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Abstrat

In this artile, we assess and benhmark a novel nonlinear onstitutive relation for modeling

the behavior of rok, in whih the linearized strain tensor is a funtion of the Cauhy stress

tensor. In stark ontrast with the linearized theory of elastiity, the main feature of this

novel nonlinear onstitutive model is that a di�erent behavior is obtained in ompression

than in tension, whih is onsisting with the experimental evidene. Four problems are solved

using the �nite element method: the ompression of a ylinder, the biaxial ompression of

a slab with a irular hole and with an ellipti hole, and the shear of a slab with an ellipti

hole. The results are ompared with the preditions of the linearized theory of elastiity. In

this omparison, it is found that the maximum stresses and their loations are signi�antly

a�eted by the hoie of the onstitutive equation.

1 Introdution

Reently, new onstitutive theories have been proposed for elasti bodies, wherein it is assumed

that the stresses and the strains are found from impliit onstitutive relations [22, 23, 27, 28℄.

These impliit relations are natural generalizations of the lassial Cauhy and Green elasti

bodies [31℄, wherein it is assumed that the stresses are given as funtions of the strains. One

sublass of onstitutive equation that is found from the above impliit relations, orresponds to

the ase where the linearized (in�nitesimal) strain tensor ε is a funtion (in general nonlinear)

of the Cauhy stress σ, i.e., ε = h(σ) (see [4, 24, 26℄). As indiated, for example, in [7℄, suh

relatively new sublass of onstitutive equation has many potential appliations in the modelling

of the behaviour of materials suh as gum metal [10, 17℄, onrete [11℄ and rok [6℄. In these

examples, there are materials that an behave elastially and nonlinearly in the range of small

strains and rotations.

For rok, it is well known from the experimental point of view that the behaviour of a sample

under uniaxial ompression di�ers from its behaviour under uniaxial tension, and if the Young's

modulus is determined, it an be ten times higher in ompression than in tension (see, for example,

Table 1 in [12℄ and [1, 9, 20℄). Additionally, for many distint types of rok the behaviour of a

sample under uniaxial load is nonlinear [14, 15, 3, 13, 19, 32, 29℄, whih in some experiments is

notieable when the Young's modulus appears to be a funtion of the stress applied on suh sam-

ple. Now, traditionally, in many pratial appliations involving the modelling of the mehanial

behaviour of rok, researhers and engineers have used the linearized theory of elastiity to model

suh material, but di�erent researhers have notied that negleting the above nonlinear behaviour
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of rok an introdue large errors in the alulations (see, for example [18, 3, 12, 1℄, Setion 6.6 of

[9℄, and Setions 2.3.3 and 2.5.4 of [29℄, and referenes therein), partiularly in the design of tunnel

and underground opening, the drilling of well-bores, hydrauli fraturing, underground mining,

and the perforation of deep wells. For this reason some researhers have proposed the use of some

bilinear models for rok (see [12℄, and Chapters 6 and 7 in [9℄), and also of some very simple

nonlinear onstitutive equations (see, for instane, [3℄ and Chapter 5 in [29℄). The above models

are not general and were proposed for very spei� appliations, suh as the radial ompression

of a short ylindrial annulus (see Figure 8 in [3℄). There is a need for a more general model to

desribe the nonlinear elasti behaviour of rok. Suh a model is proposed in [6℄ assuming as a

�rst approximation that rok is an elasti isotropi material.

In this work, the model proposed in [6℄ for rok is used in the solution of a series of two-

dimensional boundary value problems using the �nite element method. The problems are:

• The ompression of a ylinder with di�erent end onditions and assuming axial symmetry,

whih is studied in Setion 3.

• In Setion 4 results are presented for a slab with a irular hole under biaxial ompression.

• A slab with an ellipti hole under biaxial ompression, where the elliptial hole is used to

approximately model a rak aligned with the horizontal axis is studied in Setion 5.

• The same slab previously desribed subjeted to a distant uniform shear stress �eld is ana-

lyzed in Setion 6.

In Setion 2, a short summary of the kinematis of deforming bodies and the equation of motion

is presented. Also in that setion, details on the onstitutive equations, whih were proposed in

[6℄, are elaborated. Finally, in Setion 7 we give some �nal remarks about the results presented

in this artile.

2 Basi equations

2.1 Kinematis and equation of motion

A partile in a body B is denoted by X and in the referene on�guration κR(B) it oupies the
position X = κR(X). In the urrent on�guration κt(B), the position of the point is denoted

by x, and it is assumed that there exists a one-to-one mapping χ suh that x = χ(X, t). The

deformation gradient, the left Cauhy-Green tensor, the displaement vetor, and the linearized

strain tensor are de�ned, respetively, as

F =
∂χ

∂X
, B = FF

T, u = x−X, ε =
1

2

(

∂u

∂x
+

∂u

∂x

T
)

. (1)

The Cauhy stress tensor is denoted by σ and the loal form of the balane of linear momentum

is

ρẍ = divσ + ρb, (2)

where ρ is the density of the body and b represents the spei� body fores in the urrent on�g-

uration. More details on the above equations an be found in [30℄.

2.2 Constitutive relations

The onstitutive equation to be used in this work was presented in [6℄, and is a sublass of a more

general type of impliit relations of the form G(σ,B) = 0, whih was proposed by Rajagopal

and o-workers [22, 23, 27, 28, 25℄ for elasti bodies. Two speial sublasses of the above impliit

relation are the Classial Cauhy model, wherein the stress is assumed to be a funtion of the

strains σ = F(B), and the new lass B = H(σ). If the gradient of the displaement �eld is

2



assumed to be very small, from this last sublass of onstitutive equation we obtain ε = h(σ),
where it is observed that the linearized strain is a funtion of the stresses. Suh onstitutive

equations ould be used to study problems in frature mehanis of brittle bodies, and in the

modelling of onrete, gum metal and rok [11, 10, 17, 6℄. As mentioned in the introdution, in

the present ommuniation, as a �rst approximation we onsider rok to be an elasti and isotropi

medium desribed by the onstitutive equation ε = h(σ). We also assume the existene of a salar

funtion Π = Π(σ) suh that

ε = h(σ) =
∂Π

∂σ
. (3)

If we further assume that the funtion Π is isotropi, then Π = Π(σ1, σ2, σ3), where σp, p = 1, 2, 3
are the eigenvalues or prinipal stresses of σ. The funtion Π must satisfy the symmetry ondi-

tions Π(σ1, σ2, σ3) = Π(σ2, σ1, σ3) = Π(σ1, σ3, σ2). To ensure a reasonable behaviour, additional

restritions on Π are presented in [5℄ and in Setion 2.2.1 of [6℄. From (3) we have

ε =

3
∑

p=1

∂Π

∂σp

a
(p) ⊗ a

(p), (4)

where a
(p)

are the eigenvetors of σ.

