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Abstra
t

In this arti
le, we assess and ben
hmark a novel nonlinear 
onstitutive relation for modeling

the behavior of ro
k, in whi
h the linearized strain tensor is a fun
tion of the Cau
hy stress

tensor. In stark 
ontrast with the linearized theory of elasti
ity, the main feature of this

novel nonlinear 
onstitutive model is that a di�erent behavior is obtained in 
ompression

than in tension, whi
h is 
onsisting with the experimental eviden
e. Four problems are solved

using the �nite element method: the 
ompression of a 
ylinder, the biaxial 
ompression of

a slab with a 
ir
ular hole and with an ellipti
 hole, and the shear of a slab with an ellipti


hole. The results are 
ompared with the predi
tions of the linearized theory of elasti
ity. In

this 
omparison, it is found that the maximum stresses and their lo
ations are signi�
antly

a�e
ted by the 
hoi
e of the 
onstitutive equation.

1 Introdu
tion

Re
ently, new 
onstitutive theories have been proposed for elasti
 bodies, wherein it is assumed

that the stresses and the strains are found from impli
it 
onstitutive relations [22, 23, 27, 28℄.

These impli
it relations are natural generalizations of the 
lassi
al Cau
hy and Green elasti


bodies [31℄, wherein it is assumed that the stresses are given as fun
tions of the strains. One

sub
lass of 
onstitutive equation that is found from the above impli
it relations, 
orresponds to

the 
ase where the linearized (in�nitesimal) strain tensor ε is a fun
tion (in general nonlinear)

of the Cau
hy stress σ, i.e., ε = h(σ) (see [4, 24, 26℄). As indi
ated, for example, in [7℄, su
h

relatively new sub
lass of 
onstitutive equation has many potential appli
ations in the modelling

of the behaviour of materials su
h as gum metal [10, 17℄, 
on
rete [11℄ and ro
k [6℄. In these

examples, there are materials that 
an behave elasti
ally and nonlinearly in the range of small

strains and rotations.

For ro
k, it is well known from the experimental point of view that the behaviour of a sample

under uniaxial 
ompression di�ers from its behaviour under uniaxial tension, and if the Young's

modulus is determined, it 
an be ten times higher in 
ompression than in tension (see, for example,

Table 1 in [12℄ and [1, 9, 20℄). Additionally, for many distin
t types of ro
k the behaviour of a

sample under uniaxial load is nonlinear [14, 15, 3, 13, 19, 32, 29℄, whi
h in some experiments is

noti
eable when the Young's modulus appears to be a fun
tion of the stress applied on su
h sam-

ple. Now, traditionally, in many pra
ti
al appli
ations involving the modelling of the me
hani
al

behaviour of ro
k, resear
hers and engineers have used the linearized theory of elasti
ity to model

su
h material, but di�erent resear
hers have noti
ed that negle
ting the above nonlinear behaviour
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of ro
k 
an introdu
e large errors in the 
al
ulations (see, for example [18, 3, 12, 1℄, Se
tion 6.6 of

[9℄, and Se
tions 2.3.3 and 2.5.4 of [29℄, and referen
es therein), parti
ularly in the design of tunnel

and underground opening, the drilling of well-bores, hydrauli
 fra
turing, underground mining,

and the perforation of deep wells. For this reason some resear
hers have proposed the use of some

bilinear models for ro
k (see [12℄, and Chapters 6 and 7 in [9℄), and also of some very simple

nonlinear 
onstitutive equations (see, for instan
e, [3℄ and Chapter 5 in [29℄). The above models

are not general and were proposed for very spe
i�
 appli
ations, su
h as the radial 
ompression

of a short 
ylindri
al annulus (see Figure 8 in [3℄). There is a need for a more general model to

des
ribe the nonlinear elasti
 behaviour of ro
k. Su
h a model is proposed in [6℄ assuming as a

�rst approximation that ro
k is an elasti
 isotropi
 material.

In this work, the model proposed in [6℄ for ro
k is used in the solution of a series of two-

dimensional boundary value problems using the �nite element method. The problems are:

• The 
ompression of a 
ylinder with di�erent end 
onditions and assuming axial symmetry,

whi
h is studied in Se
tion 3.

• In Se
tion 4 results are presented for a slab with a 
ir
ular hole under biaxial 
ompression.

• A slab with an ellipti
 hole under biaxial 
ompression, where the ellipti
al hole is used to

approximately model a 
ra
k aligned with the horizontal axis is studied in Se
tion 5.

• The same slab previously des
ribed subje
ted to a distant uniform shear stress �eld is ana-

lyzed in Se
tion 6.

In Se
tion 2, a short summary of the kinemati
s of deforming bodies and the equation of motion

is presented. Also in that se
tion, details on the 
onstitutive equations, whi
h were proposed in

[6℄, are elaborated. Finally, in Se
tion 7 we give some �nal remarks about the results presented

in this arti
le.

2 Basi
 equations

2.1 Kinemati
s and equation of motion

A parti
le in a body B is denoted by X and in the referen
e 
on�guration κR(B) it o

upies the
position X = κR(X). In the 
urrent 
on�guration κt(B), the position of the point is denoted

by x, and it is assumed that there exists a one-to-one mapping χ su
h that x = χ(X, t). The

deformation gradient, the left Cau
hy-Green tensor, the displa
ement ve
tor, and the linearized

strain tensor are de�ned, respe
tively, as

F =
∂χ

∂X
, B = FF

T, u = x−X, ε =
1

2

(

∂u

∂x
+

∂u

∂x

T
)

. (1)

The Cau
hy stress tensor is denoted by σ and the lo
al form of the balan
e of linear momentum

is

ρẍ = divσ + ρb, (2)

where ρ is the density of the body and b represents the spe
i�
 body for
es in the 
urrent 
on�g-

uration. More details on the above equations 
an be found in [30℄.

2.2 Constitutive relations

The 
onstitutive equation to be used in this work was presented in [6℄, and is a sub
lass of a more

general type of impli
it relations of the form G(σ,B) = 0, whi
h was proposed by Rajagopal

and 
o-workers [22, 23, 27, 28, 25℄ for elasti
 bodies. Two spe
ial sub
lasses of the above impli
it

relation are the Classi
al Cau
hy model, wherein the stress is assumed to be a fun
tion of the

strains σ = F(B), and the new 
lass B = H(σ). If the gradient of the displa
ement �eld is

2



assumed to be very small, from this last sub
lass of 
onstitutive equation we obtain ε = h(σ),
where it is observed that the linearized strain is a fun
tion of the stresses. Su
h 
onstitutive

equations 
ould be used to study problems in fra
ture me
hani
s of brittle bodies, and in the

modelling of 
on
rete, gum metal and ro
k [11, 10, 17, 6℄. As mentioned in the introdu
tion, in

the present 
ommuni
ation, as a �rst approximation we 
onsider ro
k to be an elasti
 and isotropi


medium des
ribed by the 
onstitutive equation ε = h(σ). We also assume the existen
e of a s
alar

fun
tion Π = Π(σ) su
h that

ε = h(σ) =
∂Π

∂σ
. (3)

If we further assume that the fun
tion Π is isotropi
, then Π = Π(σ1, σ2, σ3), where σp, p = 1, 2, 3
are the eigenvalues or prin
ipal stresses of σ. The fun
tion Π must satisfy the symmetry 
ondi-

tions Π(σ1, σ2, σ3) = Π(σ2, σ1, σ3) = Π(σ1, σ3, σ2). To ensure a reasonable behaviour, additional

restri
tions on Π are presented in [5℄ and in Se
tion 2.2.1 of [6℄. From (3) we have

ε =

3
∑

p=1

∂Π

∂σp

a
(p) ⊗ a

(p), (4)

where a
(p)

are the eigenve
tors of σ.

