Manuscript

A novel nonlinear constitutive model for rock: numerical
assessment and benchmarking

R. Bustamante'? S. Montero!, A. Ortiz-Bernardin'?

! Departamento de Ingenieria Mecénica, Universidad de Chile

Beauchef 851, Santiago Centro, Santiago, Chile
2 Computational and Applied Mechanics Laboratory

Departamento de Ingenieria Mecanica, Universidad de Chile

Beauchef 851, Santiago Centro, Santiago, Chile

Abstract

In this article, we assess and benchmark a novel nonlinear constitutive relation for modeling
the behavior of rock, in which the linearized strain tensor is a function of the Cauchy stress
tensor. In stark contrast with the linearized theory of elasticity, the main feature of this
novel nonlinear constitutive model is that a different behavior is obtained in compression
than in tension, which is consisting with the experimental evidence. Four problems are solved
using the finite element method: the compression of a cylinder, the biaxial compression of
a slab with a circular hole and with an elliptic hole, and the shear of a slab with an elliptic
hole. The results are compared with the predictions of the linearized theory of elasticity. In
this comparison, it is found that the maximum stresses and their locations are significantly
affected by the choice of the constitutive equation.

1 Introduction

Recently, new constitutive theories have been proposed for elastic bodies, wherein it is assumed
that the stresses and the strains are found from implicit constitutive relations [22, 23, 27, 28].
These implicit relations are natural generalizations of the classical Cauchy and Green elastic
bodies [31], wherein it is assumed that the stresses are given as functions of the strains. One
subclass of constitutive equation that is found from the above implicit relations, corresponds to
the case where the linearized (infinitesimal) strain tensor € is a function (in general nonlinear)
of the Cauchy stress o, i.e., € = h(o) (see [4, 24, 26]). As indicated, for example, in [7], such
relatively new subclass of constitutive equation has many potential applications in the modelling
of the behaviour of materials such as gum metal [10, 17], concrete [11] and rock [6]. In these
examples, there are materials that can behave elastically and nonlinearly in the range of small
strains and rotations.

For rock, it is well known from the experimental point of view that the behaviour of a sample
under uniaxial compression differs from its behaviour under uniaxial tension, and if the Young’s
modulus is determined, it can be ten times higher in compression than in tension (see, for example,
Table 1 in [12] and [1, 9, 20]). Additionally, for many distinct types of rock the behaviour of a
sample under uniaxial load is nonlinear [14, 15, 3, 13, 19, 32, 29], which in some experiments is
noticeable when the Young’s modulus appears to be a function of the stress applied on such sam-
ple. Now, traditionally, in many practical applications involving the modelling of the mechanical
behaviour of rock, researchers and engineers have used the linearized theory of elasticity to model
such material, but different researchers have noticed that neglecting the above nonlinear behaviour
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of rock can introduce large errors in the calculations (see, for example [18, 3, 12, 1], Section 6.6 of
[9], and Sections 2.3.3 and 2.5.4 of [29], and references therein), particularly in the design of tunnel
and underground opening, the drilling of well-bores, hydraulic fracturing, underground mining,
and the perforation of deep wells. For this reason some researchers have proposed the use of some
bilinear models for rock (see [12], and Chapters 6 and 7 in [9]), and also of some very simple
nonlinear constitutive equations (see, for instance, [3] and Chapter 5 in [29]). The above models
are not general and were proposed for very specific applications, such as the radial compression
of a short cylindrical annulus (see Figure 8 in [3]). There is a need for a more general model to
describe the nonlinear elastic behaviour of rock. Such a model is proposed in [6] assuming as a
first approximation that rock is an elastic isotropic material.

In this work, the model proposed in [6] for rock is used in the solution of a series of two-
dimensional boundary value problems using the finite element method. The problems are:

e The compression of a cylinder with different end conditions and assuming axial symmetry,
which is studied in Section 3.

e In Section 4 results are presented for a slab with a circular hole under biaxial compression.

e A slab with an elliptic hole under biaxial compression, where the elliptical hole is used to
approximately model a crack aligned with the horizontal axis is studied in Section 5.

e The same slab previously described subjected to a distant uniform shear stress field is ana-
lyzed in Section 6.

In Section 2, a short summary of the kinematics of deforming bodies and the equation of motion
is presented. Also in that section, details on the constitutive equations, which were proposed in
[6], are elaborated. Finally, in Section 7 we give some final remarks about the results presented
in this article.

2 Basic equations

2.1 Kinematics and equation of motion

A particle in a body 4 is denoted by X and in the reference configuration k(%) it occupies the
position X = kg(X). In the current configuration x;(%), the position of the point is denoted
by x, and it is assumed that there exists a one-to-one mapping x such that x = x(X,t). The
deformation gradient, the left Cauchy-Green tensor, the displacement vector, and the linearized
strain tensor are defined, respectively, as

_ Ox J— B 1 (0u ou”
F—a—X, B—FF, u—X—X, 6_2<8x+8x> (].)

The Cauchy stress tensor is denoted by o and the local form of the balance of linear momentum
is
px = dive + pb, (2)
where p is the density of the body and b represents the specific body forces in the current config-
uration. More details on the above equations can be found in [30].