The results presented in Setions 3-6 will be ompared against the results obtained for the

lassial linearized elasti model

ε =
(1 + ν)

E
σ −

ν

E
(trσ)I, (5)

where E and ν are the Young's modulus and the Poisson ratio, respetively.

As in [6℄ the main experimental information to be used in the present study is Figure 4 of

[15℄, where the axial deformation of a sample under ompression assuming lateral onstraint is

doumented

1

. One of the main onsiderations here is that the behaviour of rok is di�erent under

tension than ompression The following expression for Π is used in this work (see Eq. (16) in [6℄):

Π(σ1, σ2, σ3) = f1(σ1) + f1(σ2) + f1(σ3) + f2(σ1)(σ2 + σ3) + f2(σ2)(σ1 + σ3)

+f2(σ3)(σ1 + σ2) + f3

(

σ1 + σ2 + σ3

3

)

, (6)

where the funtions fi were proposed in Eq. 69 of [6℄ and are given by

f1(x) = α1 [d
c1x
1 − c1 ln(d1)x] , f2(x) = α2 (d

c2x
2 − 1) , f3(x) = 3α3 [d

c3x
3 − c3 ln(d3)x] , (7)

where αi, ci and di, i = 1, 2, 3 are onstants, whose values are presented in Table 1.

α1 [MPa℄ α2 α3 [MPa℄ c1
1

[MPa] c2
1

[MPa] c3
1

[MPa] d1 d2 d3

0.011 -0.0004 0.001 -0.08 -0.05 -0.08 0.1 0.2 0.1

Table 1: Constants for the funtions presented in (7).

Regarding the linearized model, the following values are used (see Eqs. 72-74 in [6℄):

E ≈ 2600MPa, ν ≈ 0.1038. (8)

In Figure 1 results are shown for the axial omponent of the strain for the ompression/tension

of a ylinder using (6), (7) and the linearized the linearized theory of elastiity

2

.

1

From Table 1 of [12℄ we also have some information onerning the behaviour of di�erent types of rok under

tension, where the main result is that most types of rok are less sti� under tension than ompression

2

See Figure 3 in [6℄ and Figure 4 of [15℄.
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Figure 1: Uniform ompression/tension of a ylinder. The blue line are results for the nonlinear

model (6). The the blak irles are experimental results taken from Figure 4 of [15℄. The dashed

magenta line indiates the results for the linearized model (6), (7).

2.3 Boundary value problem

For using (3) we need to �nd the displaement �eld u and the Cauhy stress tensor σ by solving

ρü = divσ + ρb, εεε =
1

2
(∇u+∇u

T) = hhh(σ), (9)

σn = t̂ x ∈ ∂κr(B)t, u = û, x ∈ ∂κr(B)u, (10)

where, n is the unit normal vetor to ∂κr(B)t, t̂ and û are the external tration, and the spe-

i�ation of the displaement �eld, respetively, and ∂κr(B) = ∂κr(B)t ∪ ∂κr(B)u and ∂κr(B)t ∩
∂κr(B)u = ∅.

In the present work we onsider only quasi-stati deformations, therefore ü = 0. Additionally,

to have (3) in a form suitable for a displaement-based �nite element solver, Eq. (3) is inverted

within the Newton-Raphson sheme (see [21℄ for more details on the numerial solution of (9)).

Finally, some plots are presented in a Supplementary Material, and the �gures that appear in

that �le are ited as Figure iSM, whih means Figure i in the Supplementary Material.

3 A ylinder under ompression

In this setion, a ylinder of irular ross setion under ompression is studied. We try to apture

the atual interation of the ylinder with the testing mahine in a more preise manner. This

is important beause most of the experimental data for rok is obtained for ompression tests

on ylinders, where due to the interation with the mahine a non-homogeneous distribution of

stresses and strains an appear inside the samples, whih may be a soure of errors when trying

to �nd onstitutive equations by �tting suh data

3

. For example, in the plots presented in Figure

1 it was assumed that the ylinder deforms uniformly (see Setion 3.1 in [6℄).

In Figure 2(a), a depition of one of the ases to be analyzed is shown, where after assuming

axial symmetry the ylinder is simpli�ed as a two-dimensional body. For that ase (see the

oordinate system in Figure 2(a)), we assume that the ylinder annot move in the axial and the

radial diretions on the surfae z = 0, 0 ≤ r ≤ ri. Considering that in some testing mahines it

is easier to ontrol the displaement being applied on the upper surfae z = L, 0 ≤ r ≤ ri, we
assume that for that surfae the axial displaement is known and given as uzo and that is uniform

in the radial diretion

4

.

3

See, for example, Figure 4.4 and Setion 4.3.3 in [2℄, and pages 223, 225, 232, 259 and Figures 19 and 28(B) in

[13℄.

4

In reality from the point of view of ausality an external tration is needed to ause uzo
.
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Figure 2: Axial-symmetri model of a ylinder under ompression. (a) The ylinder is �xed on the

surfae z = 0, assuming that on the surfae at z = L the axial displaement uzo is presribed. (b)

The ylinder under ompression assuming radial expansion and the appearane of shear stresses

due to frition with the testing mahine, and assuming that on the upper surfae the axial stress

σo is presribed. () The problem presented in (b) using its symmetry in the axial diretion.

In Figure 2(b), the seond problem to be studied for the ylinder is shematially depited,

where axial symmetry is used and a uniform axial load σz is applied on the surfae z = L,
0 < r < ri. On the surfaes z = 0, z = L, 0 < r < ri the ylinder an expand radially but is

subjeted to the frition with the testing mahine, whih produes a shear stress τ . For symmetry
reasons, the problem is set and studied as shown in Figure 2().

