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Abstract

It has been shown recently that the class of elastic bodies is much larger than the

classical Cauchy and Green elastic bodies, if by an elastic body one means a body

incapable of dissipation (converting working into heat). In this paper we study the

boundary value problem of a hole in a finite nonlinear elastic plate that belongs to a

sub-set of this class of the generalization of elastic bodies, subject to a uniaxial state

of traction at the boundary (see Fig 1). We consider several different specific models

including one that exhibits limiting strains. As the plate is finite, we have to solve

the problem numerically and we use the finite element method to solve the problem.

In marked contrast to the results for the classical linearized elastic body we find that

the strains grow far slower than the stress.
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1 Introduction

The stress concentration due to the presence of defects such as holes or inclusions, is

an important factor in determining the design and development of most load bearing

structural elements, and has thus been studied with assiduity within the context of

several constitutive theories including classical linearized elasticity. One of the classi-

cal problems in linearized elasticity is the stress concentration due to the presence of

a circular hole in an infinite plate subject to traction on the boundary (see Bickley [1]

and Love [2]). The generalization of this problem has been carried out for plates with

a variety of holes of different shapes (see Murakami [3]), and for circular and elliptic

holes for different non-linear elastic bodies subject to a variety of loads. In this paper

we study the problem within the context of a class of elastic bodies which is a sub-set

of a recent generalization of the classical Cauchy and Green elastic bodies. While

some simple problems have been studied within this class of new elastic bodies, the

boundary value problem of a plate with a hole and problems such as inclusions etc.,

wherein stress concentration occurs, have not been studied within the context of such

bodies.

In Cauchy elastic bodies (see Truesdell and Noll [4]), the Cauchy stress is given

in terms of the deformation gradient, and in Green elastic bodies (see [5, 4]) the

stored energy is given in terms of the deformation gradient with the stress being

derivable from the stored energy. The linearization of the constitutive model for a

general non-linear elastic body under the assumption that the displacement gradient

is sufficiently small, leads to the constitutive theory for a linearized elastic body.

While the response of a linearized elastic body can be expressed by either prescribing

the stress in terms of the linearized strain or the linearized strain in terms of the stress

(a similar situation presents itself in the case of a linear(ized) viscoelastic body), this

is not true in the case of general non-linear elastic bodies. In general the non-linear
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constitutive relation for the stress is not invertible1. Linearization of the new class of

elastic bodies, wherein implicit relationships exist between the deformation gradient

and the stress or those wherein the deformation gradient is expressed as a function of

the stress, under the usual assumption that the Frobenius norm of the displacement

gradient is small, in marked departure from the linearized case, leads to models

wherein the linearized strain can be given as a non-linear function of the stress.

As mentioned earlier, recently it has been shown that the class of elastic bodies

is much more general than previously thought (see Rajagopal [7, 8] and Rajagopal

and Srinivasa [9, 10]). The generalization that has been put into place, allows for

an elastic body to be defined through implicit constitutive relations between the

non-linear Cauchy-Green stretch and the Cauchy stress by relations of the form:

f(B,T, ρ) = 0, (1)

where B is the Cauchy-Green stretch tensor2, T is the Cauchy stress tensor and ρ

is the mass density. In virtue of the balance of mass, we can recast the dependence

on the density with the dependence on the determinant of B and so express the

relationship between B and T.

A special sub-class of the above class of implicit models is the following class of

explicit models that provide an expression for B in terms of T, namely (see Rajagopal

[7]):

B = g(T, ρ). (2)

For isotropic bodies we have

B = α0I + α1T + α2T
2, (3)

1Truesdell and Moon [6] have determined conditions under which the relation is invertible, but their
interest lay in determining the invertibility of isotropic functions.

2Though it is referred to as the stretch tensor, to be more precise, it is the square of the stretch tensor
V.
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where αi, i = 0, 1, 2, depend on the principal invariants of T and the density. Model

(3) essentially reverses the role of the Cauchy-Green stretch tensor and the stress

tensor from the classical model, for the response of isotropic homogeneous compress-

ible elastic solids. While the classical model can be inverted to obtain model that

belongs to the class defined by (2), not all models of the class defined by (2) can be

obtained by such an inversion.

