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Abstract

Recently, a very general and novel class of implicit bodies has been developed

to describe the elastic response of solids. It contains as a special subclass the

classical Cauchy and Green elastic bodies. Within the class of such bodies,

one can obtain through a rigorous approximation, constitutive relations for

the linearized strain as a nonlinear function of the stress. Such an approxima-

tion is not possible within classical theories of Cauchy and Green elasticity,

where the process of linearization will only lead to the classical linearized

elastic body.

In this paper, we study numerically the states of stress and strain in a

finite rectangular plate with an elliptic hole and a stepped flat tension bar

with shoulder fillets, within the context of the new class of models for elastic

bodies that guarantees that the linearized strain would stay bounded and

limited below a value that can be fixed a priori, thereby guaranteeing the

validity of the use of the model. This is in contrast to the classical linearized
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elastic model, wherein the strains can become large enough in the body

leading to an obvious inconsistency.

Keywords: implicit elasticity, nonlinear finite elements, small strain,

unbounded stress

1. Introduction

Recently, a new class of implicit constitutive relations was introduced to

describe the response of elastic bodies (see Rajagopal (2003, 2007, 2011b),

Rajagopal and Srinivasa (2007, 2009), and Bustamante (2009)). This new

class includes the explicit theories of Cauchy elasticity and Green elasticity

as special subclasses. The advantages that such models provide over the clas-

sical models are detailed in several papers (Rajagopal, 2011b,a; Bustamante

and Rajagopal, 2010) and hence we shall not repeat them here. Suffice it is

to say that very important problems such as the problem of fracture, which

has defied a proper consistent explanation without resorting to ad hoc pro-

cedures (see Rajagopal and Walton (2011), Kulvait et al. (2013), Ortiz et al.

(2012), and Buĺıc̆ek et al. (2013) with regard to how the problem is dealt

within the context of the new class of models) and the modeling of certain

phenomena exhibited by soft material that has hitherto defied explanation

within the context of classical models (see the discussion in Freed and Ein-

stein (2013a,b); Freed et al. (2013)) are some examples of the potential of

the new class of implicit constitutive relations. The class of implicit models

has also been extended to develop models to describe the electroelastic re-

sponse of bodies and it has been able to describe phenomena that have thus

far been impossible to explain within the context of classical electroelastic
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theories (see Bustamante and Rajagopal (2013b,a)).

Another special subclass of the implicit models for elasticity introduced

by Rajagopal (2003) is explicit models for the stretch in terms of the stress

(see Rajagopal (2007, 2011b)) and its linearization that leads to an explicit

nonlinear expression for the linearized strain in terms of the stress. The

latter class of models is impossible within the context of classical theories

of elasticity and this paper is concerned with a study of such models (see

the model defined through (15)). When one is concerned with constitutive

relations for the Cauchy-Green stretch or the linearized strain in terms of

the stress, one does not have the luxury of substituting the expression for

the stress in terms of the displacement gradient into the balance of linear

momentum and obtaining a partial differential equation for the displacement

field. Instead, the constitutive relation, the balance of linear momentum, and

whatever other balance laws are relevant, need to be solved simultaneously;

hence the stress and displacement fields are both unknowns that need to be

solved for. This system of coupled nonlinear partial differential equations is

far more daunting than the much simplified system that is obtained when

an explicit expression for the stress in terms of the displacement gradient

can be substituted into the balance of linear momentum. In this study, we

are concerned with an explicit expression for the linearized strain in terms

of the stress and hence concerned with the more complex system of coupled

partial differential equations. Though the system is complicated in that the

number of equations to be solved is larger, the order of the equations within

the purview of the new framework is a system of lower order equations and

thus from the point of view of numerical analysis provides some advantages.
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Most of the studies until recently have been concerned with special bound-

ary value problems, in infinite domains, wherein semi-inverse assumptions are

made to reduce the problem to the study of much simplified governing equa-

tions, which in most instances is a system of ordinary differential equations.

In this paper, we shall study problems in finite domains and as it is unlikely

that we can simplify the problem to obtain simpler ordinary differential equa-

tions, we shall have to study the problem numerically. We will study two

problems, that of the stress concentration due to the presence of an elliptic

hole and that of the stress concentration in a stepped flat tension bar with

shoulder fillets, within the context of the new class of models. The first of

the two problems has relevance to the problem of stress concentration due to

a crack as such a situation can be achieved by taking the limit of the ratio

of the minor axis to the major axis of the elliptic hole to tend to zero.