For the results presented in this setion it is assumed that L = 0.13m, ri = 0.025m. Also

in this setion, the notation σr and σz is used to denote the radial and axial omponents of the

stress that are in Pa, εrr and εzz are the radial and axial omponents of the strain tensor, and ur,

uz are the radial and axial omponents of the displaement �eld. The following non-dimensional

variables are used:

r̄ =
r

ri
, z̄ =

z

L
, ūz =

uz

L
. (11)

3.1 Cylinder �xed on its bottom surfae

Results are presented for the ylinder �xed on the surfae z = 0 (see Figure 2(a)). On the

surfae z = L it is assumed that the axial omponent of the displaement �eld uz is given. In

Figures 1-3SM results are presented for σz, σr and ur for the ase uz(r, L) = uzo = −3× 10−3m.

The nonlinear onstitutive equation (3) and the linearized equation (5) are used to ompare the

outomes. From Figure 1SM it is observed that the axial omponent of the stress σz is almost

onstant for the whole ylinder but a zone near the bottom surfae z = L. From Figure 2SM it

is observed that the magnitude for the radial omponent of the stress is small for a large part of

the ylinder (in omparison with the maximum values for that stress), with the exeption of a

zone near the bottom surfae, whih is something to be expeted due to the fat that the ylinder

is expanding radially but on that surfae it annot have radial and axial displaements. In both

ases, there are di�erenes in the distributions of stresses that result from the linearized (5) and

nonlinear models (3). In partiular, from Figure 2SM the stresses for the nonlinear ase are higher

(in magnitude) than the stresses obtained using the linear model. For the radial omponent of

the displaement ur, Figure 3SM shows, as expeted, that the radial omponent is positive, its

magnitude is larger near the outer surfae, and is lose to 0 near the axis r = 0. The distributions
for the two ases are di�erent. The magnitude is higher for the nonlinear model than for the

5



linear model, whih is expeted as in the nonlinear model the sti�ness in tension is lower than in

ompression (see Figure 1 in [12℄ and Figure 4 and page 553 in [20℄).
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Figure 3: Axial dimensionless displaement ūz versus axial stress σz (in Pa) at two points, (r, z) =
(0, 0) and (r, z) = (0, L), for a ylinder under ompression (see Figure 2(a)) using the nonlinear

model (3) and the linearized model (5).

In Figure 3, results are shown for the dimensionless axial omponent of the displaement �eld

ūz as a funtion of the axial stress σz for two points inside the ylinder (see Figure 2(a)), namely

(r, z) = (0, 0) (the enter of the ylinder on the lower part of it), and (r, z) = (0, L) (the enter of
the ylinder on the upper surfae).

From the results presented in Figure 3, there is a di�erene in the behaviour for the point

loated at the enter of the lower surfae (point (r, z) = (0, 0)) for the two models (3), (5). This

di�erene in behaviour is due to the fat that from Figure 1 it is observed that the ylinder is

sti�er in ompression than in tension when using (3).
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Figure 4: Comparison of the behaviour of εz and σz (in Pa) for the line r = 0, 0 ≤ z ≤ L, when
the non-linear model (Non-linear) (3) and the linearized model (Linear) (5) are used.

In Figure 4 results for εz and σz are shown for the line r = 0, 0 ≤ z ≤ L, where a omparison
between the nonlinear model (3) and the linearized model (5) is presented. In both ases it is

observed that the behaviour of both variables is non-homogeneous near the bottom surfae (near

z = 0), where the ylinder is attahed to the ground, and beome onstant far from that zone.

The magnitude of εz and σz is higher for the nonlinear model (3).

Finally, several plots were made for the di�erent omponents of ε and σ for the lines z = L/2,
0 ≤ r ≤ ri and z = L, 0 ≤ r ≤ ri. It was found that most of the omponents of the strain and

the stress tensors are almost onstant (in r) for suh lines, and there was not notieable di�erene

between the behaviour observed for the nonlinear model (3) and the linearized model (5). All suh
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Figure 5: Comparison of the behaviour of σr (in Pa) for the line z = L/2, 0 ≤ r ≤ ri, when the

non-linear model (Non-linear) (3) and the linearized model (Linear) (5) are used.

plots are not shown here. In Figure 5, a plot for σr for the line z = L/2, 0 ≤ r ≤ ri is presented.

Comments

The ompression/tension of a ylinder is one of the most important experiments used to determine

the mehanial properties of solid media. An essential assumption to use the results of suh

experiment is that the stresses and strains are approximately uniform inside the ylinder, with

the possible exeption of small regions near the upper and lower surfaes of the ylinders. For

rok, due to the harateristis of suh brittle material, the experiment is usually performed in

ompression, and the ylinder is ompressed between metal plates, whih imposes restritions on

the radial displaement of the ylinder on suh surfaes. As shown shematially in Figure 4.4(b)

in [2℄, if the frition between rok and metal is very high, or if the ylinder is glued to suh plates

(omplete radial onstraint on suh surfaes), a barreling is observed for the ylinders. Brady

and Brown (see Setion 4.3.3 in [2℄) propose that L/(2ri) ' 2 is neessary to have a good degree

of uniformity inside the ylinder for the stresses and strains. For L/ri = 13/5 > 2, and from

Figures 1-3SM, the distributions for σz , σr and ur indeed appear to be approximately onstant

with the exeption of a region about 20% of the length L near the lower surfae. But suh region

of non-uniformity is larger when using the nonlinear model (3) (see in partiular Figure 1SM).

In [13℄ there is also a detailed disussion on the e�et of the end onditions, and we an

ompare, at least qualitatively, the results presented in Figure 4 (right) and Figure 5 with the

distributions for the stresses in Figure 19 of [13℄ (realling that σx = σz). The results are indeed

similar, but for the nonlinear model (3) the magnitude of the stresses are larger, espeially near

z = 0 (the positions of the metal plates).

From Figure 4, we observe that εz and σz beome almost onstant in z̄ if z̄ ' 0.4. This is an
important observation to adequately measure the strains in a plae distant from that surfae of

the ylinder. Assuming a di�erent behaviour in tension than in ompression (see (3) and Figure

1) has a profound e�et on the behaviour of σr as an be seen in Figure 5. The radial omponent

of the stress inreases in almost 60% of the value predited by the linearized theory of elastiity

(5).