The results presented in Se
tions 3-6 will be 
ompared against the results obtained for the


lassi
al linearized elasti
 model

ε =
(1 + ν)

E
σ −

ν

E
(trσ)I, (5)

where E and ν are the Young's modulus and the Poisson ratio, respe
tively.

As in [6℄ the main experimental information to be used in the present study is Figure 4 of

[15℄, where the axial deformation of a sample under 
ompression assuming lateral 
onstraint is

do
umented

1

. One of the main 
onsiderations here is that the behaviour of ro
k is di�erent under

tension than 
ompression The following expression for Π is used in this work (see Eq. (16) in [6℄):

Π(σ1, σ2, σ3) = f1(σ1) + f1(σ2) + f1(σ3) + f2(σ1)(σ2 + σ3) + f2(σ2)(σ1 + σ3)

+f2(σ3)(σ1 + σ2) + f3

(

σ1 + σ2 + σ3

3

)

, (6)

where the fun
tions fi were proposed in Eq. 69 of [6℄ and are given by

f1(x) = α1 [d
c1x
1 − c1 ln(d1)x] , f2(x) = α2 (d

c2x
2 − 1) , f3(x) = 3α3 [d

c3x
3 − c3 ln(d3)x] , (7)

where αi, ci and di, i = 1, 2, 3 are 
onstants, whose values are presented in Table 1.

α1 [MPa℄ α2 α3 [MPa℄ c1
1

[MPa] c2
1

[MPa] c3
1

[MPa] d1 d2 d3

0.011 -0.0004 0.001 -0.08 -0.05 -0.08 0.1 0.2 0.1

Table 1: Constants for the fun
tions presented in (7).

Regarding the linearized model, the following values are used (see Eqs. 72-74 in [6℄):

E ≈ 2600MPa, ν ≈ 0.1038. (8)

In Figure 1 results are shown for the axial 
omponent of the strain for the 
ompression/tension

of a 
ylinder using (6), (7) and the linearized the linearized theory of elasti
ity

2

.

1

From Table 1 of [12℄ we also have some information 
on
erning the behaviour of di�erent types of ro
k under

tension, where the main result is that most types of ro
k are less sti� under tension than 
ompression

2

See Figure 3 in [6℄ and Figure 4 of [15℄.
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Figure 1: Uniform 
ompression/tension of a 
ylinder. The blue line are results for the nonlinear

model (6). The the bla
k 
ir
les are experimental results taken from Figure 4 of [15℄. The dashed

magenta line indi
ates the results for the linearized model (6), (7).

2.3 Boundary value problem

For using (3) we need to �nd the displa
ement �eld u and the Cau
hy stress tensor σ by solving

ρü = divσ + ρb, εεε =
1

2
(∇u+∇u

T) = hhh(σ), (9)

σn = t̂ x ∈ ∂κr(B)t, u = û, x ∈ ∂κr(B)u, (10)

where, n is the unit normal ve
tor to ∂κr(B)t, t̂ and û are the external tra
tion, and the spe
-

i�
ation of the displa
ement �eld, respe
tively, and ∂κr(B) = ∂κr(B)t ∪ ∂κr(B)u and ∂κr(B)t ∩
∂κr(B)u = ∅.

In the present work we 
onsider only quasi-stati
 deformations, therefore ü = 0. Additionally,

to have (3) in a form suitable for a displa
ement-based �nite element solver, Eq. (3) is inverted

within the Newton-Raphson s
heme (see [21℄ for more details on the numeri
al solution of (9)).

Finally, some plots are presented in a Supplementary Material, and the �gures that appear in

that �le are 
ited as Figure iSM, whi
h means Figure i in the Supplementary Material.

3 A 
ylinder under 
ompression

In this se
tion, a 
ylinder of 
ir
ular 
ross se
tion under 
ompression is studied. We try to 
apture

the a
tual intera
tion of the 
ylinder with the testing ma
hine in a more pre
ise manner. This

is important be
ause most of the experimental data for ro
k is obtained for 
ompression tests

on 
ylinders, where due to the intera
tion with the ma
hine a non-homogeneous distribution of

stresses and strains 
an appear inside the samples, whi
h may be a sour
e of errors when trying

to �nd 
onstitutive equations by �tting su
h data

3

. For example, in the plots presented in Figure

1 it was assumed that the 
ylinder deforms uniformly (see Se
tion 3.1 in [6℄).

In Figure 2(a), a depi
tion of one of the 
ases to be analyzed is shown, where after assuming

axial symmetry the 
ylinder is simpli�ed as a two-dimensional body. For that 
ase (see the


oordinate system in Figure 2(a)), we assume that the 
ylinder 
annot move in the axial and the

radial dire
tions on the surfa
e z = 0, 0 ≤ r ≤ ri. Considering that in some testing ma
hines it

is easier to 
ontrol the displa
ement being applied on the upper surfa
e z = L, 0 ≤ r ≤ ri, we
assume that for that surfa
e the axial displa
ement is known and given as uzo and that is uniform

in the radial dire
tion

4

.

3

See, for example, Figure 4.4 and Se
tion 4.3.3 in [2℄, and pages 223, 225, 232, 259 and Figures 19 and 28(B) in

[13℄.

4

In reality from the point of view of 
ausality an external tra
tion is needed to 
ause uzo
.

4
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Figure 2: Axial-symmetri
 model of a 
ylinder under 
ompression. (a) The 
ylinder is �xed on the

surfa
e z = 0, assuming that on the surfa
e at z = L the axial displa
ement uzo is pres
ribed. (b)

The 
ylinder under 
ompression assuming radial expansion and the appearan
e of shear stresses

due to fri
tion with the testing ma
hine, and assuming that on the upper surfa
e the axial stress

σo is pres
ribed. (
) The problem presented in (b) using its symmetry in the axial dire
tion.