The organization of the paper is as follows. In Section 2, we introduce

the basic kinematics, document the general implicit constitutive relation be-

tween the stress and the stretch for isotropic bodies, and derive a special

constitutive relation for the linearized strain in terms of the stress under the

assumption that the displacement gradient is small. We then record some

special constitutive expressions for the linearized strain in terms of the stress

and develop the system of governing equations that need to be solved. In

Section 3, the necessary weak and linearized weak forms are presented and

the linearized weak form is discretized using the finite element method. The

computational method and algorithms are discussed in Section 4. Finally,

Section 5 is devoted to a discussion of the numerical results. In the case of

the problem of a plate with an elliptic hole subjected to tension with the
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applied tension being perpendicular to the major axis, we find (as is to be

expected) that the strains are maximum at the vertices along the major axis;

however they remain bounded below the value for which the linearization is

valid even as the stress increases. In the case of the stepped flat tension bar

with shoulder fillets, the strain is maximum at the shoulder but once again

remains below the value that guarantees the validity of the linearization.

Unlike the classical linearized model which leads to ever increasing strains

that make the model that is being used invalid, the current study is a con-

sistent approach that guarantees that the model that is being used is appli-

cable throughout the domain of application of the model. This fact cannot

be overemphasized.

2. Basic Equations

2.1. Kinematics

Let X ∈ B denote a point in an abstract body B and X = κ(X) the

position of X in the reference configuration κr(B); we assume there exists

a one-to-one function χ referred to as the motion of the body such that

x = χ(X, t), where x is the position of X in the current configuration κt(B)
at time t.

The deformation gradient F and the right and the left Cauchy-Green

strain tensors, C and B, are defined as

F =
∂x

∂X
, C = FTF, B = FFT, (1)

respectively. The displacement field u is defined through

u = x−X. (2)
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Finally, the Green-St. Venant strain (E) and the linearized strain (ε) are

defined through

E =
1

2
(FTF− I), ε =

1

2
[∇u+ (∇u)T]. (3)

In this work, we consider the case ‖∇u‖∼ O(δ) with δ ≪ 1 and thus the

relevant strain measure is the linearized strain. Hence, the current and the

reference configuration are coincident.

2.2. Equilibrium equation and constitutive relations

In this paper, we study quasi-static problems in the absence of body

forces. The equilibrium equation in terms of the Cauchy stress tensor σ is

divσ = 0. (4)

For elastic bodies, Rajagopal (2003, 2007) proposed an implicit constitu-

tive relation of the form

f (B,σ, ρ) = 0, (5)

where ρ is the density of the body. For isotropic bodies, (5) becomes

α0I+ α1B+ α2B
2 + α3σ + α4σ

2 + α5(Bσ + σB) + α6(Bσ2 + σ2B)

+α7(B
2σ + σB2) + α8(B

2σ2 + σ2B2) = 0, (6)

where αi (i = 0, 1, 2 · · · , 8) are scalar functions that depend on the invariants

trB, trB2, trB3, trσ, trσ2, trσ3, tr(Bσ), tr(B2σ), tr(σ2B), tr(B2σ2),

and the density ρ. For ‖∇u‖∼ O(δ) with δ ≪ 1,

B ≈ I+ 2ε. (7)
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On the other hand, using a Taylor expansion in Cartesian coordinates around

ε = 0 and assuming that αi (i = 0, 1, 2, · · · , 8) does not depend explicitly on

ρ, the following approximation holds:

αi(σ,B) ≈ αi(σ, I+ 2ε) ≈ αi(σ) +
∂αi

∂εkl

∣

∣

∣

∣

(σ,ε=0)

ε (i = 0, 1, · · · , 8). (8)

On substituting (7) and (8) into (6), the following implicit relation is obtained

for terms up to order δ:

ℵ0I+ ℵ1ε+ ℵ2σ + ℵ3σ2 + ℵ4εσ + ℵ5σε+ ℵ6εσ2 + ℵ7σ2ε

+(i0klεkl)I+ (i1klεkl)σ + (i2klεkl)σ
2 = 0, (9)

where ℵm = ℵm(σ) (m = 0, 1, · · · , 7) and inkl
= inkl

(σ) (n = 0, 1, 2)

are (in general) nonlinear scalar and tensor functions of the Cauchy stress

tensor σ. Under certain conditions, (9) can be solved for ε. A simple

method to find such conditions is the following. On defining the vector

ǫ = (ε11, ε22, ε33, 2ε12, 2ε13, 2ε23)
T , (9) can be written as the vector equation