3.2 Cylinder with radial expansion and frition

In this setion results are presented for the problem depited in Figure 2(), where a ylinder

under ompression

5

is shown. On the upper and lower surfaes it is assumed that the ylinder

an expand radially, but there is frition (see Figure 4.4() in [2℄) that generates a shear stress on

5

Figure 2() is a simpli�ation of the original problem shown in Figure 2(b).
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suh surfaes. The shear stress is assumed to be proportional to the ompressive load σo

τ = µσo, (12)

where µ = 0.35 is the value used for the frition oe�ient between rok and metal.

In Figure 4SM, results for σz (in Pa) when the external load on the upper surfae of the

ylinder is

6 σo = −2 × 107Pa are presented. On the left the results were obtained using the

linearized onstitutive equation (5), and on the right the results were obtained using the nonlinear

model (3). From these results we observe that the behaviour of that omponent of the stress is

rather non-homogeneous for a large part of that quarter of the ylinder (see Figure 2()). The

distributions obtained with the linearized model di�er from those of the nonlinear model. In both

ases there are only ompressive stresses. For the linearized model it is observed that the zone

where σz is approximately onstant is slightly larger than in the nonlinear model.

In Figure 5SM, results for σr (in Pa) are shown when the external load is σo = −2×107Pa. On
the left the results were obtained using the linearized onstitutive equation (5), and on the right

the results were obtained using the nonlinear model (3). In ontrast to the results presented in

Figure 4SM , here for the zones where σr is non-homogeneous are smaller in both ases, espeially

for the linearized model (5). As it is expeted in this problem, the radial stress should be lose to

0 for most of the ylinder.

In Figures 6SM and 7SM results are shown for the axial and radial omponents of the dis-

plaement �eld u. For the axial displaement it is observed that there are no di�erenes between

the results using the linear and nonlinear onstitutive models. For the radial omponent of the

displaement, the onstitutive models (3) and (5) predit results that are di�erent.
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Figure 6: Axial dimensionless displaement ūz versus axial stress σz (in Pa) at point (r, z) =
(0, L/2) for a ylinder under ompression (see Figure 2()) using the nonlinear model (3) and the

linearized model (5).

Figure 6 presents the behaviour of the non-dimensional axial omponent of the displaement

�eld ūz as a funtion of the axial (ompressive) stress σz at the point (r, z) = (0, L/2), where
the results using the linearized model (5) and the new nonlinear onstitutive equation (3) are

ompared. It is observed that the behaviour of the ylinder is sti�er when using the nonlinear

model (3). This is beause in the experimental results presented in [15℄, whih were used to obtain

(7), a sample of rok under ompression tends to show some strain limiting behaviour

7

.

In Figure 7, results are shown for the radial omponent of the strain εr and the stress σr

for the line z = 0, 0 ≤ r ≤ ri. In both ases it is observed that when the linear onstitutive

model (5) is used, the results are almost onstant, and in partiular for the radial stress, they

are approximately zero inside the ylinder. This is not the ase when using the nonlinear model

(3), where in partiular the radial omponent of the stress an inrease signi�antly inside the

6

This was the maximum load that it was possible to apply without the radial strain εr beoming too large.

7

See, for example, page 191 in [3℄, Figure 10 in [32℄ and page 208 in [29℄
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Figure 7: Comparison between the behaviour of εr and σr (in Pa) for the line z = 0, 0 ≤ r ≤ ri (see
Figure 2()) when using the nonlinear model (Non-linear) (3) and the linearized model (Linear)

(5).

ylinder. It is neessary to reall that for this ylinder under axial ompression, in the radial

diretion there are positive radial strains, and the nonlinear onstitutive model was formulated

suh that the behaviour of a ylinder under tension is less sti�er than in ompression (see (3), (6)

and (7)), whih is the reason of the larger magnitude for εr in the nonlinear model.
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z = L/2, 0 ≤ r ≤ ri (see Figure 2()) when using the nonlinear model (Non-linear) (3) and the

linearized model (Linear) (5).

Finally, in Figure 8 results are presented for the line z = L/2, 0 ≤ r ≤ ri for the radial and
axial omponents of the strain and stress.
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Comments

The assumption that the upper and lower surfaes of the ylinder an expand radially, due to the

presene of a shear stress, aused by the frition with the metal plates, implies also a markedly

di�erent behaviour between the results obtained using the nonlinear model (3) and the linearized

onstitutive equation (5) (see in partiular Figures 6, 7 and 8). This is beause rok is less sti�er

in tension than in ompression. From the results presented in Setions 3.1 and 3.2, it is observed

that when more realisti boundary onditions are imposed for the ylinder under ompression, the

stresses and strains inside the body are non-homogeneous for both the nonlinear and linearized

models.

4 Biaxial ompression of a slab with a irular hole

An important problem in mining and geomehanis is the determination of stresses and strains

for a rok mass with a irular hole under uniform vertial and horizontal loads. The rok mass
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Figure 9: Slab with a entral irular hole under biaxial ompression.

is simpli�ed as a slab of length and high L that is in�nitely long in the diretion z (see Figure

9), so that plane strain ondition an be assumed. The hole of radius ri an be onsidered as a

simpli�ed representation of a tunnel rossing the rok mass.

The stresses σV represent the e�et of the weight above the slab, and the lateral uniform load

σH is used to model the lateral interation of the slab with the rest of the surroundings

8

. An

important assumption is that the distribution of stresses is uniform far from the hole.

On the left side of the slab it is assumed there is no displaement in the diretion x, whereas
on the surfae at the bottom of the slab it is assumed there is no vertial displaement in the

diretion y. The body load in the slab due to its own weight is not onsidered, i.e., b = 0 (see

(9)1). Finally, the surfae of the hole is free of external tration.

It is assumed that L = 100m and ri = 2.5m, then L ≫ ri. For σV and σH two ases are

studied: when σH = σV, and σH = 2σV.

8

Regarding σH, it is possible to use a linear distribution in y to onsider the e�et of the weight of the surround-

ings rok masses in a more preise manner, but for simpliity this is not used in this work.