The classical procedure of linearizing the relationship (1) under the assumption

that the displacement gradient be sufficiently small, leads to a relationship between

the linearized strain ε and the stress T of the form [8, 11]:

ε = h(T). (4)

For isotropic bodies we then have

ε = β0I + β1T + β2T
2, (5)

where βi, i = 0, 1, 2, depend on the principal invariants of T. A non-linear rela-

tionship such as (5) between the strain and the stress is impossible to obtain by

linearizing classical Cauchy or Green elasticity (see [11, 12] for a detailed discussion

of the same).

Constitutive theories wherein the linearized strain is a non-linear function of the

stress allows one to describe response of elastic bodies that were hitherto not possible;

for instance the problem of fracture in brittle materials wherein the body fractures

within the realm of small strains. As is well known, both the strain and the stress grow

proportional to the square root of the inverse of r, where r is the radial distance from

the tip of a crack, within the context of the theory of linearized elasticity. But such a

growth is self-contradictory as the linearized theory is only valid if the displacement

gradient and hence the strain is very small. It turns out that the generalization
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(5) that leads to models, wherein the linearized strain is a non-linear function of

the stress, allows one to obtain bounded strains that can be fixed to be as small as

we wish a priori, while the stress is allowed to grow and even become unbounded.

Rajagopal and Walton [13] have shown that in the case of anti-plane strain involving

a crack in an infinite body, for a large class of the generalized elastic bodies the strain

remains bounded even at the crack tip. The ability to predict bounded strains for

the crack problem is insufficient to advocate the use of models belonging to this new

class of elastic bodies. It is necessary to further study whether models belonging

to this new class predict meaningful physical results for a variety of boundary value

problems, before they can be adopted for further use. It is with such a view in mind

that several simple boundary value problems have been studied within the context of

these new constitutive models. However, even more studies, wherein the results are

in agreement with observations and experimental results, are necessary to provide

some confidence with regard to the usefulness and efficacy of such models.

As mentioned above, recently, several boundary value problems have been studied

within the context of these new class of elastic bodies. The problems of uniaxial

extension, shear, circumferential shear, and torsion for different sub-classes of bodies

belonging to this new class of elastic bodies has been studied by Rajagopal [12].

Bustamante and Rajagopal [11, 14] studied plane stress and plane strain problems

involving members of this new class of elastic bodies. Interestingly, even within the

context of simple shearing members of this new class of elastic bodies Bustamante

and Rajagopal [15] find the possibility of multiple solutions, as well as solutions

wherein one finds the presence of pronounced stress boundary layers in that there

are narrow regions adjacent to the boundary, that is a narrow region wherein the

gradients of the stress are very large, while in the region outside the narrow region

the stresses are essentially constant. Rajagopal and Saravanan [16] have studied the

inflation of a compressible spherical annulus of members of this new class of elastic

materials and found the development of pronounced stress boundary layers in the
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case of a spherical inclusion, while Rajagopal and Saravanan [17] have also studied

the extension, inflation, and the circumferential shearing of a cylindrical annulus

of such compressible elastic solids and once again found the development of stress

boundary layers. Most recently, Bustamante and Rajagopal [15] have studied the

simple shearing of a class of incompressible isotropic elastic solids belonging to this

new class.

In particular, we are concerned with the response of a planar slab of such a

material with a hole when subject to tensile loading (see Fig. 1). In the case of the

classical linearized elastic body, the stress concentration factor is 3 and occurs at the

location (ri, 0) in a polar co-ordinate system (see, for example, [18]), where ri is the

radius of the hole. In the classical linearized elastic body, the stress and the strain

grow in the same manner as they are related linearly. In the case of the model that

we study, in view of the fact that there is a limiting strain as the stress grows, we

should expect the growth in the strain to be far more moderate than the growth in

the stress. We find this to indeed be the case. We find that the strain grows very

much slower than the stress as we approach the hole. While the stress concentration

for the material being studied is higher than that for a linearized elastic body, the

strains that are engendered are much smaller than that in the linearized elastic body

obtained by linearizing the non-linear relationship.