In Figure 2(b), the se
ond problem to be studied for the 
ylinder is s
hemati
ally depi
ted,

where axial symmetry is used and a uniform axial load σz is applied on the surfa
e z = L,
0 < r < ri. On the surfa
es z = 0, z = L, 0 < r < ri the 
ylinder 
an expand radially but is

subje
ted to the fri
tion with the testing ma
hine, whi
h produ
es a shear stress τ . For symmetry
reasons, the problem is set and studied as shown in Figure 2(
).

For the results presented in this se
tion it is assumed that L = 0.13m, ri = 0.025m. Also

in this se
tion, the notation σr and σz is used to denote the radial and axial 
omponents of the

stress that are in Pa, εrr and εzz are the radial and axial 
omponents of the strain tensor, and ur,

uz are the radial and axial 
omponents of the displa
ement �eld. The following non-dimensional

variables are used:

r̄ =
r

ri
, z̄ =

z

L
, ūz =

uz

L
. (11)

3.1 Cylinder �xed on its bottom surfa
e

Results are presented for the 
ylinder �xed on the surfa
e z = 0 (see Figure 2(a)). On the

surfa
e z = L it is assumed that the axial 
omponent of the displa
ement �eld uz is given. In

Figures 1-3SM results are presented for σz, σr and ur for the 
ase uz(r, L) = uzo = −3× 10−3m.

The nonlinear 
onstitutive equation (3) and the linearized equation (5) are used to 
ompare the

out
omes. From Figure 1SM it is observed that the axial 
omponent of the stress σz is almost


onstant for the whole 
ylinder but a zone near the bottom surfa
e z = L. From Figure 2SM it

is observed that the magnitude for the radial 
omponent of the stress is small for a large part of

the 
ylinder (in 
omparison with the maximum values for that stress), with the ex
eption of a

zone near the bottom surfa
e, whi
h is something to be expe
ted due to the fa
t that the 
ylinder

is expanding radially but on that surfa
e it 
annot have radial and axial displa
ements. In both


ases, there are di�eren
es in the distributions of stresses that result from the linearized (5) and

nonlinear models (3). In parti
ular, from Figure 2SM the stresses for the nonlinear 
ase are higher

(in magnitude) than the stresses obtained using the linear model. For the radial 
omponent of

the displa
ement ur, Figure 3SM shows, as expe
ted, that the radial 
omponent is positive, its

magnitude is larger near the outer surfa
e, and is 
lose to 0 near the axis r = 0. The distributions
for the two 
ases are di�erent. The magnitude is higher for the nonlinear model than for the

5



linear model, whi
h is expe
ted as in the nonlinear model the sti�ness in tension is lower than in


ompression (see Figure 1 in [12℄ and Figure 4 and page 553 in [20℄).

−7 −6 −5 −4 −3 −2 −1 0

x 10
7

−0.025

−0.02

−0.015

−0.01

−0.005

0

 

 

PSfrag repla
ements

ū
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Figure 3: Axial dimensionless displa
ement ūz versus axial stress σz (in Pa) at two points, (r, z) =
(0, 0) and (r, z) = (0, L), for a 
ylinder under 
ompression (see Figure 2(a)) using the nonlinear

model (3) and the linearized model (5).

In Figure 3, results are shown for the dimensionless axial 
omponent of the displa
ement �eld

ūz as a fun
tion of the axial stress σz for two points inside the 
ylinder (see Figure 2(a)), namely

(r, z) = (0, 0) (the 
enter of the 
ylinder on the lower part of it), and (r, z) = (0, L) (the 
enter of
the 
ylinder on the upper surfa
e).

From the results presented in Figure 3, there is a di�eren
e in the behaviour for the point

lo
ated at the 
enter of the lower surfa
e (point (r, z) = (0, 0)) for the two models (3), (5). This

di�eren
e in behaviour is due to the fa
t that from Figure 1 it is observed that the 
ylinder is

sti�er in 
ompression than in tension when using (3).
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Figure 4: Comparison of the behaviour of εz and σz (in Pa) for the line r = 0, 0 ≤ z ≤ L, when
the non-linear model (Non-linear) (3) and the linearized model (Linear) (5) are used.

In Figure 4 results for εz and σz are shown for the line r = 0, 0 ≤ z ≤ L, where a 
omparison
between the nonlinear model (3) and the linearized model (5) is presented. In both 
ases it is

observed that the behaviour of both variables is non-homogeneous near the bottom surfa
e (near

z = 0), where the 
ylinder is atta
hed to the ground, and be
ome 
onstant far from that zone.

The magnitude of εz and σz is higher for the nonlinear model (3).

Finally, several plots were made for the di�erent 
omponents of ε and σ for the lines z = L/2,
0 ≤ r ≤ ri and z = L, 0 ≤ r ≤ ri. It was found that most of the 
omponents of the strain and

the stress tensors are almost 
onstant (in r) for su
h lines, and there was not noti
eable di�eren
e

between the behaviour observed for the nonlinear model (3) and the linearized model (5). All su
h
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Figure 5: Comparison of the behaviour of σr (in Pa) for the line z = L/2, 0 ≤ r ≤ ri, when the

non-linear model (Non-linear) (3) and the linearized model (Linear) (5) are used.

plots are not shown here. In Figure 5, a plot for σr for the line z = L/2, 0 ≤ r ≤ ri is presented.

Comments

The 
ompression/tension of a 
ylinder is one of the most important experiments used to determine

the me
hani
al properties of solid media. An essential assumption to use the results of su
h

experiment is that the stresses and strains are approximately uniform inside the 
ylinder, with

the possible ex
eption of small regions near the upper and lower surfa
es of the 
ylinders. For

ro
k, due to the 
hara
teristi
s of su
h brittle material, the experiment is usually performed in


ompression, and the 
ylinder is 
ompressed between metal plates, whi
h imposes restri
tions on

the radial displa
ement of the 
ylinder on su
h surfa
es. As shown s
hemati
ally in Figure 4.4(b)

in [2℄, if the fri
tion between ro
k and metal is very high, or if the 
ylinder is glued to su
h plates

(
omplete radial 
onstraint on su
h surfa
es), a barreling is observed for the 
ylinders. Brady

and Brown (see Se
tion 4.3.3 in [2℄) propose that L/(2ri) ' 2 is ne
essary to have a good degree

of uniformity inside the 
ylinder for the stresses and strains. For L/ri = 13/5 > 2, and from

Figures 1-3SM, the distributions for σz , σr and ur indeed appear to be approximately 
onstant

with the ex
eption of a region about 20% of the length L near the lower surfa
e. But su
h region

of non-uniformity is larger when using the nonlinear model (3) (see in parti
ular Figure 1SM).