2.2 Constitutive relations

The constitutive equation to be used in this work was presented in [6], and is a subclass of a more
general type of implicit relations of the form &(o,B) = 0, which was proposed by Rajagopal
and co-workers [22, 23, 27, 28, 25] for elastic bodies. Two special subclasses of the above implicit
relation are the Classical Cauchy model, wherein the stress is assumed to be a function of the
strains o = §F(B), and the new class B = $(o). If the gradient of the displacement field is



assumed to be very small, from this last subclass of constitutive equation we obtain € = §(o),
where it is observed that the linearized strain is a function of the stresses. Such constitutive
equations could be used to study problems in fracture mechanics of brittle bodies, and in the
modelling of concrete, gum metal and rock [11, 10, 17, 6]. As mentioned in the introduction, in
the present communication, as a first approximation we consider rock to be an elastic and isotropic
medium described by the constitutive equation € = (o). We also assume the existence of a scalar

function IT = II(e) such that
c=plo)= 2 3)

If we further assume that the function II is isotropic, then IT = II(01, 02, 03), where o, p = 1,2,3
are the eigenvalues or principal stresses of o. The function IT must satisfy the symmetry condi-
tions Il(o1, 09, 03) = (02, 01,03) = Il(01,03,02). To ensure a reasonable behaviour, additional
restrictions on II are presented in [5] and in Section 2.2.1 of [6]. From (3) we have

I
€= Z 8_3(19) ®a®, (4)

where a(®) are the eigenvectors of o-.
The results presented in Sections 3-6 will be compared against the results obtained for the
classical linearized elastic model
(1+v) v

5 = E(tra)l, (5)

E =

where E and v are the Young’s modulus and the Poisson ratio, respectively.

As in [6] the main experimental information to be used in the present study is Figure 4 of
[15], where the axial deformation of a sample under compression assuming lateral constraint is
documented!. One of the main considerations here is that the behaviour of rock is different under
tension than compression The following expression for II is used in this work (see Eq. (16) in [6]):

H(o1,02,03) = fi(o1) + fi(o2) + fi1(03) + f2(01)(02 + 03) + f2(02) (01 + 03)

+f2(03)(01 + 02) + 3 (m> ,

- 6)

where the functions §; were proposed in Eq. 69 of [6] and are given by
file) = an [di'® —ciln(di)z],  fa(x) = a2 (d3** = 1), fa(x) = 3z [dg™* — csln(ds)z],  (7)

where «;, ¢; and d;, i = 1,2, 3 are constants, whose values are presented in Table 1.

(651 [MPa] (65 Qa3 [MPa] C1 ﬁ C2 [M—lPa] C3 ﬁ dl d2 d3
0.011 -0.0004 0.001 -0.08 -0.05 -0.08 0.1]0.2]0.1

Table 1: Constants for the functions presented in (7).

Regarding the linearized model, the following values are used (see Eqs. 72-74 in [6]):
E ~ 2600MPa, v ~0.1038. (8)

In Figure 1 results are shown for the axial component of the strain for the compression/tension
of a cylinder using (6), (7) and the linearized the linearized theory of elasticity?.

!From Table 1 of [12] we also have some information concerning the behaviour of different types of rock under
tension, where the main result is that most types of rock are less stiff under tension than compression
2See Figure 3 in [6] and Figure 4 of [15].



0002t /.
I I I I I o MPa
-20 -15 -10 -5 5
. o7 -0.002}
gl -0004}
el -0.0061
e ~0.008}

Figure 1: Uniform compression/tension of a cylinder. The blue line are results for the nonlinear
model (6). The the black circles are experimental results taken from Figure 4 of [15]. The dashed
magenta line indicates the results for the linearized model (6), (7).

2.3 Boundary value problem

For using (3) we need to find the displacement field u and the Cauchy stress tensor o by solving

pii = dive + pb, &= -(Vu+ VuT) =p(o), 9)
on=t x€0r(B)y, u=1, xE€Ok(B)u, (10)

N =

where, n is the unit normal vector to dk,(B):, t and @ are the external traction, and the spec-
ification of the displacement field, respectively, and 0k, (B) = 0k, (B): U 0k, (B)y and Ok (B): N
Ok (B)y = 0.

In the present work we consider only quasi-static deformations, therefore it = 0. Additionally,
to have (3) in a form suitable for a displacement-based finite element solver, Eq. (3) is inverted
within the Newton-Raphson scheme (see [21] for more details on the numerical solution of (9)).

Finally, some plots are presented in a Supplementary Material, and the figures that appear in
that file are cited as Figure ¢{SM, which means Figure ¢ in the Supplementary Material.

3 A cylinder under compression

In this section, a cylinder of circular cross section under compression is studied. We try to capture
the actual interaction of the cylinder with the testing machine in a more precise manner. This
is important because most of the experimental data for rock is obtained for compression tests
on cylinders, where due to the interaction with the machine a non-homogeneous distribution of
stresses and strains can appear inside the samples, which may be a source of errors when trying
to find constitutive equations by fitting such data®. For example, in the plots presented in Figure
1 it was assumed that the cylinder deforms uniformly (see Section 3.1 in [6]).

In Figure 2(a), a depiction of one of the cases to be analyzed is shown, where after assuming
axial symmetry the cylinder is simplified as a two-dimensional body. For that case (see the
coordinate system in Figure 2(a)), we assume that the cylinder cannot move in the axial and the
radial directions on the surface z = 0, 0 < r < r;. Considering that in some testing machines it
is easier to control the displacement being applied on the upper surface z = L, 0 < r < 1y, we
assume that for that surface the axial displacement is known and given as u,, and that is uniform
in the radial direction®.

3See, for example, Figure 4.4 and Section 4.3.3 in [2], and pages 223, 225, 232, 259 and Figures 19 and 28(B) in
[13].
4n reality from the point of view of causality an external traction is needed to cause us,.
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Figure 2: Axial-symmetric model of a cylinder under compression. (a) The cylinder is fixed on the
surface z = 0, assuming that on the surface at z = L the axial displacement u, is prescribed. (b)
The cylinder under compression assuming radial expansion and the appearance of shear stresses
due to friction with the testing machine, and assuming that on the upper surface the axial stress
o, is prescribed. (c) The problem presented in (b) using its symmetry in the axial direction.

In Figure 2(b), the second problem to be studied for the cylinder is schematically depicted,
where axial symmetry is used and a uniform axial load o, is applied on the surface z = L,
0 <7 < r;. On the surfaces z =0, z = L, 0 < r < r; the cylinder can expand radially but is
subjected to the friction with the testing machine, which produces a shear stress 7. For symmetry
reasons, the problem is set and studied as shown in Figure 2(c).