The organization of the paper is as follows. In Section 2, we introduce the basic

kinematics, the constitutive theory and record the boundary value problem. As the

problem considered leads to a non-linear system of partial differential equations in

a finite and reasonably complex boundary, it is necessary to resort to a numerical

solution of the problems; in Section 3 we provide the details concerning the finite ele-

ment method as well as the documentation of the results of the numerical procedure

and in Section 4 we discuss the implications of the results.
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2 Basic equations

2.1 Kinematics

Let X ∈ κR(B) denote a particle belonging to body B in the reference configuration

κR(B), and let x ∈ κt(B) denote the position of the same particle in the current

configuration κt(B), at time t. We assume the mapping χ which assigns to each

particle X ∈ κR(B) the position x at time t, i.e., x = χ(X, t) is sufficiently smooth

to make all the derivatives that are taken to be meaningful. The displacement u and

the deformation gradient F are defined through

u = x− X, F =
∂χ

∂X
, (6)

respectively. The Cauchy-Green stretch tensors B and C are defined through B =

FF
T, C = F

T
F, and the Green-St.Venant strain E and the linearized strain ε are

defined through

E =
1

2
(C − I), (7)

ε =
1

2

[

(

∂u

∂x

)

+

(

∂u

∂x

)T
]

, (8)

respectively.

2.2 Constitutive equations for a new class of elastic bod-

ies

In this paper we consider only ‘isotropic’ bodies, and it follows from (5) that

ε = β0I + β1T + β2T
2,
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where β0, β1 and β2 are scalar functions that depend on three mutually independent

invariants. We consider the set

IT = trT, IIT =
1

2
tr(T2), IIIT =

1

3
tr(T3). (9)

A special sub-class of the class of materials defined through (5) was proposed by

Bustamante [19], who proved the existence of a scalar function W = W (T) s.t.

ε =
∂W

∂T
. (10)

In the case of an isotropic material we have W (T) = W (IT , IIT , IIIT ) and it follows

from (9) and (10) that

ε = W1I + W2T + W3T
2, (11)

where we have used the notation W1 = ∂W
∂IT

, W2 = ∂W
∂IIT

and W3 = ∂W
∂IIIT

.

2.3 Boundary value problem

In absence of body forces, under the assumption that the body is static, the stress

tensor T has to satisfy the equilibrium equation

divT = 0. (12)

The compatibility equations for the components of the linearized strain tensor

are [2]

εkn,lm + εlm,kn − εkm,ln − εln,km = 0, (13)

where only six of the above equations are independent.

In the linearized theory of elasticity there are two methods that are used to solve

boundary value problems, to work with the displacement field as the main unknown
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variable obtaining the Navier equations, or to use the stress potential such that for

2D problems one arrives at the biharmonic equation.

In the case of the new class of materials we are interested in, if we follow the

procedures described above, we obtain highly nonlinear equations for the following

reasons:

• If we consider the first alternative of working with the displacement field u as the

main unknown variable, we obtain ε by appealing to (8) and as a consequence

(13) is satisfied automatically.

For this new class of materials from (5) we would need to calculate the compo-

nents of T. In general (5) may not be invertible (in some interesting problems

we may obtain more than one solution), therefore we may need numerical meth-

ods to determine T.

Once we obtain T we need to solve (12) for u.

• If we consider the second method of working with a stress potential, such that

(12) can be satisfied automatically, then for the two-dimensional problem we

can use the solution in terms of the Airy’s stress potential Φ

T 11 = Φ,22, T 22 = Φ,11, T 12 = −Φ,12, (14)

whereas for three-dimensional problems we can use the stress (symmetric) ten-

sor potential a, where [20]

T km = ekrpemsqars,pq, (15)

where eijk is the permutation symbol.

With the above representations (12) is satisfied automatically. The next step

for this new class of materials is to obtain the components of ε from (5) and

to replace these components in (13). In the two-dimensional case we would
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obtain a highly nonlinear fourth order partial differential equation for Φ (see,

for example, [11]), and in the three-dimensional case we would obtain a system

of six highly nonlinear fourth order partial differential equations for the six

independent components of a.