In [13℄ there is also a detailed dis
ussion on the e�e
t of the end 
onditions, and we 
an


ompare, at least qualitatively, the results presented in Figure 4 (right) and Figure 5 with the

distributions for the stresses in Figure 19 of [13℄ (re
alling that σx = σz). The results are indeed

similar, but for the nonlinear model (3) the magnitude of the stresses are larger, espe
ially near

z = 0 (the positions of the metal plates).

From Figure 4, we observe that εz and σz be
ome almost 
onstant in z̄ if z̄ ' 0.4. This is an
important observation to adequately measure the strains in a pla
e distant from that surfa
e of

the 
ylinder. Assuming a di�erent behaviour in tension than in 
ompression (see (3) and Figure

1) has a profound e�e
t on the behaviour of σr as 
an be seen in Figure 5. The radial 
omponent

of the stress in
reases in almost 60% of the value predi
ted by the linearized theory of elasti
ity

(5).

3.2 Cylinder with radial expansion and fri
tion

In this se
tion results are presented for the problem depi
ted in Figure 2(
), where a 
ylinder

under 
ompression

5

is shown. On the upper and lower surfa
es it is assumed that the 
ylinder


an expand radially, but there is fri
tion (see Figure 4.4(
) in [2℄) that generates a shear stress on

5

Figure 2(
) is a simpli�
ation of the original problem shown in Figure 2(b).
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su
h surfa
es. The shear stress is assumed to be proportional to the 
ompressive load σo

τ = µσo, (12)

where µ = 0.35 is the value used for the fri
tion 
oe�
ient between ro
k and metal.

In Figure 4SM, results for σz (in Pa) when the external load on the upper surfa
e of the


ylinder is

6 σo = −2 × 107Pa are presented. On the left the results were obtained using the

linearized 
onstitutive equation (5), and on the right the results were obtained using the nonlinear

model (3). From these results we observe that the behaviour of that 
omponent of the stress is

rather non-homogeneous for a large part of that quarter of the 
ylinder (see Figure 2(
)). The

distributions obtained with the linearized model di�er from those of the nonlinear model. In both


ases there are only 
ompressive stresses. For the linearized model it is observed that the zone

where σz is approximately 
onstant is slightly larger than in the nonlinear model.

In Figure 5SM, results for σr (in Pa) are shown when the external load is σo = −2×107Pa. On
the left the results were obtained using the linearized 
onstitutive equation (5), and on the right

the results were obtained using the nonlinear model (3). In 
ontrast to the results presented in

Figure 4SM , here for the zones where σr is non-homogeneous are smaller in both 
ases, espe
ially

for the linearized model (5). As it is expe
ted in this problem, the radial stress should be 
lose to

0 for most of the 
ylinder.

In Figures 6SM and 7SM results are shown for the axial and radial 
omponents of the dis-

pla
ement �eld u. For the axial displa
ement it is observed that there are no di�eren
es between

the results using the linear and nonlinear 
onstitutive models. For the radial 
omponent of the

displa
ement, the 
onstitutive models (3) and (5) predi
t results that are di�erent.
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ū
z

σz

Non-linear

Linear

Figure 6: Axial dimensionless displa
ement ūz versus axial stress σz (in Pa) at point (r, z) =
(0, L/2) for a 
ylinder under 
ompression (see Figure 2(
)) using the nonlinear model (3) and the

linearized model (5).

Figure 6 presents the behaviour of the non-dimensional axial 
omponent of the displa
ement

�eld ūz as a fun
tion of the axial (
ompressive) stress σz at the point (r, z) = (0, L/2), where
the results using the linearized model (5) and the new nonlinear 
onstitutive equation (3) are


ompared. It is observed that the behaviour of the 
ylinder is sti�er when using the nonlinear

model (3). This is be
ause in the experimental results presented in [15℄, whi
h were used to obtain

(7), a sample of ro
k under 
ompression tends to show some strain limiting behaviour

7

.

In Figure 7, results are shown for the radial 
omponent of the strain εr and the stress σr

for the line z = 0, 0 ≤ r ≤ ri. In both 
ases it is observed that when the linear 
onstitutive

model (5) is used, the results are almost 
onstant, and in parti
ular for the radial stress, they

are approximately zero inside the 
ylinder. This is not the 
ase when using the nonlinear model

(3), where in parti
ular the radial 
omponent of the stress 
an in
rease signi�
antly inside the

6

This was the maximum load that it was possible to apply without the radial strain εr be
oming too large.

7

See, for example, page 191 in [3℄, Figure 10 in [32℄ and page 208 in [29℄

8
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Figure 7: Comparison between the behaviour of εr and σr (in Pa) for the line z = 0, 0 ≤ r ≤ ri (see
Figure 2(
)) when using the nonlinear model (Non-linear) (3) and the linearized model (Linear)

(5).


ylinder. It is ne
essary to re
all that for this 
ylinder under axial 
ompression, in the radial

dire
tion there are positive radial strains, and the nonlinear 
onstitutive model was formulated

su
h that the behaviour of a 
ylinder under tension is less sti�er than in 
ompression (see (3), (6)

and (7)), whi
h is the reason of the larger magnitude for εr in the nonlinear model.
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Figure 8: Comparison among the behaviour of εz, εr, σz (in Pa) and σr (in Pa) for the line

z = L/2, 0 ≤ r ≤ ri (see Figure 2(
)) when using the nonlinear model (Non-linear) (3) and the

linearized model (Linear) (5).

Finally, in Figure 8 results are presented for the line z = L/2, 0 ≤ r ≤ ri for the radial and
axial 
omponents of the strain and stress.
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Comments

The assumption that the upper and lower surfa
es of the 
ylinder 
an expand radially, due to the

presen
e of a shear stress, 
aused by the fri
tion with the metal plates, implies also a markedly

di�erent behaviour between the results obtained using the nonlinear model (3) and the linearized


onstitutive equation (5) (see in parti
ular Figures 6, 7 and 8). This is be
ause ro
k is less sti�er

in tension than in 
ompression. From the results presented in Se
tions 3.1 and 3.2, it is observed

that when more realisti
 boundary 
onditions are imposed for the 
ylinder under 
ompression, the

stresses and strains inside the body are non-homogeneous for both the nonlinear and linearized

models.

4 Biaxial 
ompression of a slab with a 
ir
ular hole

An important problem in mining and geome
hani
s is the determination of stresses and strains

for a ro
k mass with a 
ir
ular hole under uniform verti
al and horizontal loads. The ro
k mass

PSfrag repla
ements
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L
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Figure 9: Slab with a 
entral 
ir
ular hole under biaxial 
ompression.

is simpli�ed as a slab of length and high L that is in�nitely long in the dire
tion z (see Figure

9), so that plane strain 
ondition 
an be assumed. The hole of radius ri 
an be 
onsidered as a

simpli�ed representation of a tunnel 
rossing the ro
k mass.