10



The following dimensionless variables are de�ned:

x̄ =
x

L
, ȳ =

y

L
, σ̄11 =

σ11

σV
, σ̄22 =

σ22

σV
. (13)

For the results presented in Figures 10-14 it is assumed that σV = σH.

Figures 9SM and 10SM present results for the slab under bi-axial ompression with a hole

assuming that

9 σV = −2 × 107Pa. In Figure 9SM therein the behaviour in the slab di�ers

between the two onstitutive models. In partiular, the absolute magnitude of σ22 is higher when

using the nonlinear onstitutive model (3).
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Figure 10: Behaviour of ε11 for y = 0, 0 ≤ x ≤ L/2 when using the nonlinear model (Non-linear)

and the linearized model (Linear). (a) σV = −106Pa, (b) σV = −5 × 106Pa, () σV = −107Pa,
(d) σV = −1.5× 107Pa, (e) σV = −2× 107Pa.

In Figure 10 the behaviour of ε11(x) is presented for the line y = 0, 0 ≤ x ≤ L/2 (see Figure

9) for di�erent external loads σV. The results obtained using the linear onstitutive model (5) are

ompared with those of the nonlinear onstitutive model (3). From these results, we observe that

for higher values of σV there is a more notorious disagreement between the preditions of the two

models.

In Figure 11, the behaviour of ε22 is presented using the linear and nonlinear models for the

line y = 0, 0 ≤ x ≤ L/2 and di�erent external loads σV. In this ase, the magnitude of ε22 is

higher when the linear model (5) is used. It is observed that the maximum (in magnitude) for ε22
is not loated at the boundary of the hole.

Results for σ̄11 and σ̄22 for the line y = 0, 0 ≤ x ≤ L/2 are shown in Figures 12 and 13 for

di�erent external loads σV. Due to the tration-free ondition near the boundary of the hole, σ̄11

is zero for (x, y) = (ri, 0). Far from the hole, σ11 beomes uniform and is lose to σV (σ̄11 → 1).

9

This was the maximum external tration for whih the strains are small within the small strain assumption of

the model (3).
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Figure 11: Behaviour of ε22(x) for the line y = 0, 0 ≤ x ≤ L/2 using the nonlinear model

(Non-linear) and the linearized model (Linear). (a) σV = −106Pa, (b) σV = −5 × 106 Pa, ()
σV = −107Pa, (d) σV = −1.5× 107Pa, (e) σV = −2× 107 Pa.
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Figure 12: Behaviour of σ̄11 for the line y = 0, 0 ≤ x ≤ L/2 using the nonlinear model (Non-linear)
and the linearized model (Linear). (a) σV = −106Pa, (b) σV = −5 × 106Pa, () σV = −107Pa,
(d) σV = −1.5× 107Pa, (e) σV = −2× 107Pa.

Interesting results are observed for σ̄22. As it is expeted, far from the hole σ22 also tends to σV.

The maximum for σ̄22 does not our at the surfae of the hole, as it is predited by the linearized

theory of elastiity, but at a point near that surfae. A detailed view of the results presented in
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Figure 13: Behaviour of σ̄22 for the line y = 0, 0 ≤ x ≤ L/2 using the nonlinear model (Non-linear)
and the linearized model (Linear). (a) σV = −106Pa, (b) σV = −5 × 106Pa, () σV = −107Pa,
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Figure 13 is given in Figure 14. The disagreement between the linear and nonlinear models in the

predition of σ̄11 and σ̄22 is more notieable for larger external loads.
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Figure 14: Behaviour of σ̄22 for the line y = 0, 0 ≤ x ≤ L/2 using the nonlinear model (Non-linear)
and the linearized model (Linear). (a) σV = −106Pa, (b) σV = −5 × 106Pa, () σV = −107Pa,
(d) σV = −1.5× 107Pa, (e) σV = −2× 107Pa.

In Figures 15-17 results are shown for σH = −1.6× 107 Pa with σH = 2σV. Plots for ε11, ε22,
σ̄11 and σ̄22 as funtions of ȳ for the line x = 0, 0 ≤ y ≤ L/2 are presented in Figure 15. There are

signi�ant di�erenes between the behaviour of the two omponents of the stresses as predited

by the two onstitutive models. The maxima are not loated on the surfae of the hole. A detailed
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Figure 15: Behaviour of ε11, ε22, σ̄11 and σ̄22 for the line x = 0, 0 ≤ y ≤ L/2 for σH = −1.6×107Pa
with σH = 2σV using the nonlinear model (Non-linear) and the linearized model (Linear).

plot of σ̄11 and σ̄22 near the hole is given in Figure 17.
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with σH = 2σV using the nonlinear model (Non-linear) and the linearized model (Linear).

In Figure 16 results are presented for ε11, ε22, σ̄11 and σ̄22 for the line y = 0, 0 ≤ x ≤ L/2.
Details of the behaviour of σ̄11 and σ̄22 near the surfae of the hole are shown in Figure 17.
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Figure 17: Behaviour of σ̄11 and σ̄22 for the lines y = 0, 0 ≤ x ≤ L/2 and x = 0, 0 ≤ y ≤ L/2.
Details of the behaviour of the di�erent omponents of the stress near the hole (see Figures 15

and 16).

Finally, in Figure 17 results for σ̄11 and σ̄22 are shown for a zone very lose to the boundary

of the hole.

Comments

The results obtained for this problem that are depited, for example, in Figures 14 and 17, show

that when using the nonlinear onstitutive equation (3), the maximum stress (that is usually

assoiated with the failure of rok) does not appear on the surfae of the hole, but inside the slab

(see Figures 14 and 17 upper left). Additionally, for σ̄22 depited in Figure 14, for larger external

trations σV, the linearized theory of elastiity predits maximum stresses that are greater than

the maximum stresses obtained using the nonlinear model (3). The same happens for σ̄11 (see the

plot on the upper left in Figure 17).

Now, from the experimental point of view, and also from some theoretial and numerial works,

there is evidene supporting that damage in rok masses with holes ould start inside the rok, and

not on the surfaes of the holes

10

, as predited by the linearized theory of elastiity. Also, there is

evidene supporting the fat that the linearized onstitutive theory overestimates the magnitude

of some of the omponents of the stress, see, for example, Figure 4 in [3℄, [12℄, Setion 6.6 in [9℄,

Figure 9 in [8℄ and page 145 in [16℄.