Mǫ = d, (10)

where the matrix M = M6×6 and the vector d = d6×1 depend (in general

nonlinearly) on σ. For brevity, the explicit form of M is not shown here. If

detM 6= 0, then ǫ = M
−1
d can be computed. For isotropic bodies, (5) can

be used to obtain the nonlinear relation (Bustamante and Rajagopal, 2010;

Bustamante, 2009)

ε = g(σ). (11)

For an isotropic body that is described by the classical linearized constitutive

relation, the function g(σ) is

g(σ) =
1

E
σ − ν

E
(trσ)I, (12)
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where E and ν are the Young modulus and the Poisson ratio, respectively.

In bodies defined by implicit constitutive relations, the Helmholtz po-

tential can depend on both the stress and the strain (see Rajagopal (2003),

Freed and Einstein (2013a)). When the explicit relation for the stretch B

in terms of the stress is considered, a potential akin to the complementary

potential in classical linearized elasticity theory is obtained. In this work,

we consider such a scalar function (Bustamante, 2009) W = W (σ) such that

g(σ) = ∂W/∂σ. For isotropic bodies, W is a function of the invariants

I1 = trσ, I2 =
1

2
tr(σ2), I3 =

1

3
tr(σ3). (13)

In Bustamante and Rajagopal (2011) and Ortiz et al. (2012), the following

choice was made for the stored energy:

W (I1, I2) = −α
[

I1 −
1

β
ln(1 + βI1)

]

+
αγ

ι

√

1 + 2ιI2, (14)

where α, β, γ and ι are material constant parameters. On substituting (14)

into (11) leads to

ε = −α
[

1− 1

(1 + βI1)

]

I+
αγ√

1 + 2ιI2
σ. (15)

The main feature of W in (14) is that a strain limiting behavior is exhib-

ited for appropriate values of the material constant parameters α, β, γ and ι.

As pointed out by Ortiz et al. (2012), these parameters should be obtained

from experimental data for materials that exhibit strain limiting behavior

and the data corroborated against experiments. In our current work, the

material parameters are selected arbitrarily with a view towards determin-

ing the versatility or usefulness of these new constitutive relations for elastic

bodies.
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2.3. Uniaxial tension

Results for a uniaxial tension of a bar are provided to demonstrate the

response of an elastic body that is described by the constitutive relation (15).

For uniform tension σ applied to the bar, the longitudinal strain is ε =

α[−1 + 1/(1 + βσ) + γσ/
√
1 + ισ2]. The following material parameters are

chosen:

α = 10−9, β = 10−3 1

Pa
, γ = 10

1

Pa
, ι = 10−11 1

Pa2
.

The elastic response of the bar is depicted in Fig. 1.
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Fig. 1: Elastic response of a bar under uniaxial tension. The stresses are in Pa.

In the uniaxial tension problem, the parameter ι was observed to have

the most significant influence with regard to the response of the elastic body.
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2.4. Boundary value problem

Consider an elastic body B defined by an open bounded domain κt(B) ⊂
R3 with boundary ∂κt(B) such that ∂κt(Bu)∪ ∂κt(Bt) = ∂κt(B) and ∂κt(Bu)∩
∂κt(Bt) = ∅. The position of a point x ∈ B is x ∈ κt(B). A displacement

field u is sought such that

divσ = 0, (16a)

where σ has to be found from

ε =
∂W

∂σ
, where ε =

1

2
[∇u+ (∇u)T]. (16b)

In (16b), ∂W/∂σ is in general a nonlinear function of σ. The boundary

conditions are

u = û on ∂κt(Bu), σn = t̂ on ∂κt(Bt), (16c)

where û is an imposed displacement field and t̂ is a prescribed traction.