The stresses σV represent the e�e
t of the weight above the slab, and the lateral uniform load

σH is used to model the lateral intera
tion of the slab with the rest of the surroundings

8

. An

important assumption is that the distribution of stresses is uniform far from the hole.

On the left side of the slab it is assumed there is no displa
ement in the dire
tion x, whereas
on the surfa
e at the bottom of the slab it is assumed there is no verti
al displa
ement in the

dire
tion y. The body load in the slab due to its own weight is not 
onsidered, i.e., b = 0 (see

(9)1). Finally, the surfa
e of the hole is free of external tra
tion.

It is assumed that L = 100m and ri = 2.5m, then L ≫ ri. For σV and σH two 
ases are

studied: when σH = σV, and σH = 2σV.

8

Regarding σH, it is possible to use a linear distribution in y to 
onsider the e�e
t of the weight of the surround-

ings ro
k masses in a more pre
ise manner, but for simpli
ity this is not used in this work.

10



The following dimensionless variables are de�ned:

x̄ =
x

L
, ȳ =

y

L
, σ̄11 =

σ11

σV
, σ̄22 =

σ22

σV
. (13)

For the results presented in Figures 10-14 it is assumed that σV = σH.

Figures 9SM and 10SM present results for the slab under bi-axial 
ompression with a hole

assuming that

9 σV = −2 × 107Pa. In Figure 9SM therein the behaviour in the slab di�ers

between the two 
onstitutive models. In parti
ular, the absolute magnitude of σ22 is higher when

using the nonlinear 
onstitutive model (3).
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Figure 10: Behaviour of ε11 for y = 0, 0 ≤ x ≤ L/2 when using the nonlinear model (Non-linear)

and the linearized model (Linear). (a) σV = −106Pa, (b) σV = −5 × 106Pa, (
) σV = −107Pa,
(d) σV = −1.5× 107Pa, (e) σV = −2× 107Pa.

In Figure 10 the behaviour of ε11(x) is presented for the line y = 0, 0 ≤ x ≤ L/2 (see Figure

9) for di�erent external loads σV. The results obtained using the linear 
onstitutive model (5) are


ompared with those of the nonlinear 
onstitutive model (3). From these results, we observe that

for higher values of σV there is a more notorious disagreement between the predi
tions of the two

models.

In Figure 11, the behaviour of ε22 is presented using the linear and nonlinear models for the

line y = 0, 0 ≤ x ≤ L/2 and di�erent external loads σV. In this 
ase, the magnitude of ε22 is

higher when the linear model (5) is used. It is observed that the maximum (in magnitude) for ε22
is not lo
ated at the boundary of the hole.

Results for σ̄11 and σ̄22 for the line y = 0, 0 ≤ x ≤ L/2 are shown in Figures 12 and 13 for

di�erent external loads σV. Due to the tra
tion-free 
ondition near the boundary of the hole, σ̄11

is zero for (x, y) = (ri, 0). Far from the hole, σ11 be
omes uniform and is 
lose to σV (σ̄11 → 1).

9

This was the maximum external tra
tion for whi
h the strains are small within the small strain assumption of

the model (3).
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Figure 11: Behaviour of ε22(x) for the line y = 0, 0 ≤ x ≤ L/2 using the nonlinear model

(Non-linear) and the linearized model (Linear). (a) σV = −106Pa, (b) σV = −5 × 106 Pa, (
)
σV = −107Pa, (d) σV = −1.5× 107Pa, (e) σV = −2× 107 Pa.
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Figure 12: Behaviour of σ̄11 for the line y = 0, 0 ≤ x ≤ L/2 using the nonlinear model (Non-linear)
and the linearized model (Linear). (a) σV = −106Pa, (b) σV = −5 × 106Pa, (
) σV = −107Pa,
(d) σV = −1.5× 107Pa, (e) σV = −2× 107Pa.

Interesting results are observed for σ̄22. As it is expe
ted, far from the hole σ22 also tends to σV.

The maximum for σ̄22 does not o

ur at the surfa
e of the hole, as it is predi
ted by the linearized

theory of elasti
ity, but at a point near that surfa
e. A detailed view of the results presented in
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Figure 13: Behaviour of σ̄22 for the line y = 0, 0 ≤ x ≤ L/2 using the nonlinear model (Non-linear)
and the linearized model (Linear). (a) σV = −106Pa, (b) σV = −5 × 106Pa, (
) σV = −107Pa,
(d) σV = −1.5× 107Pa, (e) σV = −2× 107Pa.

Figure 13 is given in Figure 14. The disagreement between the linear and nonlinear models in the

predi
tion of σ̄11 and σ̄22 is more noti
eable for larger external loads.
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Figure 14: Behaviour of σ̄22 for the line y = 0, 0 ≤ x ≤ L/2 using the nonlinear model (Non-linear)
and the linearized model (Linear). (a) σV = −106Pa, (b) σV = −5 × 106Pa, (
) σV = −107Pa,
(d) σV = −1.5× 107Pa, (e) σV = −2× 107Pa.

In Figures 15-17 results are shown for σH = −1.6× 107 Pa with σH = 2σV. Plots for ε11, ε22,
σ̄11 and σ̄22 as fun
tions of ȳ for the line x = 0, 0 ≤ y ≤ L/2 are presented in Figure 15. There are

signi�
ant di�eren
es between the behaviour of the two 
omponents of the stresses as predi
ted

by the two 
onstitutive models. The maxima are not lo
ated on the surfa
e of the hole. A detailed
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Figure 15: Behaviour of ε11, ε22, σ̄11 and σ̄22 for the line x = 0, 0 ≤ y ≤ L/2 for σH = −1.6×107Pa
with σH = 2σV using the nonlinear model (Non-linear) and the linearized model (Linear).

plot of σ̄11 and σ̄22 near the hole is given in Figure 17.
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Figure 16: Behaviour of ε11, ε22, σ̄11 and σ̄22 for the line y = 0, 0 ≤ x ≤ L/2 for σH = −1.6×107Pa
with σH = 2σV using the nonlinear model (Non-linear) and the linearized model (Linear).

In Figure 16 results are presented for ε11, ε22, σ̄11 and σ̄22 for the line y = 0, 0 ≤ x ≤ L/2.
Details of the behaviour of σ̄11 and σ̄22 near the surfa
e of the hole are shown in Figure 17.
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Figure 17: Behaviour of σ̄11 and σ̄22 for the lines y = 0, 0 ≤ x ≤ L/2 and x = 0, 0 ≤ y ≤ L/2.
Details of the behaviour of the di�erent 
omponents of the stress near the hole (see Figures 15

and 16).

Finally, in Figure 17 results for σ̄11 and σ̄22 are shown for a zone very 
lose to the boundary

of the hole.

