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Abstract

We introduce a novel meshfree Galerkin method for the solution of Reissner-Mindlin

plate problems that is written in terms of the primitive variables only (i.e., rotations and

transverse displacement) and is devoid of shear-locking. The proposed approach uses linear

maximum-entropy basis functions for field variables approximation and is built variationally

on a two-field potential energy functional wherein the shear strain, written in terms of the

primitive variables, is computed via a volume-averaged nodal projection operator that

is constructed from the Kirchhoff constraint of the three-field mixed weak form. The

meshfree approximation is constructed over a set of scattered nodes that are obtained from

an integration mesh of three-node triangles on which the meshfree stiffness matrix and

nodal force vector are numerically integrated. The stability of the method is rendered

by adding bubble-like enrichment to the rotation degrees of freedom. Some benchmark

problems are presented to demonstrate the accuracy and performance of the proposed
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method for a wide range of plate thicknesses.

Keywords: meshfree methods, maximum-entropy approximation, Reissner-Mindlin plate,

shear-locking, VANP method

1. Introduction

Shear-deformable thin-structural theories such as the Timoshenko beam and Reissner-

Mindlin plate theories are widely used throughout engineering practice to simulate the

mechanical response of structures with planar dimensions far greater than their thickness.

The shear deformable theories’ popularity over the classical thin-structural theories, Euler-

Bernoulli beam and Kirchhoff-Love plate theory, is primarily due to the following two

factors:

� They capture the shear-deformable behavior inherent to thicker structures [1, 2].

Capturing this behavior is necessary for simulating modern engineering structures

constructed from e.g. functionally graded materials [3].

� They are second-order PDEs giving rise to weak formulations with H1(Ω) reg-

ularity, whereas the classical theories are fourth-order PDEs with weak formula-

tions demanding H2(Ω) regularity. The difficulty in the construction of an efficient

H2(Ω)-conforming finite element method (FEM) is well-known. In contrast, H1(Ω)-

conforming FEMs are straightforward.

Unfortunately, it is also the case that näıvely constructed low-order polynomial H1(Ω)-

conforming numerical methods suffer from shear-locking. Shear-locking is a numerical issue

caused by the inability of a numerical method to represent the Kirchhoff limit as the plate

thickness parameter tends to zero. This usually results in a nonconvergent numerical

method, or at best, very poor convergence.

The majority of solutions to the shear-locking issue in the finite element literature

resort to a mixed variational method where the transverse shear stress is treated as an
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independent variational quantity in the weak form. There is a huge amount of mathematical

and engineering literature related to constructing plate elements for FEM analysis, which

we cannot comprehensively review here. Particularly popular examples of this approach

include the Mixed Interpolation of Tensorial Components (MITC) or Assumed Natural

Strain (ANS) approach [4–7], and the Discrete Shear Gap (DSG) method [8–10].

One desirable aspect of both MITC and DSG is that even though they can be math-

ematically analyzed using (and are based on) an underlying mixed formulation, the fi-

nal systems of equations are expressed in terms of the primal unknowns of the standard

Reissner-Mindlin problem only. This is achieved by the use of an operator that reduces or

projects the shear stresses expressed in terms of the primal variables onto an underlying

mixed finite element space. This “unlocks” the formulation.

Given the success of using mixed variational methods in constructing shear-locking free

finite elements, it should be no surprise that many authors have taken this route to con-

struct convergent methods for more modern numerical techniques, such as in Isogeometric

Analysis (IGA) [11–13] and meshfree methods [9, 10, 14–17].

The work described in this paper is a continuation of the line of research presented in

the PhD thesis of Hale [18] on developing meshfree methods for shear-deformable structures

using mixed formulations. There the volume-averaged nodal pressure technique that was

proposed in Refs. [19, 20] for the Stokes and nearly-incompressible elasticity problems

and later generalized as the volume-averaged nodal projection (VANP) method [21], was

adapted to the Reissner-Mindlin problem. In the VANP approach, bubble-like enrichment

is used to ensure inf–sup stability [22] mimicking the MINI element [23] and the volume-

averaging procedure is closely related to the average-nodal strain finite element formulation

proposed in Ref. [24]. The adaptation of the VANP approach from the Stokes problem to the

Reissner-Mindlin in Ref. [18] was achieved using a stabilized mixed variational formulation

developed in Ref. [25]. Using this stabilization it is possible to bypass the coercivity on the

kernel condition in the LBB theorem [22], opening up the possibility of using inf–sup stable
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designs for the Stokes problem (e.g. the MINI element [23] or the VANP operator [19, 20])

almost directly for the Reissner-Mindlin problem. This stabilization comes at the expense

of the introduction of a stabilization constant. A more detailed analysis in Refs. [26, 27]

shows that in a finite element context it is possible to quite precisely relate this constant to

the element size and obtain good convergence rates. Unfortunately, numerical experiments

to choose a good scheme for the stabilization constant in the meshfree context of Ref. [18]

were less successful.