The foregoing boundary value problem possess exact solutions only for

some simple cases (e.g., Bustamante and Rajagopal (2011, 2012); Rajagopal

(2011b); Rajagopal and Walton (2011)), and presents challenges for the nu-

merical analyst not only because (11) is in general a nonlinear function, but

also because the stress σ has to be calculated by inversion of (11), if the func-

tion is invertible. In general, the study of implicit equations of the form (6)

is much more daunting as the balance of mass and linear momentum need

to be solved simultaneously with the constitutive equation. In this case, we

have to consider as many as ten coupled nonlinear partial differential equa-

tions. An additional issue that needs to be taken into account is that g (or

W ) should be such that ‖ε‖∼ O(δ), δ ≪ 1 (indeed, ‖∇u‖∼ O(δ), δ ≪ 1).
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3. Finite element method

The solution of the boundary value problem (16) by the finite element

method requires a weak form. To this end, we use the principle of virtual

work. The following notations are introduced for readability of the weak

form:

κt(B) = Ω, ∂κt(B) = Γ, ∂κt(Bu) = Γu, and ∂κt(Bt) = Γt.

3.1. Weak form

Consider trial functions ui(x) ∈ U ⊂ H1(Ω) and test functions δui(x) ∈
V ≡ H1

0(Ω) (i = 1, 2, 3), where H1(Ω) is the Sobolev space of functions with

square-integrable first derivatives in Ω, and H1
0(Ω) is the Sobolev space of

functions with square-integrable first derivatives in Ω and vanishing values on

the essential boundary Γu. The weak form (principle virtual work) associated

with (16) reads (see for instance Zienkiewicz and Taylor (2000)):

Find ui ∈ U such that
∫

Ω

δεijσij dΩ −
∫

Γt

δuit̂i dΓ = 0 ∀ δui ∈ V , (17)

where σij is obtained by inversion of the nonlinear implicit relation (11).

3.2. Linearized weak form

Due to the implicit relationship between the strain and the Cauchy stress

tensors the weak form becomes nonlinear. The linearization of the weak form

can be constructed by approximating the stress field as a two-term Taylor

series expansion, σ(k) ≈ σ(k−1) + ∂σ
∂ε

∣

∣

(k−1)
∆ε(k), which yields

∫

Ω

δεij
∂σij

∂εkl

∣

∣

∣

∣

(k−1)

∆ε
(k)
kl dΩ =

∫

Γt

δuit̂i dΓ −
∫

Ω

δεijσ
(k−1)
ij dΩ, (18)
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where∆ε(k) is the strain increment associated with an increment in u, namely

∆u, from the step k−1 to the step k. Note that in (18), ∂σ/∂ε is the elasticity

tensor and is implicitly computed as

Cijkl =
∂σij

∂εkl
where

∂σ

∂ε
=

(

∂g

∂σ

)

−1

. (19)

The equality in (19) was obtained by deriving ε = g(σ) with respect to ε

and assuming invertibility of the fourth order tensor ∂g/∂σ. On using (19)

along with (15) leads to the following elasticity tensor:

(

C−1
)

ijkl
=

−αβ
(1 + βI1)

δijδkl −
αγι

(1 + 2ιI2)3/2
σijσkl

+
αγ

2
√
1 + 2ιI2

(δikδjl + δjkδil). (20)

3.3. Discrete Linearized Weak Form

Let the arbitrary test (δu
(e)
h ) element function and the trial (∆u

(e)
h ) ele-

ment function be

δu
(e)
h (x) =

n
∑

I=1

NI(x)δu
(e)
I , (21a)

∆u
(e)
h (x) =

n
∑

I=1

NI(x)∆u
(e)
I , (21b)

where NI ’s are the finite element shape functions and n is the number of

nodes per elements. On using (21), the virtual strains become

δε =
1

2

n
∑

I=1

[

δu
(e)
I ⊗∇NI +∇NI ⊗ δu

(e)
I

]

, (22)

whereas the strain increment

∆ε =
1

2

n
∑

I=1

[

∆u
(e)
I ⊗∇NI +∇NI ⊗∆u

(e)
I

]

. (23)
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After appealing to the arbitrariness of nodal test functions, assembling the

element contributions into the global system, and applying boundary condi-

tions (tractions and displacements) in increments ∆t, the following Newton-

Raphson scheme is obtained:

t+∆t
K

(n−1)∆u
(n) = t+∆t

F− t+∆t
T

(n−1), (24)

where K is the global tangent stiffness matrix, F and T are the external and

internal global nodal force vectors, respectively, and ∆u is the column vector

that contains all the displacement degrees of freedom of the finite element

mesh. On the other hand, t+∆t denotes the incremental approach where a

solution is known at discrete time t and the solution at discrete time t+∆t is

sought. Finally, n stands for the equilibrium iterations within an increment.