For the results presented in this section it is assumed that L = 0.13m, r; = 0.025m. Also
in this section, the notation o, and o, is used to denote the radial and axial components of the
stress that are in Pa, ¢, and ¢, are the radial and axial components of the strain tensor, and u,.,
u, are the radial and axial components of the displacement field. The following non-dimensional
variables are used: . . w.

F=—, Z=—, U,= —. 11
T o’ z T U (11)

3.1 Cylinder fixed on its bottom surface

Results are presented for the cylinder fixed on the surface z = 0 (see Figure 2(a)). On the
surface z = L it is assumed that the axial component of the displacement field u, is given. In
Figures 1-3SM results are presented for o, o, and u, for the case u,(r,L) = u,, = —3 x 1073 m.
The nonlinear constitutive equation (3) and the linearized equation (5) are used to compare the
outcomes. From Figure 1SM it is observed that the axial component of the stress o, is almost
constant for the whole cylinder but a zone near the bottom surface z = L. From Figure 2SM it
is observed that the magnitude for the radial component of the stress is small for a large part of
the cylinder (in comparison with the maximum values for that stress), with the exception of a
zone near the bottom surface, which is something to be expected due to the fact that the cylinder
is expanding radially but on that surface it cannot have radial and axial displacements. In both
cases, there are differences in the distributions of stresses that result from the linearized (5) and
nonlinear models (3). In particular, from Figure 25SM the stresses for the nonlinear case are higher
(in magnitude) than the stresses obtained using the linear model. For the radial component of
the displacement u,., Figure 3SM shows, as expected, that the radial component is positive, its
magnitude is larger near the outer surface, and is close to 0 near the axis » = 0. The distributions
for the two cases are different. The magnitude is higher for the nonlinear model than for the



linear model, which is expected as in the nonlinear model the stiffness in tension is lower than in
compression (see Figure 1 in [12] and Figure 4 and page 553 in [20]).
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Figure 3: Axial dimensionless displacement @, versus axial stress o, (in Pa) at two points, (r, z) =
(0,0) and (r,2z) = (0, L), for a cylinder under compression (see Figure 2(a)) using the nonlinear
model (3) and the linearized model (5).

In Figure 3, results are shown for the dimensionless axial component of the displacement field
@, as a function of the axial stress o, for two points inside the cylinder (see Figure 2(a)), namely
(r,z) = (0,0) (the center of the cylinder on the lower part of it), and (r, z) = (0, L) (the center of
the cylinder on the upper surface).

From the results presented in Figure 3, there is a difference in the behaviour for the point
located at the center of the lower surface (point (r, z) = (0,0)) for the two models (3), (5). This
difference in behaviour is due to the fact that from Figure 1 it is observed that the cylinder is
stiffer in compression than in tension when using (3).

7
-0.019 —sx10

_ —— Non-linear -5.2 —— Non-linear
0.02 .
- --Linear - --Linear

-0.021
I
W -0.022

-0.023

-0.024

—-0.025

Figure 4: Comparison of the behaviour of €, and o, (in Pa) for the line r =0, 0 < z < L, when
the non-linear model (Non-linear) (3) and the linearized model (Linear) (5) are used.

In Figure 4 results for £, and o, are shown for the line r =0, 0 < z < L, where a comparison
between the nonlinear model (3) and the linearized model (5) is presented. In both cases it is
observed that the behaviour of both variables is non-homogeneous near the bottom surface (near
z = 0), where the cylinder is attached to the ground, and become constant far from that zone.
The magnitude of €, and o is higher for the nonlinear model (3).

Finally, several plots were made for the different components of € and o for the lines z = L/2,
0<r<rand z=L,0<r <ry. It was found that most of the components of the strain and
the stress tensors are almost constant (in r) for such lines, and there was not noticeable difference
between the behaviour observed for the nonlinear model (3) and the linearized model (5). All such
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Figure 5: Comparison of the behaviour of o, (in Pa) for the line z = L/2, 0 < r < r;, when the
non-linear model (Non-linear) (3) and the linearized model (Linear) (5) are used.

plots are not shown here. In Figure 5, a plot for o, for the line z = L/2, 0 <r < r; is presented.

Comments

The compression/tension of a cylinder is one of the most important experiments used to determine
the mechanical properties of solid media. An essential assumption to use the results of such
experiment is that the stresses and strains are approximately uniform inside the cylinder, with
the possible exception of small regions near the upper and lower surfaces of the cylinders. For
rock, due to the characteristics of such brittle material, the experiment is usually performed in
compression, and the cylinder is compressed between metal plates, which imposes restrictions on
the radial displacement of the cylinder on such surfaces. As shown schematically in Figure 4.4(b)
in [2], if the friction between rock and metal is very high, or if the cylinder is glued to such plates
(complete radial constraint on such surfaces), a barreling is observed for the cylinders. Brady
and Brown (see Section 4.3.3 in [2]) propose that L/(2r;) £ 2 is necessary to have a good degree
of uniformity inside the cylinder for the stresses and strains. For L/r; = 13/5 > 2, and from
Figures 1-3SM, the distributions for ¢, o, and u, indeed appear to be approximately constant
with the exception of a region about 20% of the length L near the lower surface. But such region
of non-uniformity is larger when using the nonlinear model (3) (see in particular Figure 1SM).

In [13] there is also a detailed discussion on the effect of the end conditions, and we can
compare, at least qualitatively, the results presented in Figure 4 (right) and Figure 5 with the
distributions for the stresses in Figure 19 of [13] (recalling that o, = 0.). The results are indeed
similar, but for the nonlinear model (3) the magnitude of the stresses are larger, especially near
z = 0 (the positions of the metal plates).