In this paper, we develop a new meshfree scheme for the Reissner-Mindlin plate model

with many of the best aspects of the formulation in Ref. [18], but with none of its drawbacks,

such as reliance on a stabilization scheme with an a priori unknown constant. The scheme

uses linear maximum-entropy basis functions for field variables approximation and is built

variationally on a two-field potential energy functional wherein the shear strain, written

in terms of primitive variables (i.e., rotations and transverse displacement), is computed

via a volume-averaged nodal projection operator that is constructed from the Kirchhoff

constraint of the three-field mixed weak form, which is an idea adapted from the VANP

formulation of Ref. [21] and that leads to a symmetric stiffness matrix. The meshfree

approximation is constructed over a set of scattered nodes that are obtained from an

integration mesh of three-node triangles on which the meshfree stiffness matrix and nodal

force vector are numerically integrated. We use recent advances in integration techniques

for meshfree methods, e.g. the work of Duan et. al [28], to ensure efficient and accurate

integration of the weak form. Bubble-like enrichment of the rotation degrees of freedom

is added to ensure inf–sup stability, similarly to the recent finite element of Song and

Niu [29] and many others. No further stabilization is required to ensure the stability of

the discrete problem. The final system of equations is expressed in terms of the primal

unknowns only, an improvement over the work of Hale [14]. Our numerical experiments

show that the proposed method is optimally convergent for a wide range of thicknesses

(shear-locking-free).

4



The remainder of the paper is given as follows. Section 2 provides a summary of the

notation used in this paper. The main ingredients for the computation of the maximum-

entropy basis functions are given in Section 3. In Section 4, the classical three-field for-

mulation for the Reissner-Mindlin plate model is summarized along with its discretization

using meshfree basis functions. The VANP method for the Reissner-Mindlin plate model is

developed in Section 5. Section 6 presents some numerical examples that are solved using

the proposed VANP approach. We end with some concluding remarks in Section 7.

2. Notation

The following is a summary of the main notation used in this paper. Slanted bold

symbols such as v are used to represent vectors and tensors. In particular, the follow-

ing notation is used to represent vectors in components form: v = (v1, . . . , vn) in an

n-dimensional space and v = (vx, vy) in the two-dimensional Cartesian coordinate system.

Lowercase (nonbold) upright symbols are used to represent row and column vectors.

Their entries are written between square brackets. For instance, r = [r1 · · · rn] is a row

vector and c = [c1 · · · cn]T is a column vector.

Uppercase (nonbold) upright symbols are used to represent matrices. Their entries are

written between square brackets. An example of a matrix representation is given as follows:

M =


m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

. . .
...

mn1 mn2 · · · mnn

 .

The gradient operator is denoted as ∇ and the trace operator as tr(·).

3. Maximum-entropy basis functions

Consider a convex domain represented by a set of n scattered nodes and a prior (weight)

function wa(x) associated with each node a. The approximation for a scalar-valued function
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u(x) is given in the form:

u(x) =
m∑
a=1

φa(x)ua, (1)

where ua are nodal coefficients. On using the Shannon–Jaynes (or relative) entropy func-

tional, the maxent basis functions {φa(x) ≥ 0}ma=1 are obtained via the solution of the

following convex optimization problem [30]:

Problem 1.

min
φ∈IRm

+

m∑
a=1

φa(x) ln

(
φa(x)

wa(x)

)

subject to the linear reproducing conditions:

m∑
a=1

φa(x) = 1,

m∑
a=1

φa(x) ca = 0.

In Problem 1, ca = xa−x are shifted nodal coordinates and IRm
+ is the nonnegative orthant.

In this paper, we use as the prior function the Gaussian radial basis function given

by [31]

wa(x) = exp

(
− γ

h2a
‖ca‖2

)
, (2)

where γ is a parameter that controls the support size of the basis function and ha is a

characteristic nodal spacing associated with node a.

On using the method of Lagrange multipliers, the solution to Problem 1 is given by [30]

φa(x,λ) =
Za(x,λ(x))∑
b Zb(x,λ(x))

, Za = wa(x) exp(−λ(x) · ca(x)), (3)

where the Lagrange multiplier vector λ(x) is obtained as the minimizer of the following

dual optimization problem (x is fixed):

Problem 2.