The element contributions are provided in Section 4.

4. Computational implementation

The numerical implementation of the nonlinear theory of implicit elas-

ticity introduces subtle changes into a standard finite element code. The

problem at hand is tackled through a Newton-Raphson scheme. The Newton-

Raphson algorithm is given in Box 3.1, where maxit stands for the maximum

iterations permitted, tol≪ 1 is a preset Newton’s tolerance, nsteps are the

number of load steps, σ(e) is the stress in the element in vector Voigt nota-

tion, and ǫ
(e) the strain in the element in vector Voigt notation. To perform

the assembly of the element contributions into the global discrete system,

the element tangent stiffness matrix and the external and internal element

nodal force vectors need to be established. The development of the same is
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presented in the following subsections, where the plane stress case is consid-

ered and 4-node quadrilateral elements are used.

• INPUT geometry, material parameters: α, β, γ, ι,

and solution parameters: maxit, tol, nsteps

• INITIALIZE u = 0, ∆u = 0, σ(e) = ǫ
(e) = 0 for all elements

• LOOP over load steps: step = 1 to nsteps

◦ INITIALIZE error = 1.0, nit = 0, factor = step/nsteps

◦ WHILE (error > tol) and (nit < maxit)

· nit = nit+ 1

· FIND K by assembly of the element matrix K
(e)

(

σ
(e)

)

· FIND F by assembly of the element vector F(e)

· FIND T by assembly of the element vector T(e)
(

σ
(e)

)

· FIND R = factor× F− T

· APPLY essential boundary conditions

· SOLVE ∆u = K
−1

R

· UPDATE u = u+∆u

· UPDATE error =
√

∆u·∆u

u·u

◦ END WHILE

• END LOOP

Box 3.1: Newton-Rahpson Solution algorithm
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4.1. Stress and strain in the element

For plane stress, the stress and strain in the element in vector Voigt

notation are

ǫ
(e) =

(

ε
(e)
11 ε

(e)
22 2ε

(e)
12

)T

(25)

and

σ
(e) =

(

σ
(e)
11 σ

(e)
22 σ

(e)
12

)T

, (26)

and they are computed incrementally at a given Gauss point at the Cartesian

coordinate xr as follows:

ǫ
(e)
p (xr) = ǫ

(e)
p−1(xr) +∆ǫ

(e)
p (xr) (27)

for the strain in the element, and

σ
(e)
p (xr) = σ

(e)
p−1(xr) +∆σ

(e)
p (xr) (28)

for the stress in the element. In (27) and (28), p starts from 1 before the

Newton-Rahpson loops initiate. When p = 1 it means that the element

at the given Gauss point is free of stress and strain, which is part of the

second instruction in the algorithm given in Box 3.1. The increments that

are involved in the foregoing equalities can be expressed as

∆ǫ
(e)
p (xr) =

4
∑

I=1

B
(e)
I (xr)∆u

(e)
I (29)

and

∆σ
(e)
p (xr) = C(xr)∆ǫ

(e)
p (xr), (30)

where

B
(e)
I (xr) =











NI,1(xr) 0

0 NI,2(xr)

NI,2(xr) NI,1(xr)











(31)
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is the element nodal strain matrix, and

∆u
(e)
I =





∆u
(e)
I1

∆u
(e)
I2



 (32)

is the element nodal displacement increment. Finally, C is the elasticity

tensor in Voigt notation, which for plane stress is obtained from (20) as

C =











C1111 C1122 C1112
C1122 C2222 C2212
C1112 C2212 C1212











. (33)

4.2. Internal element nodal force vector

The internal element nodal force vector is expressed as

T
(e) =

∫

Ω(e)

(

B
(e)
1 B

(e)
2 B

(e)
3 B

(e)
4

)T

σ
(e) dΩ (34)

where σ(e) is computed as described in Section 4.1 and the integral is numer-

ically solved using Gauss quadrature. The algorithm to compute the internal

element nodal force vector is presented in Box 3.2, where store instruction

means that the quantities need to be saved outside the Newton-Raphson loop

for future usage.
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• LOOP over element Gauss points

◦ FIND σ
(e) at the current Gauss point:

· FIND C
(

σ
(e)

)

· FIND ∆ǫ
(e)

· FIND ∆σ
(e)

(

C;∆ǫ
(e)

)