From Figure 4, we observe that €, and o, become almost constant in z if Z % 0.4. This is an
important observation to adequately measure the strains in a place distant from that surface of
the cylinder. Assuming a different behaviour in tension than in compression (see (3) and Figure
1) has a profound effect on the behaviour of o, as can be seen in Figure 5. The radial component
of the stress increases in almost 60% of the value predicted by the linearized theory of elasticity

(5)-

3.2 Cylinder with radial expansion and friction

In this section results are presented for the problem depicted in Figure 2(c), where a cylinder
under compression® is shown. On the upper and lower surfaces it is assumed that the cylinder
can expand radially, but there is friction (see Figure 4.4(c) in [2]) that generates a shear stress on

5Figure 2(c) is a simplification of the original problem shown in Figure 2(b).



such surfaces. The shear stress is assumed to be proportional to the compressive load o,
T = [0y, (12)

where 1 = 0.35 is the value used for the friction coefficient between rock and metal.

In Figure 4SM, results for o, (in Pa) when the external load on the upper surface of the
cylinder is® 0, = —2 x 107 Pa are presented. On the left the results were obtained using the
linearized constitutive equation (5), and on the right the results were obtained using the nonlinear
model (3). From these results we observe that the behaviour of that component of the stress is
rather non-homogeneous for a large part of that quarter of the cylinder (see Figure 2(c)). The
distributions obtained with the linearized model differ from those of the nonlinear model. In both
cases there are only compressive stresses. For the linearized model it is observed that the zone
where o, is approximately constant is slightly larger than in the nonlinear model.

In Figure 5SM, results for o, (in Pa) are shown when the external load is o, = —2x 10" Pa. On
the left the results were obtained using the linearized constitutive equation (5), and on the right
the results were obtained using the nonlinear model (3). In contrast to the results presented in
Figure 4SM | here for the zones where o, is non-homogeneous are smaller in both cases, especially
for the linearized model (5). As it is expected in this problem, the radial stress should be close to
0 for most of the cylinder.

In Figures 65SM and 7SM results are shown for the axial and radial components of the dis-
placement field u. For the axial displacement it is observed that there are no differences between
the results using the linear and nonlinear constitutive models. For the radial component of the
displacement, the constitutive models (3) and (5) predict results that are different.

x10°
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Figure 6: Axial dimensionless displacement %, versus axial stress o, (in Pa) at point (r,z) =
(0, L/2) for a cylinder under compression (see Figure 2(c)) using the nonlinear model (3) and the
linearized model (5).

Figure 6 presents the behaviour of the non-dimensional axial component of the displacement
field @, as a function of the axial (compressive) stress o. at the point (r,z) = (0,L/2), where
the results using the linearized model (5) and the new nonlinear constitutive equation (3) are
compared. It is observed that the behaviour of the cylinder is stiffer when using the nonlinear
model (3). This is because in the experimental results presented in [15], which were used to obtain
(7), a sample of rock under compression tends to show some strain limiting behaviour?.

In Figure 7, results are shown for the radial component of the strain e, and the stress o,
for the line z = 0, 0 < r < r;. In both cases it is observed that when the linear constitutive
model (5) is used, the results are almost constant, and in particular for the radial stress, they
are approximately zero inside the cylinder. This is not the case when using the nonlinear model
(3), where in particular the radial component of the stress can increase significantly inside the

6This was the maximum load that it was possible to apply without the radial strain e, becoming too large.
7See, for example, page 191 in [3], Figure 10 in [32] and page 208 in [29]
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Figure 7: Comparison between the behaviour of €, and o, (in Pa) for the line 2 =0, 0 < r < r; (see
Figure 2(c)) when using the nonlinear model (Non-linear) (3) and the linearized model (Linear)

(5)-

cylinder. It is necessary to recall that for this cylinder under axial compression, in the radial
direction there are positive radial strains, and the nonlinear constitutive model was formulated
such that the behaviour of a cylinder under tension is less stiffer than in compression (see (3), (6)
and (7)), which is the reason of the larger magnitude for ¢, in the nonlinear model.
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Figure 8: Comparison among the behaviour of ¢., ¢, 0. (in Pa) and o, (in Pa) for the line
z=1L/2,0 <r < (see Figure 2(c)) when using the nonlinear model (Non-linear) (3) and the
linearized model (Linear) (5).

Finally, in Figure 8 results are presented for the line 2 = L/2, 0 < r < r; for the radial and
axial components of the strain and stress.



Comments

The assumption that the upper and lower surfaces of the cylinder can expand radially, due to the
presence of a shear stress, caused by the friction with the metal plates, implies also a markedly
different behaviour between the results obtained using the nonlinear model (3) and the linearized
constitutive equation (5) (see in particular Figures 6, 7 and 8). This is because rock is less stiffer
in tension than in compression. From the results presented in Sections 3.1 and 3.2, it is observed
that when more realistic boundary conditions are imposed for the cylinder under compression, the
stresses and strains inside the body are non-homogeneous for both the nonlinear and linearized
models.

4 Biaxial compression of a slab with a circular hole

An important problem in mining and geomechanics is the determination of stresses and strains
for a rock mass with a circular hole under uniform vertical and horizontal loads. The rock mass
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Figure 9: Slab with a central circular hole under biaxial compression.

is simplified as a slab of length and high L that is infinitely long in the direction z (see Figure
9), so that plane strain condition can be assumed. The hole of radius 7; can be considered as a
simplified representation of a tunnel crossing the rock mass.

The stresses oy represent the effect of the weight above the slab, and the lateral uniform load
on is used to model the lateral interaction of the slab with the rest of the surroundings®. An
important assumption is that the distribution of stresses is uniform far from the hole.

On the left side of the slab it is assumed there is no displacement in the direction z, whereas
on the surface at the bottom of the slab it is assumed there is no vertical displacement in the
direction y. The body load in the slab due to its own weight is not considered, i.e., b = 0 (see
(9)1). Finally, the surface of the hole is free of external traction.

It is assumed that L = 100m and r; = 2.5m, then L > r;. For oy and op two cases are
studied: when o = ov, and og = 20v.

8Regarding oy, it is possible to use a linear distribution in y to consider the effect of the weight of the surround-
ings rock masses in a more precise manner, but for simplicity this is not used in this work.
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The following dimensionless variables are defined:

j:%, ﬂ:%, 5’1122—1/1, 5’222(;'_—12. (13)
For the results presented in Figures 10-14 it is assumed that oy = oy.