10

See, for example, [18℄, page 190 and Setion 3.2 in [3℄, for a square hole see Figure 13(f) in [33℄. See as well

Setions 2.2.2, 2.2.3, 4.4.4, pages 176 and 352 in [29℄ and the referenes therein.
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5 Biaxial ompression of a slab with an elliptial hole

In this problem we have a slab similar to the one desribed in the previous setion. It deforms

under the in�uene of uniform vertial and horizontal loads σV, σH. There is an ellipti hole with

prinipal axes a, b. It is assumed that b ≫ a, i.e., the elliptial hole is an approximation of a

rak, and it is assumed that the prinipal axis b is horizontal and aligned with the oordinate x
(see Figure 5). We assume plane strains, σH = 2σV and L = 100m, b = 10m and

b
a
= 40.
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Figure 18: Square slab with a entral elliptial hole under biaxial ompression. Plane strain

ondition is assumed. The main axis of the hole is aligned with the oordinate system.

In Figures 10SM-14SM results are presented for the omponents σ11, σ22 and σ12 of the stress

tensor, and the prinipal stresses σ1 and σ2 when
11 σH = −6×105Pa using the linear onstitutive

model (5) and the nonlinear onstitutive equation (3). The results are presented only for a small

region around the point x = b/2, y = 0, whih is the tip of the ellipti hole. From the results we

observe that the magnitudes of the stresses predited by the nonlinear onstitutive model (3) are

higher than those predited by the linearized model (5).

In Figures 13SM and 14SM results are presented for the prinipal stresses σ1 and σ2 when

σH = −6× 105Pa. The results shown in Figure 13SM are partiularly interesting. It is observed

that for the nonlinear model, the magnitude of σ1 when σ1 > 0 (whih appears near the boundary

of the hole) is greater than the one obtained using the linearized model. Finally, in Figure 14SM

in the Supplementary Material results are presented for σ2 as predited by the nonlinear model (3)

and the linearized equation (5). In both ases the stress is negative, but its magnitude is higher

when using the nonlinear model.

In Figures 19-22 results are shown for ε11, ε22, and the dimensionless stresses σ̄11, σ̄22, for

di�erent external tration σH. The plots are presented for the line y = 0, b/2 ≤ x very lose to

the boundary of the hole. In Figures 19 and 20 it is notied slight di�erenes for the behaviour of

ε11. For ε22 it is observed that the magnitude of the strains are smaller when using the nonlinear

model. For σ̄11, Figure 21 reveals a greater di�erene between the preditions of the linear and

nonlinear models for higher values of σH. The same ours for σ̄22 (see Figure 22). The maximum

for σ̄22 is observed in 22 36() and it appears inside the slab.

11

This external tration was the maximum load that it was possible to apply without having problems with the

onvergene of the numerial solution.

16



0.05 0.0502 0.0504
−1.5

−1

−0.5

0

0.5

1
x 10

−3

 

 

0.05 0.0502 0.0504
−1.5

−1

−0.5

0

0.5

1
x 10

−3

 

 

0.05 0.0502 0.0504
−1.5

−1

−0.5

0

0.5

1
x 10

−3

 

 

PSfrag replaements

x̄x̄x̄

ε 1
1

ε 1
1

ε 1
1

Non-linear

Non-linear

Non-linear

Linear

Linear

Linear

(a) (b) ()

Figure 19: Behaviour of ε11 for the line y = 0 using nonlinear model (Non-linear) and the linearized
model (Linear). (a) σH = −2× 105Pa, (b) σH = −4× 105Pa, () σH = −6× 105Pa.
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Figure 20: Behaviour of ε22 for the line y = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) σH = −2× 105Pa, (b) σH = −4× 105 Pa, () σH = −6× 105Pa.
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Figure 21: Behaviour of σ̄11 for the line y = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) σH = −2× 105Pa, (b) σH = −4× 105 Pa, () σH = −6× 105Pa.
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Figure 22: Behaviour of σ̄22 for the line y = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) σH = −2× 105Pa, (b) σH = −4× 105 Pa, () σH = −6× 105Pa.
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Additional results were obtained for the same omponents of the strain and dimensionless

stresses for the line x = 0, a/2 ≤ y ≤ L/2. From those results, it was possible to see almost an

agreement between the preditions of the two onstitutive models. This is not surprising as the

stress onentration is low x = 0, y = a/2 and therefore it is not expeted to be otherwise. For

the sake of brevity suh results are not shown here.

Comments

The geometries studied in this and in the next setion are approximations of raks in rok

masses under biaxial ompression. The main goal is to ompare the preditions of the nonlinear

onstitutive equation (3) and the linear model (5), espeially regarding the maximum stresses and

where they appear. From Figures 10SM-12SM we an see that the maximum magnitude for the

stresses are larger (in magnitude) when using the nonlinear onstitutive equation.

Partiularly interesting are the results depited in Figure 13SM, where the magnitude of the

�rst prinipal stress an be very large in omparison with the results using the linearized model,

for the region where σ1 > 0. It is neessary to reall that rok is a material that annot support

large positive stresses (tension) in ontrast with ompression (see, for example, Setion 1.2.3 in

[2℄). That the nonlinear onstitutive equation (3) predits suh higher positive values for that

prinipal stress is a fator, whih should be studied in a deeper manner from the experimental

point of view.

From Figure 21 and 22 it is observed in a more preise manner that the nonlinear model

predits larger (in magnitude) values for the normal stress. Interestingly, in Figure 22() suh

maximum happens not on the surfae of the elliptial hole, but slightly inside it. This implies that

if σ̄22 would be used to predit the rupture of the rok mass, that rupture would happen inside

the body, whih is something similar to what is observed for the problem studied in Setion 4.

For the ase of the slab with an inlined elliptial hole (see Figure 15SM) results are obtained

for σ11, σ22, σ12, σ1 and σ2 for σH = −105Pa. The preditions with the two models are almost

in agreement, and thus these results are not presented here

12

. In Figures 16SM and 17SM results

are shown for σ12 and the prinipal stress σ1, for a small area near the tip of the ellipti hole.