Comments

The results obtained for this problem that are depi
ted, for example, in Figures 14 and 17, show

that when using the nonlinear 
onstitutive equation (3), the maximum stress (that is usually

asso
iated with the failure of ro
k) does not appear on the surfa
e of the hole, but inside the slab

(see Figures 14 and 17 upper left). Additionally, for σ̄22 depi
ted in Figure 14, for larger external

tra
tions σV, the linearized theory of elasti
ity predi
ts maximum stresses that are greater than

the maximum stresses obtained using the nonlinear model (3). The same happens for σ̄11 (see the

plot on the upper left in Figure 17).

Now, from the experimental point of view, and also from some theoreti
al and numeri
al works,

there is eviden
e supporting that damage in ro
k masses with holes 
ould start inside the ro
k, and

not on the surfa
es of the holes

10

, as predi
ted by the linearized theory of elasti
ity. Also, there is

eviden
e supporting the fa
t that the linearized 
onstitutive theory overestimates the magnitude

of some of the 
omponents of the stress, see, for example, Figure 4 in [3℄, [12℄, Se
tion 6.6 in [9℄,

Figure 9 in [8℄ and page 145 in [16℄.

10

See, for example, [18℄, page 190 and Se
tion 3.2 in [3℄, for a square hole see Figure 13(f) in [33℄. See as well

Se
tions 2.2.2, 2.2.3, 4.4.4, pages 176 and 352 in [29℄ and the referen
es therein.
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5 Biaxial 
ompression of a slab with an ellipti
al hole

In this problem we have a slab similar to the one des
ribed in the previous se
tion. It deforms

under the in�uen
e of uniform verti
al and horizontal loads σV, σH. There is an ellipti
 hole with

prin
ipal axes a, b. It is assumed that b ≫ a, i.e., the ellipti
al hole is an approximation of a


ra
k, and it is assumed that the prin
ipal axis b is horizontal and aligned with the 
oordinate x
(see Figure 5). We assume plane strains, σH = 2σV and L = 100m, b = 10m and

b
a
= 40.
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Figure 18: Square slab with a 
entral ellipti
al hole under biaxial 
ompression. Plane strain


ondition is assumed. The main axis of the hole is aligned with the 
oordinate system.

In Figures 10SM-14SM results are presented for the 
omponents σ11, σ22 and σ12 of the stress

tensor, and the prin
ipal stresses σ1 and σ2 when
11 σH = −6×105Pa using the linear 
onstitutive

model (5) and the nonlinear 
onstitutive equation (3). The results are presented only for a small

region around the point x = b/2, y = 0, whi
h is the tip of the ellipti
 hole. From the results we

observe that the magnitudes of the stresses predi
ted by the nonlinear 
onstitutive model (3) are

higher than those predi
ted by the linearized model (5).

In Figures 13SM and 14SM results are presented for the prin
ipal stresses σ1 and σ2 when

σH = −6× 105Pa. The results shown in Figure 13SM are parti
ularly interesting. It is observed

that for the nonlinear model, the magnitude of σ1 when σ1 > 0 (whi
h appears near the boundary

of the hole) is greater than the one obtained using the linearized model. Finally, in Figure 14SM

in the Supplementary Material results are presented for σ2 as predi
ted by the nonlinear model (3)

and the linearized equation (5). In both 
ases the stress is negative, but its magnitude is higher

when using the nonlinear model.

In Figures 19-22 results are shown for ε11, ε22, and the dimensionless stresses σ̄11, σ̄22, for

di�erent external tra
tion σH. The plots are presented for the line y = 0, b/2 ≤ x very 
lose to

the boundary of the hole. In Figures 19 and 20 it is noti
ed slight di�eren
es for the behaviour of

ε11. For ε22 it is observed that the magnitude of the strains are smaller when using the nonlinear

model. For σ̄11, Figure 21 reveals a greater di�eren
e between the predi
tions of the linear and

nonlinear models for higher values of σH. The same o

urs for σ̄22 (see Figure 22). The maximum

for σ̄22 is observed in 22 36(
) and it appears inside the slab.

11

This external tra
tion was the maximum load that it was possible to apply without having problems with the


onvergen
e of the numeri
al solution.
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Figure 19: Behaviour of ε11 for the line y = 0 using nonlinear model (Non-linear) and the linearized
model (Linear). (a) σH = −2× 105Pa, (b) σH = −4× 105Pa, (
) σH = −6× 105Pa.
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Figure 20: Behaviour of ε22 for the line y = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) σH = −2× 105Pa, (b) σH = −4× 105 Pa, (
) σH = −6× 105Pa.
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Figure 21: Behaviour of σ̄11 for the line y = 0 using the nonlinear model (Non-linear) and the
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Additional results were obtained for the same 
omponents of the strain and dimensionless

stresses for the line x = 0, a/2 ≤ y ≤ L/2. From those results, it was possible to see almost an

agreement between the predi
tions of the two 
onstitutive models. This is not surprising as the

stress 
on
entration is low x = 0, y = a/2 and therefore it is not expe
ted to be otherwise. For

the sake of brevity su
h results are not shown here.

Comments

The geometries studied in this and in the next se
tion are approximations of 
ra
ks in ro
k

masses under biaxial 
ompression. The main goal is to 
ompare the predi
tions of the nonlinear


onstitutive equation (3) and the linear model (5), espe
ially regarding the maximum stresses and

where they appear. From Figures 10SM-12SM we 
an see that the maximum magnitude for the

stresses are larger (in magnitude) when using the nonlinear 
onstitutive equation.

Parti
ularly interesting are the results depi
ted in Figure 13SM, where the magnitude of the

�rst prin
ipal stress 
an be very large in 
omparison with the results using the linearized model,

for the region where σ1 > 0. It is ne
essary to re
all that ro
k is a material that 
annot support

large positive stresses (tension) in 
ontrast with 
ompression (see, for example, Se
tion 1.2.3 in

[2℄). That the nonlinear 
onstitutive equation (3) predi
ts su
h higher positive values for that

prin
ipal stress is a fa
tor, whi
h should be studied in a deeper manner from the experimental

point of view.

From Figure 21 and 22 it is observed in a more pre
ise manner that the nonlinear model

predi
ts larger (in magnitude) values for the normal stress. Interestingly, in Figure 22(
) su
h

maximum happens not on the surfa
e of the ellipti
al hole, but slightly inside it. This implies that

if σ̄22 would be used to predi
t the rupture of the ro
k mass, that rupture would happen inside

the body, whi
h is something similar to what is observed for the problem studied in Se
tion 4.

For the 
ase of the slab with an in
lined ellipti
al hole (see Figure 15SM) results are obtained

for σ11, σ22, σ12, σ1 and σ2 for σH = −105Pa. The predi
tions with the two models are almost

in agreement, and thus these results are not presented here

12

. In Figures 16SM and 17SM results

are shown for σ12 and the prin
ipal stress σ1, for a small area near the tip of the ellipti
 hole.