Figures 9SM and 10SM present results for the slab under bi-axial compression with a hole
assuming that? oy = —2 x 10" Pa. In Figure 9SM therein the behaviour in the slab differs
between the two constitutive models. In particular, the absolute magnitude of oa2 is higher when
using the nonlinear constitutive model (3).
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Figure 10: Behaviour of €17 for y =0, 0 < 2 < L/2 when using the nonlinear model (Non-linear)
and the linearized model (Linear). (a) oy = —10°Pa, (b) oy = —5 x 105Pa, (c¢) oy = —107 Pa,
(d) oy = —1.5 x 107 Pa, (e) oy = —2 x 107 Pa.

In Figure 10 the behaviour of e11(x) is presented for the line y = 0, 0 < x < L/2 (see Figure
9) for different external loads oy. The results obtained using the linear constitutive model (5) are
compared with those of the nonlinear constitutive model (3). From these results, we observe that
for higher values of oy there is a more notorious disagreement between the predictions of the two
models.

In Figure 11, the behaviour of €95 is presented using the linear and nonlinear models for the
line y =0, 0 < x < L/2 and different external loads ov. In this case, the magnitude of e99 is
higher when the linear model (5) is used. It is observed that the maximum (in magnitude) for ego
is not located at the boundary of the hole.

Results for 611 and &2 for the line y = 0, 0 < z < L/2 are shown in Figures 12 and 13 for
different external loads oy. Due to the traction-free condition near the boundary of the hole, 511
is zero for (x,y) = (r;,0). Far from the hole, o1; becomes uniform and is close to oy (511 — 1).

9This was the maximum external traction for which the strains are small within the small strain assumption of
the model (3).
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Figure 11: Behaviour of eg5(x) for the line y = 0, 0
(Non-linear) and the linearized model (Linear). (a) oy
ov = —107Pa, (d) oy = —1.5 x 107 Pa, (&) oy = —2 x 1

< z < L/2 using the nonlinear model
= —10%Pa, (b) oy = —5 x 10°Pa, (c)
07 Pa.
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Figure 12: Behaviour of 711 for the line y = 0, 0 < 2 < L/2 using the nonlinear model (Non-linear)
and the linearized model (Linear). (a) oy = —10Pa, (b) oy = —5 x 105 Pa, (c¢) oy = —107 Pa,
(d) oy = —1.5 x 107 Pa, (e) oy = —2 x 107 Pa.

Interesting results are observed for go5. As it is expected, far from the hole og2 also tends to oy .
The maximum for 22 does not occur at the surface of the hole, as it is predicted by the linearized
theory of elasticity, but at a point near that surface. A detailed view of the results presented in
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Figure 13: Behaviour of a2 for the line y = 0, 0 < 2 < L/2 using the nonlinear model (Non-linear)
and the linearized model (Linear). (a) oy = —10Pa, (b) oy = —5 x 105 Pa, (c¢) oy = —107 Pa,
(d) oy = —1.5 x 107 Pa, (e) oy = —2 x 107 Pa.

Figure 13 is given in Figure 14. The disagreement between the linear and nonlinear models in the
prediction of 17 and 722 is more noticeable for larger external loads.
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Figure 14: Behaviour of a2 for the line y = 0, 0 < 2 < L/2 using the nonlinear model (Non-linear)
and the linearized model (Linear). (a) oy = —10Pa, (b) oy = —5 x 105 Pa, (c¢) oy = —107 Pa,
(d) oy = —1.5 x 107 Pa, (e) oy = —2 x 107 Pa.

In Figures 15-17 results are shown for oy = —1.6 X 107 Pa with oy = 20v. Plots for €11, €22,
711 and G99 as functions of § for the line x = 0, 0 < y < L/2 are presented in Figure 15. There are
significant differences between the behaviour of the two components of the stresses as predicted
by the two constitutive models. The maxima are not located on the surface of the hole. A detailed
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Figure 15: Behaviour of €11, £92, 011 and 99 for the linex = 0,0 <y < L/2for oy = —1.6 % 10" Pa
with o = 20y using the nonlinear model (Non-linear) and the linearized model (Linear).

plot of &11 and &22 near the hole is given in Figure 17.
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Figure 16: Behaviour of £11, €22, 511 and 79 for the liney = 0,0 < 2 < L/2 for oy = —1.6x 107 Pa
with oy = 20y using the nonlinear model (Non-linear) and the linearized model (Linear).

In Figure 16 results are presented for €11, €22, 11 and G99 for the line y = 0,0 <z < L/2.
Details of the behaviour of 611 and G292 near the surface of the hole are shown in Figure 17.
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Figure 17: Behaviour of 511 and 99 for the lines y = 0,0 <2 < L/2and 2 =0,0 <y < L/2.
Details of the behaviour of the different components of the stress near the hole (see Figures 15
and 16).

Finally, in Figure 17 results for 611 and 22 are shown for a zone very close to the boundary
of the hole.

Comments

The results obtained for this problem that are depicted, for example, in Figures 14 and 17, show
that when using the nonlinear constitutive equation (3), the maximum stress (that is usually
associated with the failure of rock) does not appear on the surface of the hole, but inside the slab
(see Figures 14 and 17 upper left). Additionally, for g9o depicted in Figure 14, for larger external
tractions oy, the linearized theory of elasticity predicts maximum stresses that are greater than
the maximum stresses obtained using the nonlinear model (3). The same happens for 511 (see the
plot on the upper left in Figure 17).

Now, from the experimental point of view, and also from some theoretical and numerical works,
there is evidence supporting that damage in rock masses with holes could start inside the rock, and
not on the surfaces of the holes!®, as predicted by the linearized theory of elasticity. Also, there is
evidence supporting the fact that the linearized constitutive theory overestimates the magnitude
of some of the components of the stress, see, for example, Figure 4 in [3], [12], Section 6.6 in [9],
Figure 9 in [8] and page 145 in [16].