· UPDATE and STORE ǫ
(e) = ǫ

(e) +∆ǫ
(e)

· UPDATE and STORE σ
(e) = σ

(e) +∆σ
(e)

◦ FIND T
(e)

(

σ
(e)

)

• END LOOP

Box 3.2: Internal element nodal force vector

4.3. External element nodal force vector

The external element nodal force vector is computed to be

F
(e) =

∫

Γ
(e)
t

(

N
(e)
1 N

(e)
2 N

(e)
3 N

(e)
4

)T

t̂(e) dΓ, (35)

where NI (I = 1, 2, 3, 4) is the shape function for a 4-node quadrilateral

element, and t̂(e) = (t̂
(e)
1 t̂

(e)
2 )T denotes the traction vector applied on an

element’s edge that is part of the traction boundary. The integral in (35) is

also numerically computed using Gauss quadrature.

4.4. Element tangent stiffness matrix

The element tangent stiffness matrix is calculated to be

K
(e) =

∫

Ω(e)

(

B
(e)
1 B

(e)
2 B

(e)
3 B

(e)
4

)T

C

(

B
(e)
1 B

(e)
2 B

(e)
3 B

(e)
4

)

dΩ,

(36)
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where the integral is numerically evaluated using Gauss quadrature. The

algorithm for the element tangent stiffness matrix is provided in Box 3.3,

where store instruction means that the quantities need to be saved outside

the Newton-Raphson loop for future usage.

• LOOP over element Gauss points

◦ FIND σ
(e) at the current Gauss point:

· FIND C
(

σ
(e)

)

· FIND ∆ǫ
(e)

· FIND ∆σ
(e)

(

C;∆ǫ
(e)

)

· UPDATE and STORE ǫ
(e) = ǫ

(e) +∆ǫ
(e)

· UPDATE and STORE σ
(e) = σ

(e) +∆σ
(e)

◦ FIND C(σ(e))

◦ FIND K
(e)(C)

• END LOOP

Box 3.3: Element tangent stiffness matrix

5. Numerical examples

In this section, the use of constitutive equations that admit unbounded

stresses while strains remain small is demonstrated via two numerical exam-

ples. To this end, the constitutive relation (15) is adopted.

In all the computations, the following material constants are used:

α = 10−9, β = 10−3 1

Pa
, γ = 10

1

Pa
, ι = 10−11 1

Pa2
.
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These values differ from those used in Ortiz et al. (2012) (see Eq. (19)

therein). The new values of the parameters were chosen to ensure conver-

gence of the Newton-Raphson loops in the examples considered in the present

paper.

5.1. Plate with an elliptic hole subjected to uniaxial tension

In this example, a plate with an elliptic hole that is subjected to uniaxial

tension is studied (see Fig. 2). Due to symmetry, only a quarter of the

plate is considered. The following values for b, L and σ∞ are chosen for the

computations:

b = 0.1m, L = 1m, σ∞ = 105Pa and 104 Pa,

where, for convergence of the Newton-Raphson loop, two different values

for σ∞ were considered. Table 1 contains the ratio of the semi-minor axis

(denoted by a) to the semi-major axis (denoted by b) of the elliptic holes

that were considered in our analyses.

Table 1: Ratio a/b for the plate with an elliptic hole.

a/b 1 1/2 1/10 1/20

The purpose of this example is to study the qualitative properties of ε22

and σ22 along the line x2 = 0, b ≤ x1 < L as b← x1.

A mesh of 4-node quadrilaterals is depicted in Fig. 3 for a quarter of the

plate with a/b = 1/2. The mesh consists of 835 elements and 898 nodes.
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Fig. 2: Plate with an elliptic hole under uniaxial tension.

Fig. 4 provides a detailed view of the mesh near the point x1 = b, x2 = 0 of

the elliptic hole.

The numerical results for σ22 and ε22 are shown in Figs. 5 and 6 for

a/b = 1/2 and σ∞ = 105 Pa. Note that the distributions for σ22 and ε22

differ from each other in the sense that the stress concentrates more around

the point x1 = b, x2 = 0 than does the strain.

To investigate how stresses and strains behave for different values of the

ratio a/b, consider the results presented in Fig. 7, where the following nor-
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Fig. 3: Mesh for a quarter of the plate with an elliptic hole with a/b = 1/2.