Some di�erenes are found between the preditions of the linear and nonlinear models. For σ12

its predited magnitude is higher when the nonlinear model is used. The results for σ1, whih

are depited in Figure 17SM, are more interesting. In ontrast to the preditions of the nonlinear

model, the linear model predits that σ1 is always negative. In Figure 17SM (on the right), there is

a narrow region near the boundary of the hole where σ1 is positive. The presene of suh positive

stresses ould have an important impat on the modelling of failure near the tips of raks sine, in

general, rok annot support higher tensile stresses (see the omments at the end of the previous

setion). Considering the geometry of the problem depited in Figure 15SM, in this setion no

additional plots are presented.

6 Slab with an elliptial hole subjeted to shear

In this setion, the behaviour of a slab with an ellipti hole subjeted to a uniform shear stress τo
on its upper surfae (see Fig. 23) is studied. The lower surfae of the slab annot displae. The

geometry of the slab and the ellipti hole is the same as de�ned in Setion 5. The hole an be

seen as an approximation of a rak under the e�et of a distant uniform shear stress. The body

shown in Figure 23 is also very long in the diretion z so that plane strain ondition is assumed.

The following dimensionless stresses are de�ned:

σ̄11 =
σ11

τo
, σ̄22 =

σ22

τo
. (14)

12

In those three ases, it was observed that the magnitude of the predited stresses when using the nonlinear

model was slightly higher than the preditions of the linear model.
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Figure 23: Slab with a entral elliptial hole under shear.

In Figures 18SM-22SM results are presented for σ11, σ22, σ12 and the prinipal stresses σ1, σ2

when

13 τo = 1.8 × 105Pa, where the preditions using the linear and the nonlinear onstitutive

models, (5) and (3), respetively, are ompared. For σ11 and σ22 their maximum magnitude

an be signi�antly large in the zone they are negative. The preditions of the nonlinear model

indiate that the absolute magnitude of the stresses is higher than the orresponding values that

are obtained when the linear onstitutive model is used. For σ12 the di�erene in behaviour is

more notorious. For example, from the preditions of the nonlinear model in Figure 20SM, the

maximum positive stress is more than four times greater than the value that is obtained when

the linear model is used. For the negative values of the stress, the predited value when using the

nonlinear model is σ12max
= −1.0132× 105Pa, whereas σ12max

= −246Pa when using the linear

model.

Figures 21SM and 22SM present the results for the two prinipal stresses. For σ1 a notorious

di�erene between the preditions of the two models is observed when σ1 is negative. Figure 21SM

shows that the results for σ1 that are obtained using the nonlinear model are approximately four

times greater (in magnitude) than the preditions of the linear model. Something similar happens

with σ2 as observed in Figure 22SM.

In Figures 24-29 results are shown for ε11, ε22, ε12, σ̄11, σ̄22 and σ̄12, for the line y = 0,
b/2 ≤ x near the tip of the ellipti hole. Di�erent values for the external load τo are used.

The results for the strain tensor are depited in Figures 24-26. An important di�erene in the

behaviour is observed when omparing the preditions of the nonlinear and the linearized models.

In partiular, for ε12 the nonlinear model predits lower magnitudes than the linearized model, as

shown in Figure 26.

In Figure 27, results for σ̄11 are presented. The absolute magnitude of σ̄11 that is predited by

the nonlinear model is greater than the predition of the linearized model. Regarding σ̄22 Figure

28 shows that the maximum values (in magnitude) are all loated on the boundary of the hole (at

x = b/2, y = 0). Similar to the results for σ̄11, the magnitude of σ̄22 is greater when the nonlinear

model is used. Finally, for σ̄12, as in the previous ases, the magnitude of the stresses is greater

when using the nonlinear model (see Figure 29).

In Figures 30 and 31 results are shown for ε12 and σ̄12 for the line x = 0, a/2 ≤ y ≤ L/2

13

As in the problems presented in the previous setions, this spei� value for τo was the maximum stress suh

that there is onvergene for the numeris.
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Figure 24: Behaviour of ε11 for the line y = 0 using the nonlinear model (Non-linear) and the
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τo = 1.7× 105 Pa, () τo = 1.8× 105Pa.
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Figure 25: Behaviour of ε22 for the line y = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) τo = 1.4 × 105 Pa, (b) τo = 1.5× 105Pa, () τo = 1.6× 105Pa, ()
τo = 1.7× 105 Pa, () τo = 1.8× 105Pa.

and external loads τo. In both ases a notieable di�erene appears when omparing the results

predited by the nonlinear and the linearized onstitutive models.
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Figure 27: Behaviour of σ̄11 for the line y = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) τo = 1.4× 105Pa, (b) τo = 1.5× 105Pa, () τo = 1.6× 105Pa, (d)
τo = 1.7× 105 Pa, (e) τo = 1.8× 105Pa.

Comments

The magnitude of the omponents of the stresses σ11, σ22 and σ12 are greater when using the

nonlinear model. Unlike the results obtained in the problems studied in the previous setion,
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Figure 28: Behaviour of σ̄22 for the line y = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) τo = 1.4× 105Pa, (b) τo = 1.5× 105Pa, () τo = 1.6× 105Pa, (d)
τo = 1.7× 105 Pa, (e) τo = 1.8× 105Pa.
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Figure 29: Behaviour of σ̄12 for the line y = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) τo = 1.4× 105Pa, (b) τo = 1.5× 105Pa, () τo = 1.6× 105Pa, (d)
τo = 1.7× 105 Pa, (e) τo = 1.8× 105Pa.

here the maximum value for σ22 does not appear inside the slab, but on the boundary of the

elliptial hole. It is not known whether a maximum value for that omponent of the stress would

be obtained inside the slab if a larger τo were applied. On the other hand, it is interesting to

notie that for the upper surfae of the elliptial hole, for the line x = 0, the shear stress σ12 is

smaller when using the nonlinear model.
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ȳȳ

ȳȳȳ
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Figure 30: Behaviour of ε12 for the line x = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) τo = 1.4× 105Pa, (b) τo = 1.5× 105Pa, () τo = 1.6× 105Pa, (d)
τo = 1.7× 105 Pa, (e) τo = 1.8× 105Pa.
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Figure 31: Behaviour of σ̄12 for the line x = 0 using the nonlinear model (Non-linear) and the

linearized model (Linear). (a) τo = 1.4× 105Pa, (b) τo = 1.5× 105Pa, () τo = 1.6× 105Pa, (d)
τo = 1.7× 105 Pa, (e) τo = 1.8× 105Pa.