The equation to be solved for Φ for the two-dimensional case working with Carte-

sian coordinates is documented in [11]. To date there has been little success in finding

exact solutions for such a problem, and even the numerical resolution of the problem

seems quite daunting, therefore we choose to work with u as the main variable, and

in this case we would need to solve the boundary value problem defined through:

divT = 0 x ∈ κt(B), Tn = t̂ x ∈ ∂κt
t(B), u = û x ∈ ∂κu

t (B), (16)

where t̂ and û are the prescribed traction and displacement on the boundaries ∂κt
t(B),

∂κu
t (B), respectively, where ∂κt

t(B) ∪ ∂κu
t (B) = ∂κt(B) and ∂κt

t(B) ∩ ∂κu
t (B) = Ø.

The components of T are related to u through (using (8) and (11))

ε = W1I + W2T + W3T
2, ε =

1

2

[

(

∂u

∂x

)

+

(

∂u

∂x

)T
]

, (17)

where W depends (in general, nonlinearly) on T.

3 Numerical solution of the boundary value

problem using the finite element method

3.1 Finite element model

We are interested in studying the behaviour of a thin plane square plate with a

circular hole, which is under the effect of a uniform traction σ∞ applied on two of the

edges of the plate (see Figure 1). We can consider the problem as a two-dimensional
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problem, and we shall denote by x, y the coordinates of a point in the plate, the

origin of the co-ordinate system being located at the center of the hole. Let ri and

L denote the radius of the hole and half of the length of the plate, respectively (see

Figure 1). Far away we apply a uniform tension σ∞. We will assume that ri ≪ L.

ri 2L

σ∞

σ∞

x

y

Figure 1: Plate with an hole under uniaxial boundary traction.

In Figure 2 we have a depiction of the mesh for a quarter of the whole plate.

Due to the symmetries of this problem, only a quarter of this plate is needed for our

analysis. We notice that near the hole, the density of the meshing is far greater than

away from the hole, as we expect a more rapid change in the distributions for the

stresses and strains near the hole.

In Figure 3 we provide a closer view of the meshing near the hole.

The main purpose of the study is to determine the growth of the stress and strain

in a body whose constitutive relation belonging to the sub-class of elastic bodies (10).

We shall pick a specific form for the function W as given below:

W (IT , IIT ) = −α

[

IT − 1

β
ln(1 + βIT )

]

+
αγ

ι

√

1 + 2ιIIT , (18)

where IT and IIT are as defined in (9)1,2 and where α, β, γ and ι are constants. The
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Figure 2: Mesh for a quarter of the whole plate.

Figure 3: Mesh near the surface of the hole.

values for these constants are assumed to be (using the international system)

α = 10−3, β = 10−5 1

Pa
, γ = 10−1, ι = 1

1

Pa2 . (19)

Remark: We need to point out that the model (18) and the values (19) have not
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been obtained by corroboration against actual experimental data. The constitutive

theory (5), (10) has been presented recently (see [19, 11, 12, 14, 15]), and it is nec-

essary to explore the implications and consequences of these new class of constitutive

relations by solving some boundary value problems. The particular form for W has

been considered in previous works (see [14]), and it follows from (11) that the ex-

plicit expression for the linearized strain that corresponds to the special choice for the

function W is:

ε = −α

[

1 − 1

(1 + βIT )

]

I +
αγ√

1 + 2ιIIT

T. (20)

It follows that in a simple uni-axial extension problem, the constitutive relation (20)

leads to a limiting strain. The values for the constants shown in (19) are similar in

magnitude to the values used in [14].

To solve the boundary value problem (16) we used the finite element method (non-

linear analysis), developing our own code written in Matlab. Figure 2 shows one

of the meshes used. We also provide some additional details with regard to the

computations:

• Statistics for the mesh: 1989 nodes and 3659 elements.

• Type of element: 3-nodes linear triangle.

• Method used to solve the nonlinear equations: Quasi-Newton method with

relaxation (line search minimization).

• Number of increments: 200.