Fig. 4: Detail of the mesh near the point x1 = b, x2 = 0 of the elliptic hole with a/b = 1/2.
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Fig. 5: Contour plot of σ22 in MPa near the point x1 = b, x2 = 0 for a/b = 1/2.

Fig. 6: Contour plot of ε22 near the point x1 = b, x2 = 0 for a/b = 1/2.
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malized quantities are plotted:

x̄1 =
x1 − b

b
, σ̄22 =

σ22

σ∞

, ε̄22 =
ε22
ε22∞

. (37)

It is worth observing that the strain is a non-dimensional quantity. The

normalized strain has been considered to recognize that the presence of a

hole can lead to an increase (concentration) in the strain field. However, one

should bear in mind that although the normalized strain may increase, the

absolute strain yet remains small, and more importantly, within the values

used for linearizing the strain. In (37), ε22∞ is the component ε22 evaluated

where the stress σ∞ is prescribed. The results shown in Fig. 7 suggest that

the rate at which the stress increases toward x̄ = 0 is larger than the rate at

which the strain does. Moreover, the difference between the rates increases as

a/b gets smaller. Additionally, a stress concentration factor of approximately

350 is observed in Fig. 7d, whereas for the strain the factor is below 50. This

response is expected for an elastic body that is described by a constitutive

relation wherein the strains remain small irrespective of the value of the

stress.

As a comparison, an exact solution for the plate with an elliptic hole with

L/a → ∞ and L/b → ∞ is presented in Fig. 2 in the case of the classical

linearized elastic solid. The solution in terms of the elliptic coordinates ξ,

η (Timoshenko and Goodier, 1970) is a lengthy expression that depends on ξ,

η, c, ξ0 and σ∞, which for brevity we do not show here. But we will provide

plots for σξ and ση for the line x2 = 0, b ≤ x1 < L (i.e., for η = 0) and

a/b = 1/10. In Fig. 8, plots for the normalized stress components ση/σ∞ and

σξ/σ∞ are depicted. If the exact solution for a linear elastic isotropic body is
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(b) Case a/b = 0.5, σ∞ = 105 Pa.
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(c) Case a/b = 0.1, σ∞ = 104 Pa.
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(d) Case a/b = 0.05, σ∞ = 104 Pa.

Fig. 7: Normalized stress and normalized strain as functions of x̄1. Stresses and strains

are measured on the line x2 = 0, b ≤ x1 < L as b← x1.

replaced in (12), it can be shown that the behavior of the normalized strains

εη/εη∞ , εξ/εξ∞ matches the behavior of the normalized stresses as x1 → b.

From p. 193 of Timoshenko and Goodier (1970), the stress concentration

factor ση/σ∞ evaluated at x1 = b is

ση

σ∞

= 1 + 2
b

a
, (38)

which would be the same for εη/εη∞ . Now, an approximate model of a
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Fig. 8: Normalized stresses and normalized strains as functions of (x1 − b)/b. Results for

a plate with an elliptic hole using the classical linearized elasticity theory.

plate with a crack under a traction field that is sufficiently far away (i.e.,

a crack under mode I) is obtained for a ≪ b. On using (38), σ22(x1 →
b)/σ∞ = ση/σ∞ → ∞ if a/b → 0 . The same behavior would be observed

for ε22/ε22∞ , which is physically impossible for linearized elastic bodies. On

the contrary, with the use of constitutive relations of the form given in (11),

appropriate expressions of g can be found such that the stresses are large

(possibly unbounded) while strains remain small as x1 → b irrespective of

the value of the stress.

Table 2 summarizes the approximate concentration factors that are in-

ferred from the numerical results of Fig. 7. The reference values obtained

from (38) for the classical theory of elasticity are also provided for compar-

ison. We once again observe that one should not conclude erroneously that

the strains are becoming large by simply judging from the values of the nor-
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malized strain given for the nonlinear model in Table 2. This is not the case;

the strains remain limited within the bounds for which linearization is valid.

The normalized strain essentially is the ratio of two strains, both of which

are sufficiently small, but one much larger than the other.