10See, for example, [18], page 190 and Section 3.2 in [3], for a square hole see Figure 13(f) in [33]. See as well
Sections 2.2.2, 2.2.3, 4.4.4, pages 176 and 352 in [29] and the references therein.
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5 Biaxial compression of a slab with an elliptical hole

In this problem we have a slab similar to the one described in the previous section. It deforms
under the influence of uniform vertical and horizontal loads oy, op. There is an elliptic hole with
principal axes a, b. It is assumed that b > a, i.e., the elliptical hole is an approximation of a
crack, and it is assumed that the principal axis b is horizontal and aligned with the coordinate =
(see Figure 5). We assume plane strains, oy = 20y and L = 100m, b = 10 m and g = 40.

. ov____
@) 3 N
s —
0 -

y —
O a - 1 0H
| = |
R -~
0 T
o -

OO0 0O 0 0O O 0O O O —

Figure 18: Square slab with a central elliptical hole under biaxial compression. Plane strain
condition is assumed. The main axis of the hole is aligned with the coordinate system.

In Figures 10SM-14SM results are presented for the components 011, 022 and o152 of the stress
tensor, and the principal stresses o1 and o3 when'! oy = —6 x 10° Pa using the linear constitutive
model (5) and the nonlinear constitutive equation (3). The results are presented only for a small
region around the point x = b/2, y = 0, which is the tip of the elliptic hole. From the results we
observe that the magnitudes of the stresses predicted by the nonlinear constitutive model (3) are
higher than those predicted by the linearized model (5).

In Figures 13SM and 14SM results are presented for the principal stresses o1 and o2 when
on = —6 x 10° Pa. The results shown in Figure 13SM are particularly interesting. It is observed
that for the nonlinear model, the magnitude of o3 when o1 > 0 (which appears near the boundary
of the hole) is greater than the one obtained using the linearized model. Finally, in Figure 14SM
in the Supplementary Material results are presented for o9 as predicted by the nonlinear model (3)
and the linearized equation (5). In both cases the stress is negative, but its magnitude is higher
when using the nonlinear model.

In Figures 19-22 results are shown for £11, €92, and the dimensionless stresses 611, 22, for
different external traction op. The plots are presented for the line y = 0, b/2 < x very close to
the boundary of the hole. In Figures 19 and 20 it is noticed slight differences for the behaviour of
€11. For €99 it is observed that the magnitude of the strains are smaller when using the nonlinear
model. For 711, Figure 21 reveals a greater difference between the predictions of the linear and
nonlinear models for higher values of oy. The same occurs for 22 (see Figure 22). The maximum
for go9 is observed in 22 36(c) and it appears inside the slab.

1 This external traction was the maximum load that it was possible to apply without having problems with the
convergence of the numerical solution.
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Additional results were obtained for the same components of the strain and dimensionless
stresses for the line x = 0, a/2 < y < L/2. From those results, it was possible to see almost an
agreement between the predictions of the two constitutive models. This is not surprising as the
stress concentration is low = = 0, y = a/2 and therefore it is not expected to be otherwise. For
the sake of brevity such results are not shown here.

Comments

The geometries studied in this and in the next section are approximations of cracks in rock
masses under biaxial compression. The main goal is to compare the predictions of the nonlinear
constitutive equation (3) and the linear model (5), especially regarding the maximum stresses and
where they appear. From Figures 10SM-12SM we can see that the maximum magnitude for the
stresses are larger (in magnitude) when using the nonlinear constitutive equation.

Particularly interesting are the results depicted in Figure 13SM, where the magnitude of the
first principal stress can be very large in comparison with the results using the linearized model,
for the region where o1 > 0. It is necessary to recall that rock is a material that cannot support
large positive stresses (tension) in contrast with compression (see, for example, Section 1.2.3 in
[2]). That the nonlinear constitutive equation (3) predicts such higher positive values for that
principal stress is a factor, which should be studied in a deeper manner from the experimental
point of view.

From Figure 21 and 22 it is observed in a more precise manner that the nonlinear model
predicts larger (in magnitude) values for the normal stress. Interestingly, in Figure 22(c) such
maximum happens not on the surface of the elliptical hole, but slightly inside it. This implies that
if g9 would be used to predict the rupture of the rock mass, that rupture would happen inside
the body, which is something similar to what is observed for the problem studied in Section 4.

For the case of the slab with an inclined elliptical hole (see Figure 15SM) results are obtained
for 011, 022, 012, 01 and o9 for oy = —10° Pa. The predictions with the two models are almost
in agreement, and thus these results are not presented here!2. In Figures 16SM and 17SM results
are shown for 015 and the principal stress oy, for a small area near the tip of the elliptic hole.
Some differences are found between the predictions of the linear and nonlinear models. For o5
its predicted magnitude is higher when the nonlinear model is used. The results for oy, which
are depicted in Figure 17SM, are more interesting. In contrast to the predictions of the nonlinear
model, the linear model predicts that o is always negative. In Figure 17SM (on the right), there is
a narrow region near the boundary of the hole where o; is positive. The presence of such positive
stresses could have an important impact on the modelling of failure near the tips of cracks since, in
general, rock cannot support higher tensile stresses (see the comments at the end of the previous
section). Considering the geometry of the problem depicted in Figure 15SM, in this section no
additional plots are presented.

6 Slab with an elliptical hole subjected to shear

In this section, the behaviour of a slab with an elliptic hole subjected to a uniform shear stress 7,
on its upper surface (see Fig. 23) is studied. The lower surface of the slab cannot displace. The
geometry of the slab and the elliptic hole is the same as defined in Section 5. The hole can be
seen as an approximation of a crack under the effect of a distant uniform shear stress. The body
shown in Figure 23 is also very long in the direction z so that plane strain condition is assumed.
The following dimensionless stresses are defined:

o11 022

2] = s % = . ]‘4
on=-=, on=" (14)

12Tn those three cases, it was observed that the magnitude of the predicted stresses when using the nonlinear
model was slightly higher than the predictions of the linear model.