Some di�eren
es are found between the predi
tions of the linear and nonlinear models. For σ12

its predi
ted magnitude is higher when the nonlinear model is used. The results for σ1, whi
h

are depi
ted in Figure 17SM, are more interesting. In 
ontrast to the predi
tions of the nonlinear

model, the linear model predi
ts that σ1 is always negative. In Figure 17SM (on the right), there is

a narrow region near the boundary of the hole where σ1 is positive. The presen
e of su
h positive

stresses 
ould have an important impa
t on the modelling of failure near the tips of 
ra
ks sin
e, in

general, ro
k 
annot support higher tensile stresses (see the 
omments at the end of the previous

se
tion). Considering the geometry of the problem depi
ted in Figure 15SM, in this se
tion no

additional plots are presented.

6 Slab with an ellipti
al hole subje
ted to shear

In this se
tion, the behaviour of a slab with an ellipti
 hole subje
ted to a uniform shear stress τo
on its upper surfa
e (see Fig. 23) is studied. The lower surfa
e of the slab 
annot displa
e. The

geometry of the slab and the ellipti
 hole is the same as de�ned in Se
tion 5. The hole 
an be

seen as an approximation of a 
ra
k under the e�e
t of a distant uniform shear stress. The body

shown in Figure 23 is also very long in the dire
tion z so that plane strain 
ondition is assumed.

The following dimensionless stresses are de�ned:

σ̄11 =
σ11

τo
, σ̄22 =

σ22

τo
. (14)

12

In those three 
ases, it was observed that the magnitude of the predi
ted stresses when using the nonlinear

model was slightly higher than the predi
tions of the linear model.
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Figure 23: Slab with a 
entral ellipti
al hole under shear.

In Figures 18SM-22SM results are presented for σ11, σ22, σ12 and the prin
ipal stresses σ1, σ2

when

13 τo = 1.8 × 105Pa, where the predi
tions using the linear and the nonlinear 
onstitutive

models, (5) and (3), respe
tively, are 
ompared. For σ11 and σ22 their maximum magnitude


an be signi�
antly large in the zone they are negative. The predi
tions of the nonlinear model

indi
ate that the absolute magnitude of the stresses is higher than the 
orresponding values that

are obtained when the linear 
onstitutive model is used. For σ12 the di�eren
e in behaviour is

more notorious. For example, from the predi
tions of the nonlinear model in Figure 20SM, the

maximum positive stress is more than four times greater than the value that is obtained when

the linear model is used. For the negative values of the stress, the predi
ted value when using the

nonlinear model is σ12max
= −1.0132× 105Pa, whereas σ12max

= −246Pa when using the linear

model.

Figures 21SM and 22SM present the results for the two prin
ipal stresses. For σ1 a notorious

di�eren
e between the predi
tions of the two models is observed when σ1 is negative. Figure 21SM

shows that the results for σ1 that are obtained using the nonlinear model are approximately four

times greater (in magnitude) than the predi
tions of the linear model. Something similar happens

with σ2 as observed in Figure 22SM.

In Figures 24-29 results are shown for ε11, ε22, ε12, σ̄11, σ̄22 and σ̄12, for the line y = 0,
b/2 ≤ x near the tip of the ellipti
 hole. Di�erent values for the external load τo are used.

The results for the strain tensor are depi
ted in Figures 24-26. An important di�eren
e in the

behaviour is observed when 
omparing the predi
tions of the nonlinear and the linearized models.

In parti
ular, for ε12 the nonlinear model predi
ts lower magnitudes than the linearized model, as

shown in Figure 26.

In Figure 27, results for σ̄11 are presented. The absolute magnitude of σ̄11 that is predi
ted by

the nonlinear model is greater than the predi
tion of the linearized model. Regarding σ̄22 Figure

28 shows that the maximum values (in magnitude) are all lo
ated on the boundary of the hole (at

x = b/2, y = 0). Similar to the results for σ̄11, the magnitude of σ̄22 is greater when the nonlinear

model is used. Finally, for σ̄12, as in the previous 
ases, the magnitude of the stresses is greater

when using the nonlinear model (see Figure 29).

In Figures 30 and 31 results are shown for ε12 and σ̄12 for the line x = 0, a/2 ≤ y ≤ L/2

13

As in the problems presented in the previous se
tions, this spe
i�
 value for τo was the maximum stress su
h

that there is 
onvergen
e for the numeri
s.
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Figure 25: Behaviour of ε22 for the line y = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) τo = 1.4 × 105 Pa, (b) τo = 1.5× 105Pa, (
) τo = 1.6× 105Pa, (
)
τo = 1.7× 105 Pa, (
) τo = 1.8× 105Pa.

and external loads τo. In both 
ases a noti
eable di�eren
e appears when 
omparing the results

predi
ted by the nonlinear and the linearized 
onstitutive models.
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Figure 26: Behaviour of ε12 for the line y = 0 using the nonlinear model (Non-linear) and the
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Figure 27: Behaviour of σ̄11 for the line y = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) τo = 1.4× 105Pa, (b) τo = 1.5× 105Pa, (
) τo = 1.6× 105Pa, (d)
τo = 1.7× 105 Pa, (e) τo = 1.8× 105Pa.

Comments

The magnitude of the 
omponents of the stresses σ11, σ22 and σ12 are greater when using the

nonlinear model. Unlike the results obtained in the problems studied in the previous se
tion,
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Figure 28: Behaviour of σ̄22 for the line y = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) τo = 1.4× 105Pa, (b) τo = 1.5× 105Pa, (
) τo = 1.6× 105Pa, (d)
τo = 1.7× 105 Pa, (e) τo = 1.8× 105Pa.
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Figure 29: Behaviour of σ̄12 for the line y = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) τo = 1.4× 105Pa, (b) τo = 1.5× 105Pa, (
) τo = 1.6× 105Pa, (d)
τo = 1.7× 105 Pa, (e) τo = 1.8× 105Pa.

here the maximum value for σ22 does not appear inside the slab, but on the boundary of the

ellipti
al hole. It is not known whether a maximum value for that 
omponent of the stress would

be obtained inside the slab if a larger τo were applied. On the other hand, it is interesting to

noti
e that for the upper surfa
e of the ellipti
al hole, for the line x = 0, the shear stress σ12 is

smaller when using the nonlinear model.
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Figure 30: Behaviour of ε12 for the line x = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) τo = 1.4× 105Pa, (b) τo = 1.5× 105Pa, (
) τo = 1.6× 105Pa, (d)
τo = 1.7× 105 Pa, (e) τo = 1.8× 105Pa.
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ȳȳȳ
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Figure 31: Behaviour of σ̄12 for the line x = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) τo = 1.4× 105Pa, (b) τo = 1.5× 105Pa, (
) τo = 1.6× 105Pa, (d)
τo = 1.7× 105 Pa, (e) τo = 1.8× 105Pa.