Table 2: Concentration factors for the plate with an elliptic hole under uniaxial tension.

a/b 1 1/2 1/10 1/20

Nonlinear case ση

σ∞

3.09 6.98 148 356

(from Fig. 7) εη
εη∞

2.41 3.33 21.5 35.2

Linear case Eq.(38) 3 5 21 41

5.2. Stepped flat tension bar with shoulder fillets

In this example, the elastic response of a stepped flat tension bar with

shoulder fillets (Young and Budynas, 2002; Pilkey, 1997) is studied. This

plane stress problem is depicted in Fig. 9(a), where a uniform tension σ∞ is

applied on the right side of the plate, while the left edge is fixed in the axial

direction. The radius of the shoulder fillet is denoted by r. For r = 0, un-

bounded stresses and strains would be predicted in the shoulder fillet by the

classical linearized theory of elasticity, thereby contradicting the assumption

within which the model is derived. A detailed view of the shoulder fillet is

shown in Fig. 9(b).

The following dimensions are assumed for the stepped flat tension bar:

a = 0.5m, b = 1m, L1 = 0.5m, L2 = 0.5m, σ∞ = 105 Pa and 5× 104 Pa,
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Fig. 9: Stepped flat tension bar with shoulder fillets.

Table 3: Values for the radius of the shoulder fillet, in meters.

r 0.04 0.02 0.01 0.004 0.002

whereas the values for r are presented in Table 3.

Due to symmetry, only a half of the plate is considered. Figs. 10 and 11

provide details of the mesh used for the plate with r = 0.02. Contour plots

for σ11 and ε11 are presented in Figs. 12 and 13 for the plate with r = 0.02.

From these figures, a high stress concentration is observed near the shoulder

of the fillet. The results show that the strain tends to be bounded as the

stress increases. Furthermore, consider the results shown in Fig. 14, where

ε̄11 and σ̄11 are plotted as functions of x̄1 for an horizontal line (see Fig. 9(a))

defined by x2 = a, L2 < x1 < L1 + L2. The normalized strain (ε̄11) and the
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Fig. 10: Mesh used for the stepped flat tension bar with shoulder fillets of r = 0.02.

Fig. 11: Detail of the mesh at the shoulder fillet of the stepped flat tension bar with

r = 0.02.
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Fig. 12: Contour plot for σ11 MPa near the fillet with r = 0.02.

Fig. 13: Contour plot for ε11 near the fillet with r = 0.02.

normalized stress (σ̄11) are defined as in (37), whereas the normalized distance

is x̄1 = (x1 −L2)/r. In Fig. 14, ε̄11 and σ̄11 are measured along the line that

defines the shoulder fillet starting at point A (see Fig. 9(b)), then toward

the right. However, only the position x1 along this line is used to compute

x̄1. Exact solutions for the stepped flat tension bar with shoulder fillets are

not available. However, approximate expressions for the stress concentration

factor can be found, for instance, in Table 17.1 on pp. 784, Section 50
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(b) r = 0.02, σ∞ = 105Pa.
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(c) r = 0.01, σ∞ = 105Pa.
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(d) r = 0.004, σ∞ = 105Pa.
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(e) r = 0.002, σ∞ = 5× 104Pa.

Fig. 14: Stepped flat tension bar with various shoulder fillets. Normalized stress and

normalized strain as functions of the normalized distance x̄ = (x− L2)/r.
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of Young and Budynas (2002); Figure 106, Chapter 3 of Timoshenko and

Goodier (1970); Chart 3.1 on pp. 150 of Pilkey (1997); and in the original

work of Weibel (1934).

In the plots presented in Fig. 14, the concentration of stresses and strains

occurs near the normalized position x̄1 = 0.5, which is the location of a point

near the middle of the shoulder fillet. The same is inferred from the contour

plots presented in Figs. 12 and 13.

The results shown in Fig. 14 suggest that the rate at which the stress

increases toward x̄1 = 0.5 is larger than the rate at which the strain does, and

the difference between the rates increases as r gets smaller. Furthermore, the

concentration factor for the stress can be quite large, whereas for the strains

it remains small. This response is consistent with the kinematics of small

deformations.

Approximate concentration factors that are inferred from our numerical

results of Fig. 14 are compared with approximate values obtained from the

classical theory of linearized elasticity (see Chart 3.1 on pp. 150 of Pilkey

(1997)). This comparison is presented in Table 4.

Table 4: Concentration factors for the stepped flat tension bar with shoulder fillets.

r/(2a) 0.04 0.02 0.01 0.004

Nonlinear case σ11

σ∞

3.06 4.88 8.9 20.4

(from Fig. 14) ε11
ε11∞

2.27 2.71 3.13 3.67

Linear case 3.2 3.8 4.5 > 5
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