18



To

e e I e e

Figure 23: Slab with a central elliptical hole under shear.

In Figures 18SM-22SM results are presented for 011, 092, 012 and the principal stresses o1, o9
when'® 7, = 1.8 x 10° Pa, where the predictions using the linear and the nonlinear constitutive
models, (5) and (3), respectively, are compared. For o1; and o9o their maximum magnitude
can be significantly large in the zone they are negative. The predictions of the nonlinear model
indicate that the absolute magnitude of the stresses is higher than the corresponding values that
are obtained when the linear constitutive model is used. For o1 the difference in behaviour is
more notorious. For example, from the predictions of the nonlinear model in Figure 20SM, the
maximum positive stress is more than four times greater than the value that is obtained when
the linear model is used. For the negative values of the stress, the predicted value when using the
nonlinear model is o2 = —1.0132 x 10° Pa, whereas o1 = —246 Pa when using the linear
model.

Figures 21SM and 22SM present the results for the two principal stresses. For o1 a notorious
difference between the predictions of the two models is observed when o is negative. Figure 21SM
shows that the results for oy that are obtained using the nonlinear model are approximately four
times greater (in magnitude) than the predictions of the linear model. Something similar happens
with o9 as observed in Figure 22SM.

In Figures 24-29 results are shown for €11, €929, €12, 711, 022 and &9, for the line y = 0,
b/2 < x near the tip of the elliptic hole. Different values for the external load 7, are used.
The results for the strain tensor are depicted in Figures 24-26. An important difference in the
behaviour is observed when comparing the predictions of the nonlinear and the linearized models.
In particular, for €15 the nonlinear model predicts lower magnitudes than the linearized model, as
shown in Figure 26.

In Figure 27, results for 17 are presented. The absolute magnitude of 17 that is predicted by
the nonlinear model is greater than the prediction of the linearized model. Regarding 22 Figure
28 shows that the maximum values (in magnitude) are all located on the boundary of the hole (at
2 =0b/2,y =0). Similar to the results for 711, the magnitude of G99 is greater when the nonlinear
model is used. Finally, for 12, as in the previous cases, the magnitude of the stresses is greater
when using the nonlinear model (see Figure 29).

In Figures 30 and 31 results are shown for €15 and 15 for the line z = 0, a/2 < y < L/2

max max

13 As in the problems presented in the previous sections, this specific value for 7, was the maximum stress such
that there is convergence for the numerics.
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Figure 24: Behaviour of e;; for the line y = 0 using the nonlinear model (Non-linear) and the
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Figure 25: Behaviour of €39 for the line y = 0 using the nonlinear model (Non-linear) and the
linearized model (Linear). (a) 7, = 1.4 x 10° Pa, (b) 7, = 1.5 x 10° Pa, (c) 7, = 1.6 x 10° Pa, (c)
7o, = 1.7 x 10° Pa, (¢) 7, = 1.8 x 10° Pa.

and external loads 7,. In both cases a noticeable difference appears when comparing the results
predicted by the nonlinear and the linearized constitutive models.
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Figure 26: Behaviour of 12 for the line y = 0 using the nonlinear model (Non-linear) and the
linearized model (Linear). (a) 7, = 1.4 x 10° Pa, (b) 7, = 1.5 x 10° Pa, (c) 7, = 1.6 x 10° Pa, (c)
7, = 1.7 x 10° Pa, (c) 7, = 1.8 x 10° Pa.
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Figure 27: Behaviour of &1; for the line y = 0 using the nonlinear model (Non-linear) and the
linearized model (Linear). (a) 7, = 1.4 x 105 Pa, (b) 7, = 1.5 x 10° Pa, (¢) 7, = 1.6 x 10° Pa, (d)
7, = 1.7 x 10° Pa, (e) 7, = 1.8 x 10° Pa.

Comments
The magnitude of the components of the stresses 011, 022 and o2 are greater when using the

nonlinear model. Unlike the results obtained in the problems studied in the previous section,
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Figure 28: Behaviour of &9y for the line y = 0 using the nonlinear model (Non-linear) and the
linearized model (Linear). (a) 7, = 1.4 x 10°Pa, (b) 7, = 1.5 x 10° Pa, (¢) 7, = 1.6 x 10° Pa, (d)
7o, = 1.7 x 10° Pa, (e) 7, = 1.8 x 10° Pa.
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Figure 29: Behaviour of 15 for the line y = 0 using the nonlinear model (Non-linear) and the
linearized model (Linear). (a) 7, = 1.4 x 10°Pa, (b) 7, = 1.5 x 10° Pa, (¢) 7, = 1.6 x 10° Pa, (d)
7o, = 1.7 x 10° Pa, (e) 7, = 1.8 x 10° Pa.

here the maximum value for 095 does not appear inside the slab, but on the boundary of the
elliptical hole. It is not known whether a maximum value for that component of the stress would
be obtained inside the slab if a larger 7, were applied. On the other hand, it is interesting to
notice that for the upper surface of the elliptical hole, for the line x = 0, the shear stress oo is
smaller when using the nonlinear model.
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Figure 30: Behaviour of 12 for the line z = 0 using the nonlinear model (Non-linear) and the
linearized model (Linear). (a) 7, = 1.4 x 10° Pa, (b) 7, = 1.5 x 10° Pa, (c) 7, = 1.6 x 10° Pa, (d)
7, = 1.7 x 10° Pa, (e) 7, = 1.8 x 10° Pa.
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Figure 31: Behaviour of 712 for the line # = 0 using the nonlinear model (Non-linear) and the
linearized model (Linear). (a) 7, = 1.4 x 10° Pa, (b) 7, = 1.5 x 10° Pa, (c) 7, = 1.6 x 10° Pa, (d)
7, = 1.7 x 10° Pa, (e) 7, = 1.8 x 10° Pa.