7 Final remarks

Ro
k is a material that 
an show a 
omplex me
hani
al behaviour, su
h as dissimilar behaviour

when 
omparing uniaxial 
ompression and uniaxial tension. It 
an also exhibit a nonlinear be-

haviour, presenting a sti�ness that in
reases with the appli
ation of an external 
ompressive load.

It is argued that the aforementioned phenomena is related to the 
losure of 
ra
ks and pores

23



inside, whi
h are present in most types of ro
k. The same 
ra
ks and pores 
an make ro
k less

sti� in tension, whi
h is the reason most types of ro
k present a lower Young's modulus in tension

than in 
ompression [12℄. The relatively new 
onstitutive theories developed by Rajagopal and


o-workers [22, 23, 27, 25, 24, 28, 6℄ have great potentials to be used in this 
lass of material.

The purpose of this arti
le was to assess the predi
tions of the new 
onstitutive equation proposed

in [6℄ and ben
hmark these predi
tions with those of the linearized model. Some of the results

obtained agree qualitatively with some experimental eviden
e, but more work is ne
essary to as-


ertain the appropriateness of this new kind of 
onstitutive equation for these problems. Also, the

interpretation of many experiments, su
h as the bending of a beam, or the Brazilian test, depends

on the 
onstitutive model used [8℄. These experiments should be studied in the light of this new


onstitutive model. We plan to 
over them as part of future work.
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1 A 
ylinder under 
ompression

1.1 Cylinder �xed on its bottom surfa
e

Figure 1: Cylinder �xed on its bottom surfa
e under 
ompression. Results for σz . On the left the

linearized model is used, and on the right the nonlinear model is used.

∗
Corresponding author. Fax:+56-2-6896057; e-mail: rogbusta�ing.u
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Figure 2: Cylinder �xed on its bottom surfa
e under 
ompression. Results for σr. On the left the

linearized model is used, and on the right the nonlinear model is used.

Figure 3: Cylinder �xed on its bottom surfa
e under 
ompression. Results for ur. On the left the

linearized model is used, and on the right the nonlinear model is used.
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1.2 Cylinder with radial expansion and fri
tion

Figure 4: Behaviour of the axial 
omponent of the stress σz (in Pa) for the 
ase of the 
ylinder

with radial expansion and fri
tion, when the external load σo = −2 × 10
7
Pa is applied on the

surfa
e z = L/2. On the left the results are for the linearized model, and on the right for the

nonlinear model.

Figure 5: Behaviour of radial 
omponent of the stress σr (in Pa) for the 
ase of the 
ylinder with

radial expansion and fri
tion, when the external load σo = −2 × 10
7
Pa is applied on the surfa
e

z = L/2. On the left the results 
orrespond to the linearized model, and on the right 
orrespond

to the nonlinear model.
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Figure 6: Behaviour of the axial 
omponent of the displa
ement �eld uz (in m) for the 
ase of the


ylinder with radial expansion and fri
tion, when the external load σo = −2 × 10
7
Pa is applied

on the surfa
e z = L/2. On the left the results 
orrespond to the linearized model, and on the

right 
orrespond to the nonlinear model.

Figure 7: Behaviour of the radial 
omponent of the displa
ement �eld ur (in m) for the 
ase of the


ylinder with radial expansion and fri
tion, when the external load σo = −2 × 10
7
Pa is applied

on the surfa
e z = L/2. On the left the results 
orrespond to the linearized model, and on the

right 
orrespond to the nonlinear model.

4



2 Biaxial 
ompression of a slab with a 
ir
ular hole

Figure 8: Biaxial 
ompression of a slab with a 
ir
ular hole. Comparison of the predi
ted σ22

using the linearized 
onstitutive equation (on the left) and the nonlinear model (on the right).

σV = σH.

Figure 9: Biaxial 
ompression of a slab with a 
ir
ular hole. Comparison of the predi
ted σ22

near the hole using the linearized 
onstitutive model (on the left), and the nonlinear 
onstitutive

model (on the right). σV = σH.
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3 Biaxial 
ompression of a slab with an ellipti
al hole

Figure 10: Biaxial 
ompression of a slab with an ellipti
al hole. Results for σ11 when σH =

−6 × 10
5
Pa using the linearized model (plot on the left) and the nonlinear model (plot on the

right).

Figure 11: Biaxial 
ompression of a slab with an ellipti
al hole. Results for σ22 when σH =

−6× 10
5
Pa using the linearized model (on the left), and the nonlinear model (on the right).

Figure 12: Biaxial 
ompression of a slab with an ellipti
al hole. Results for σ12 when σH =

−6× 10
5
Pa using the linearized model (on the left), and the nonlinear model (on the right).
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Figure 13: Biaxial 
ompression of a slab with an ellipti
al hole. Results for σ1 when σH =

−6× 10
5
Pa using the linearized model (on the left), and the nonlinear model (on the right).

Figure 14: Biaxial 
ompression of a slab with an ellipti
al hole. Results for σ2 when σH =

−6× 10
5
Pa using the linearized model (on the left), and the nonlinear model (on the right).
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3.1 Slab with in
lined ellipti
al hole

In this se
tion, we study the behaviour of a slab with an ellipti
 hole whose main axis is rotated

in θ = 45
◦

with respe
t to the 
oordinate x. The slab is depi
ted in Figure 15.

PSfrag repla
ements
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Figure 15: Square slab with a 
entral ellipti
al hole under biaxial 
ompression. In the plot θ = 45
◦

.

Figure 16: Slab with in
lined ellipti
al hole. Results for σ12 when σH = −10
5
Pa using the

linearized model (on the left), and the nonlinear model (on the right).
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Figure 17: Slab with in
lined ellipti
al hole. Results for σ1 when σH = − × 10
5
Pa using the

linearized model (on the left), and the nonlinear model (on the right).
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4 Slab with an ellipti
al hole subje
ted to shear

Figure 18: Slab with an ellipti
al hole subje
ted to shear. Results for σ11 when τo = 1.8× 10
5
Pa

using the linearized model (on the left), and the nonlinear model (on the right).

Figure 19: Slab with an ellipti
al hole subje
ted to shear. Results for σ22 when τo = 1.8× 10
5
Pa

using the linearized model (on the left), and the nonlinear model (on the right).
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Figure 20: Slab with an ellipti
al hole subje
ted to shear. Results for σ12 when τo = 1.8× 10
5
Pa

using the linearized model (on the left), and the nonlinear model (on the right).

Figure 21: Slab with an ellipti
al hole subje
ted to shear. Results for σ1 when τo = 1.8× 10
5
Pa

using the linearized model (on the left), and the nonlinear model (on the right).
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Figure 22: Slab with an ellipti
al hole subje
ted to shear. Results for σ2 when τo = 1.8× 10
5
Pa

using the linearized model (on the left), and the nonlinear model (on the right).
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