The external load and dimensions for the geometry were:

σ∞ = 1Pa, L = 1m, ri = 0.025m. (21)
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3.2 Results

We need to study the influence of the mesh density on our results, and in order to

do so we would need to study the error, with regard to the numerical results as a

function of the mess density (for example, in relation to the number of nodes). If we

know the exact solution for this boundary value problem, which can be denoted as

u
e for the displacement field, and if u

i denotes the displacement field for the different

mesh densities considered, then we could define the error through

ei =

∫

κt(B)‖ue − u
i‖ dv

∫

κt(B)‖ue‖ dv
. (22)

However, we do not have an exact solution for this problem; therefore we determine

(approximately) the rate of convergence in the following way. Let us define u
f as the

displacement field obtained using the finest mesh, then we can calculate

f i =

∫

κt(B)‖uf − u
i‖ dv

∫

κt(B)‖uf‖ dv
. (23)

Thereafter we calculate the approximated ‘rate of convergence’ Ri as

Ri =
f i − f i−1

ni − ni−1
, (24)

where nk would be the number of nodes for the meshes considered.

For simplicity we do not calculate the above integrals for the whole body, but

only for a part of the line (x, 0) (see Figure 1), where we expect to obtain maximum

stress concentration. Also, for that line we replace the norms ‖uf − u
i‖, ‖uf‖ by

|uf
1 (x, 0) − ui

1(x, 0)| and |uf
1 (x, 0)|, respectively. Therefore we have

f i =

∫ L

r
|uf

1 (x, 0) − ui
1(x, 0)| dx

∫ L

r
|uf

1(x, 0)| dx
. (25)

Figure 4 displays the behaviour of Ri as function of the number of nodes for different
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meshes.
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Figure 4: Convergence error.

In Figures 5, 6 we have depicted ε22 and T22 as functions of the radial distance

in a neighborhood adjacent to the hole.

Figure 5: Contour plot for the strain ε22.

If T∞
22 and ε∞22 are the stress and strain components evaluated far away from the
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Figure 6: Contour plot for the stress T22. Stress in [Pa].

surface of the hole3, we can define

T̄22(x) =
T22(x, 0)

T∞
22

, ε̄22(x) =
ε22(x, 0)

ε∞22
. (26)

Figure 7 portrays the behaviour of T̄22 and ε̄22. In that figure we have also plotted

the ‘linear solution’, which are the results for T̄22 and ε̄22 in the case we consider the

linear constitutive equation

ε = −αβIT I + αγT, (27)

which can be obtained from (20) when ι = 0 and βIT ≪ 1. In this case the curves

for T̄22 and ε̄22 are the same as expected for the linearized solution.

We notice in Figures 5 and 6, as is to be expected, that the highest strain and

stress occurs near the point (ri, 0). We also see that the maximum strain

is of the order of ten to the power of minus four. The fact that the

linearized strain remains small, and more importantly, the growth of the

3In the practice we obtain T∞

22
and ε∞

22
evaluating T22(x, 0) and ε22(x, 0) for x large enough, such that

the stress and strain distributions are almost uniform and unaffected by the presence of the hole. In that
case T∞

22
≈ σ∞.
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Figure 7: Variation of the normalized stress and strain near the hole.

linearized strain being much slower than the stresses, as one approaches

the hole, cannot be overemphasized. It is also worth noting that the stress

concentration factor is close to 9, this is however not unexpected, as the

constitutive relation for bodies with such a limiting stress, allows for the

body to withstand a much higher stress concentration, as the strains are

yet limited and within the small strain approximation.

Figures 4-7 were obtained assuming σ∞ = 1Pa.

In Figure 8 we display the manner in which T̄22 and ε̄22 vary with x, for different

values for the external load σ∞.

4 Final remarks

The aim of this study was to determine the stresses and strains that manifest them-

selves in a classical problem in solid mechanics, namely the problem of a plate with a
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Figure 8: Behaviour of the normalized stress and strain near the hole for different values
of the external load σ∞Pa (a) 0.25, (b) 0.5, (c) 0.75 and (d) 1.

hole subject to uniform loading at infinity, within the context of a new class of consti-

tutive relations that shows much promise with regard to the resolution of problems,

which usually lead to singularity in the linearized strain, thereby contradicting the

basic assumption within which the classical linearized elastic model is derived, namely

that the strain is very small. As expected, the growth of the strain as one approaches

the hole is much slower than the growth of the stress. This result is in keeping with

the result obtained by Rajagopal and Walton [13], who found that the linearized

strain, even at the tip of a crack (the body being subject to a state of anti-plane

strain), is bounded. As mentioned earlier, it is necessary to evaluate the usefulness

of the new class of models by solving several other specific boundary value problems.
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