7 Final remarks
Rock is a material that can show a complex mechanical behaviour, such as dissimilar behaviour
when comparing uniaxial compression and uniaxial tension. It can also exhibit a nonlinear be-

haviour, presenting a stiffness that increases with the application of an external compressive load.
It is argued that the aforementioned phenomena is related to the closure of cracks and pores
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inside, which are present in most types of rock. The same cracks and pores can make rock less
stiff in tension, which is the reason most types of rock present a lower Young’s modulus in tension
than in compression [12]. The relatively new constitutive theories developed by Rajagopal and
co-workers [22, 23, 27, 25, 24, 28, 6] have great potentials to be used in this class of material.
The purpose of this article was to assess the predictions of the new constitutive equation proposed
in [6] and benchmark these predictions with those of the linearized model. Some of the results
obtained agree qualitatively with some experimental evidence, but more work is necessary to as-
certain the appropriateness of this new kind of constitutive equation for these problems. Also, the
interpretation of many experiments, such as the bending of a beam, or the Brazilian test, depends
on the constitutive model used [8]. These experiments should be studied in the light of this new
constitutive model. We plan to cover them as part of future work.
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Supplementary material: A novel nonlinear constitutive
model for rock: numerical assessment and benchmarking
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1 A cylinder under compression

1.1 Cylinder fixed on its bottom surface

+
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Figure 1: Cylinder fixed on its bottom surface under compression. Results for .. On the left the
linearized model is used, and on the right the nonlinear model is used.
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Figure 2: Cylinder fixed on its bottom surface under compression. Results for ¢,.. On the left the
linearized model is used, and on the right the nonlinear model is used.
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Figure 3: Cylinder fixed on its bottom surface under compression. Results for w,. On the left the
linearized model is used, and on the right the nonlinear model is used.



1.2 Cylinder with radial expansion and friction

L/2=0.065 m
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Figure 4: Behaviour of the axial component of the stress o, (in Pa) for the case of the cylinder
with radial expansion and friction, when the external load o, = —2 x 107 Pa is applied on the
surface z = L/2. On the left the results are for the linearized model, and on the right for the

nonlinear model.
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Figure 5: Behaviour of radial component of the stress o, (in Pa) for the case of the cylinder with

radial expansion and friction, when the external load o,

—2 x 107 Pa is applied on the surface

z = L/2. On the left the results correspond to the linearized model, and on the right correspond

to the nonlinear model.
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Figure 6: Behaviour of the axial component of the displacement field u. (in m) for the case of the
cylinder with radial expansion and friction, when the external load o, = —2 x 107 Pa is applied
on the surface z = L/2. On the left the results correspond to the linearized model, and on the
right correspond to the nonlinear model.
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Figure 7: Behaviour of the radial component of the displacement field u, (in m) for the case of the
cylinder with radial expansion and friction, when the external load o, = —2 x 107 Pa is applied
on the surface z = L/2. On the left the results correspond to the linearized model, and on the
right correspond to the nonlinear model.



2 Biaxial compression of a slab with a circular hole

L=100 m
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Figure 8: Biaxial compression of a slab with a circular hole. Comparison of the predicted oy
using the linearized constitutive equation (on the left) and the nonlinear model (on the right).
oy — OH-

[N

(o]
+
[N 0%

e+

e i i Y i N @)

Figure 9: Biaxial compression of a slab with a circular hole. Comparison of the predicted oo
near the hole using the linearized constitutive model (on the left), and the nonlinear constitutive
model (on the right). oy = og.



3 Biaxial compression of a slab with an elliptical hole
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Figure 10: Biaxial compression of a slab with an elliptical hole. Results for o1; when opg =
—6 x 105 Pa using the linearized model (plot on the left) and the nonlinear model (plot on the
right).
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Figure 11: Biaxial compression of a slab with an elliptical hole. Results for o995 when oy =
—6 x 10° Pa using the linearized model (on the left), and the nonlinear model (on the right).

Figure 12: Biaxial compression of a slab with an elliptical hole. Results for 015 when oy =
—6 x 10° Pa using the linearized model (on the left), and the nonlinear model (on the right).
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Figure 13: Biaxial compression of a slab with an elliptical hole.

Results for o1 when oy

—6 x 10° Pa using the linearized model (on the left), and the nonlinear model (on the right).
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Figure 14: Biaxial compression of a slab with an elliptical hole.

Results for oo when ogy

—6 x 10° Pa using the linearized model (on the left), and the nonlinear model (on the right).
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3.1 Slab with inclined elliptical hole

In this section, we study the behaviour of a slab with an elliptic hole whose main axis is rotated
in 6 = 45° with respect to the coordinate x. The slab is depicted in Figure 15.
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Figure 15: Square slab with a central elliptical hole under biaxial compression. In the plot § = 45°.

Figure 16: Slab with inclined elliptical hole. Results for o5 when oy = —10°Pa using the
linearized model (on the left), and the nonlinear model (on the right).
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Figure 17: Slab with inclined elliptical hole. Results for o1 when oy = — x 10° Pa using the
linearized model (on the left), and the nonlinear model (on the right).



4 Slab with an elliptical hole subjected to shear

; D=0.05035 m ‘ : D=0.05035 m

Figure 18: Slab with an elliptical hole subjected to shear. Results for 017 when 7, = 1.8 x 10° Pa
using the linearized model (on the left), and the nonlinear model (on the right).

@
+
=IOS®

i |
s ut—

Figure 19: Slab with an elliptical hole subjected to shear. Results for 22 when 7, = 1.8 x 10° Pa
using the linearized model (on the left), and the nonlinear model (on the right).
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Figure 20: Slab with an elliptical hole subjected to shear. Results for o2 when 7, = 1.8 x 10° Pa,
using the linearized model (on the left), and the nonlinear model (on the right).
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Figure 21: Slab with an elliptical hole subjected to shear. Results for o; when 7, = 1.8 x 10° Pa,
using the linearized model (on the left), and the nonlinear model (on the right).
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Figure 22: Slab with an elliptical hole subjected to shear. Results for oo when 7, = 1.8 x 10° Pa,
using the linearized model (on the left), and the nonlinear model (on the right).
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