly constrained problem is considered. A rectan-

gular block of dimensions 1 × 0.5 × 0.5 mm is constrained as shown in Fig. 14(a).

The downward traction is 1000 MPa. The following material parameters are set:

E = 210000 MPa and ν = 0.4999. For the construction of the node set N s, the faces

of the rectangular domain are divided as follows: 2n divisions along the length, n

divisions along the height, and n divisions along the depth. A regular background

mesh of 4-node tetrahedra is generated to define the node set N s. A sample mesh

for n = 6 is shown in Fig. 14(b).

The compression level is defined as the ratio of the absolute value of the verti-

cal displacement on edge AB to the height of the block. The convergence of the

compression level upon mesh refinement is presented in Fig. 15. In this particular

example, the MINI element converges and performs as good as the max-ent VANP

schemes. Although the VANP-T+
2 /T1-r scheme shows a tendency to converge, it
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(a) (b)

(c) (d)

Fig. 13: Plane strain compression of a constrained block. Nodal pressure variable for (a) MINI

element, (b) VANP-T+

1 /T1-m, (c) VANP-T+

2 /T1-m, and (d) VANP-T+

2 /T1-r. In these plots the

unstructured background mesh depicted in Fig. 11(c) is used.
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Fig. 14: Compression of a constrained block. (a) Model geometry and boundary conditions, and

(b) sample background mesh.

does it significantly slower than the rest of the schemes.

With respect to the smoothness of the nodal pressure variable, Fig. 16 reveals

that the MINI element presents small pressure oscillations. In contrast, the VANP-

T+
1 /T1-m and VANP-T+

2 /T1-m schemes present smooth pressure fields. On the other

hand, the pressure field for the VANP-T+
2 /T1-r scheme behaves oscillatory.

6. Conclusions

In this paper, a high-order displacement-based Galerkin meshfree method has

been proposed for the analysis of nearly-incompressible linear elastic solids using

the nodal information from low-order triangular/tetrahedral tessellations. In this

procedure, a projection operator is constructed from the pressure constraint of the u-p

mixed formulation and used to project the dilatational strain onto an approximation

space of equal- or lower-order than the approximation space for the displacement

field. The stability of the method is provided via bubble-like functions, which requires

the addition of an interior node to every cell in the simplicial tessellation. This,

however, is a straight-forward task due to the flexibility offered by meshfree methods.

39



4 6 8 10 12
0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

Divisions per side

C
om

pr
es

si
on

 le
ve

l [
%

]

MINI

VANP−T1+/T1−m

VANP−T2+/T1−m

VANP−T2+/T1−r

Fig. 15: Compression of a constrained block. Convergence of the compression level on edge AB.

First and second order both max-ent and RPIM basis functions were considered as

particular cases to exemplify the VANP formulation. The low-order tessellation is also

used to numerically integrate the VANP weak form integrals. For accuracy purposes,

the third-order variationally consistent accurate integration rule of Duan et al. [43]

was adopted for triangular meshes and an extension of this rule to three dimensions

was developed for integration on tetrahedral meshes.

The performance of the VANP formulation was assessed through several examples

in two and three dimensions. The results showed that the method is devoid of vol-

umetric locking and that the enrichment of the displacement field with bubble-like

nodes is fundamental to obtain smooth nodal pressures from the computed displace-

ment field. The rates of convergence in the energy and L2-norm of the error were

found to be optimal in first and second order max-ent VANP schemes, whereas second-

order RPIM VANP schemes converged optimally in the L2-norm and only linearly in

the energy norm. In comparing the VANP approach with its finite element counter-
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(a) (b)

(c) (d)

Fig. 16: Compression of a constrained block. Nodal pressure variable for (a) MINI element, (b)

VANP-T+

1 /T1-m, (c) VANP-T+

2 /T1-m, and (d) VANP-T+

2 /T1-r.
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part, the MINI element [46], it can be stated that the VANP approach provides greater

efficiency, greater accuracy and better convergence properties on low-order simplicial

tessellations. An extension of the VANP formulation to nonlinear regime is currently

under investigation.

Appendix A. Quadratures for the tetrahedral cell

The quadratures given here ensure invertibility of Q in (57). For a tetrahedral

cell, the following 10-point rule is used for the interior Gauss points:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7784952948213300 0.0738349017262234 0.0738349017262234 0.0738349017262234

0.0738349017262234 0.7784952948213300 0.0738349017262234 0.0738349017262234

0.0738349017262234 0.0738349017262234 0.7784952948213300 0.0738349017262234

0.0738349017262234 0.0738349017262234 0.0738349017262234 0.7784952948213300

0.4062443438840510 0.4062443438840510 0.0937556561159491 0.0937556561159491

0.4062443438840510 0.0937556561159491 0.4062443438840510 0.0937556561159491

0.4062443438840510 0.0937556561159491 0.0937556561159491 0.4062443438840510

0.0937556561159491 0.4062443438840510 0.4062443438840510 0.0937556561159491

0.0937556561159491 0.4062443438840510 0.0937556561159491 0.4062443438840510

0.0937556561159491 0.0937556561159491 0.4062443438840510 0.4062443438840510

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.1)

42



as the tetrahedral coordinates, and

w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0476331348432089

0.0476331348432089

0.0476331348432089

0.0476331348432089

0.1349112434378610

0.1349112434378610

0.1349112434378610

0.1349112434378610

0.1349112434378610

0.1349112434378610

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.2)

as the corresponding weights; whereas the following 6-point rule is used for the face

Gauss points of the tetrahedral cell:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.816847572980459 0.091576213509771 0.091576213509771

0.091576213509771 0.816847572980459 0.091576213509771

0.091576213509771 0.091576213509771 0.816847572980459

0.108103018168070 0.445948490915965 0.445948490915965

0.445948490915965 0.108103018168070 0.445948490915965

0.445948490915965 0.445948490915965 0.108103018168070

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.3)
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as the triangular coordinates, and

w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.109951743655322

0.109951743655322

0.109951743655322

0.223381589678011

0.223381589678011

0.223381589678011

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.4)

as the corresponding weights
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