7 Final remarks

Rok is a material that an show a omplex mehanial behaviour, suh as dissimilar behaviour

when omparing uniaxial ompression and uniaxial tension. It an also exhibit a nonlinear be-

haviour, presenting a sti�ness that inreases with the appliation of an external ompressive load.

It is argued that the aforementioned phenomena is related to the losure of raks and pores
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inside, whih are present in most types of rok. The same raks and pores an make rok less

sti� in tension, whih is the reason most types of rok present a lower Young's modulus in tension

than in ompression [12℄. The relatively new onstitutive theories developed by Rajagopal and

o-workers [22, 23, 27, 25, 24, 28, 6℄ have great potentials to be used in this lass of material.

The purpose of this artile was to assess the preditions of the new onstitutive equation proposed

in [6℄ and benhmark these preditions with those of the linearized model. Some of the results

obtained agree qualitatively with some experimental evidene, but more work is neessary to as-

ertain the appropriateness of this new kind of onstitutive equation for these problems. Also, the

interpretation of many experiments, suh as the bending of a beam, or the Brazilian test, depends

on the onstitutive model used [8℄. These experiments should be studied in the light of this new

onstitutive model. We plan to over them as part of future work.
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1 A ylinder under ompression

1.1 Cylinder �xed on its bottom surfae

Figure 1: Cylinder �xed on its bottom surfae under ompression. Results for σz . On the left the

linearized model is used, and on the right the nonlinear model is used.

∗
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Figure 2: Cylinder �xed on its bottom surfae under ompression. Results for σr. On the left the

linearized model is used, and on the right the nonlinear model is used.

Figure 3: Cylinder �xed on its bottom surfae under ompression. Results for ur. On the left the

linearized model is used, and on the right the nonlinear model is used.
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1.2 Cylinder with radial expansion and frition

Figure 4: Behaviour of the axial omponent of the stress σz (in Pa) for the ase of the ylinder

with radial expansion and frition, when the external load σo = −2 × 10
7
Pa is applied on the

surfae z = L/2. On the left the results are for the linearized model, and on the right for the

nonlinear model.

Figure 5: Behaviour of radial omponent of the stress σr (in Pa) for the ase of the ylinder with

radial expansion and frition, when the external load σo = −2 × 10
7
Pa is applied on the surfae

z = L/2. On the left the results orrespond to the linearized model, and on the right orrespond

to the nonlinear model.
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Figure 6: Behaviour of the axial omponent of the displaement �eld uz (in m) for the ase of the

ylinder with radial expansion and frition, when the external load σo = −2 × 10
7
Pa is applied

on the surfae z = L/2. On the left the results orrespond to the linearized model, and on the

right orrespond to the nonlinear model.

Figure 7: Behaviour of the radial omponent of the displaement �eld ur (in m) for the ase of the

ylinder with radial expansion and frition, when the external load σo = −2 × 10
7
Pa is applied

on the surfae z = L/2. On the left the results orrespond to the linearized model, and on the

right orrespond to the nonlinear model.
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2 Biaxial ompression of a slab with a irular hole

Figure 8: Biaxial ompression of a slab with a irular hole. Comparison of the predited σ22

using the linearized onstitutive equation (on the left) and the nonlinear model (on the right).

σV = σH.

Figure 9: Biaxial ompression of a slab with a irular hole. Comparison of the predited σ22

near the hole using the linearized onstitutive model (on the left), and the nonlinear onstitutive

model (on the right). σV = σH.
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3 Biaxial ompression of a slab with an elliptial hole

Figure 10: Biaxial ompression of a slab with an elliptial hole. Results for σ11 when σH =

−6 × 10
5
Pa using the linearized model (plot on the left) and the nonlinear model (plot on the

right).

Figure 11: Biaxial ompression of a slab with an elliptial hole. Results for σ22 when σH =

−6× 10
5
Pa using the linearized model (on the left), and the nonlinear model (on the right).

Figure 12: Biaxial ompression of a slab with an elliptial hole. Results for σ12 when σH =

−6× 10
5
Pa using the linearized model (on the left), and the nonlinear model (on the right).
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Figure 13: Biaxial ompression of a slab with an elliptial hole. Results for σ1 when σH =

−6× 10
5
Pa using the linearized model (on the left), and the nonlinear model (on the right).

Figure 14: Biaxial ompression of a slab with an elliptial hole. Results for σ2 when σH =

−6× 10
5
Pa using the linearized model (on the left), and the nonlinear model (on the right).
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3.1 Slab with inlined elliptial hole

In this setion, we study the behaviour of a slab with an ellipti hole whose main axis is rotated

in θ = 45
◦

with respet to the oordinate x. The slab is depited in Figure 15.
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Figure 15: Square slab with a entral elliptial hole under biaxial ompression. In the plot θ = 45
◦

.

Figure 16: Slab with inlined elliptial hole. Results for σ12 when σH = −10
5
Pa using the

linearized model (on the left), and the nonlinear model (on the right).
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Figure 17: Slab with inlined elliptial hole. Results for σ1 when σH = − × 10
5
Pa using the

linearized model (on the left), and the nonlinear model (on the right).
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4 Slab with an elliptial hole subjeted to shear

Figure 18: Slab with an elliptial hole subjeted to shear. Results for σ11 when τo = 1.8× 10
5
Pa

using the linearized model (on the left), and the nonlinear model (on the right).

Figure 19: Slab with an elliptial hole subjeted to shear. Results for σ22 when τo = 1.8× 10
5
Pa

using the linearized model (on the left), and the nonlinear model (on the right).
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Figure 20: Slab with an elliptial hole subjeted to shear. Results for σ12 when τo = 1.8× 10
5
Pa

using the linearized model (on the left), and the nonlinear model (on the right).

Figure 21: Slab with an elliptial hole subjeted to shear. Results for σ1 when τo = 1.8× 10
5
Pa

using the linearized model (on the left), and the nonlinear model (on the right).
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Figure 22: Slab with an elliptial hole subjeted to shear. Results for σ2 when τo = 1.8× 10
5
Pa

using the linearized model (on the left), and the nonlinear model (on the right).
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