λ∗(x) = arg min
λ∈IRd

lnZ(x,λ).
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Problem 2 leads to a system of two nonlinear equations given by

f(λ) = ∇λ lnZ(λ) = −
n∑
a

φa(x)x̃a = 0, (4)

where ∇λ stands for the gradient with respect to λ. Once the converged solution for the

Lagrange multiplier vector λ∗ is found through (4), the basis functions φa(x) are obtained

by setting λ = λ∗ in (3).

Finally, the gradient of the basis function is [31]:

∇φa(x) = φa(x,λ
∗) (J(x,λ∗))−1 ca(x), (5)

where

J(x,λ) =
m∑
a=1

φa(x,λ) ca(x)⊗ ca(x)− r(x,λ)⊗ r(x,λ), r(x,λ) = −
m∑
a=1

φa(x,λ) ca(x).

(6)

4. Governing equations for the three-field formulation

The method that is proposed in the next section relies on the classical three-field

Reissner-Mindlin plate problem formulation. It is instructive to review this formulation as

many of its aspects are preserved in the new method. Therefore, in this section we provide

a summary of the classical three-field formulation for the Reissner-Mindlin plate model and

its discretization procedure using the maxent basis functions.

4.1. Strong form

Consider the midplane of an elastic plate of uniform thickness t that occupies the

open domain Ω ⊂ IR2 and is bounded by the one-dimensional surface Γ . The coordinates

of a point in this domain are denoted by x = (x, y). The rotations of fibers normal

to the midplane, the transverse displacement of the midplane, and the scaled transverse

shear stresses are denoted by r(x) = (rx, ry), w(x), and s(x) = (sx, sy), respectively. A
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Fig. 1: Schematic representation of the plate.

transverse load q(x) ∈ L2(Ω) is also acting on the plate. A schematic representation of

the plate is depicted in Fig. 1.

The boundary of the plate is assumed to be entirely subjected to the essential (Dirichlet)

boundary conditions r̂(x) : ΓD → IR2 and ŵ(x) : ΓD → IR, which implies that Γ = ΓD.

The boundary-value problem for this Reissner-Mindlin plate configuration reads [32]:

Problem 3. Find r(x) : Ω → IR2, w(x) : Ω → IR and s(x) : Ω → IR2 such that

−∇ · (Cε(r))− s = 0 ∀x ∈ Ω,

−∇ · s− q = 0 ∀x ∈ Ω,

(∇w − r)− 1

λt−2
s = 0 ∀x ∈ Ω,

r = r̂, w = ŵ ∀x ∈ ΓD.

In Problem 3, ε(r) = 1
2

(
∇r + (∇r)T

)
is the strain tensor, C = EY

12(1−ν2) ((1− ν)ε+ ν tr(ε)I)

is the tensor of bending moduli, and λ = κ EY
2(1+ν) , where κ = 5/6 is the shear correction

factor; EY and ν are the Young’s modulus and the Poisson’s ratio of the plate material,

respectively.
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4.2. Three-field mixed weak form

Let the spaces

R :=
{
r : r ∈ [H1(Ω)]2, r = r̂ on ΓD

}
R0 :=

{
δr : δr ∈ [H1(Ω)]2, δr = 0 on ΓD

}
be the trial and virtual spaces for the rotation field, respectively,

W :=
{
w : w ∈ H1(Ω), w = ŵ on ΓD

}
W0 :=

{
δw : δw ∈ H1(Ω), δw = 0 on ΓD

}
be the trial and virtual spaces for the transverse displacement field, respectively, and

S :=
{
z : z ∈ [L2(Ω)]2

}
be the space for the trial and virtual scaled transverse shear stresses.

On using the preceding space definitions, the three-field mixed weak form reads [32, 33]:

Problem 4. Find (r, w, s) ∈ R×W × S such that∫
Ω

(ε(δr))TC ε(r) dx−
∫
Ω
s · δr dx = 0 ∀δr ∈ R0,∫

Ω
s ·∇δw dx−

∫
Ω
q δw dx = 0 ∀δw ∈W0,∫

Ω

(
(∇w − r)− s

λt−2

)
· δs dx = 0 ∀δs ∈ S.

In Problem 4, ε(r) = [εxx εyy 2εxy]
T is the strain tensor in Voigt notation, and C is the

Voigt representation of the tensor of bending moduli and is given by

C =
EY

12(1− ν2)


1 ν 0

ν 1 0

0 0 1−ν
2

 . (7)
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4.3. Discrete equations using maxent basis functions

The discrete version of Problem 4 is obtained by approximating the field variables

using the maxent basis functions over a set of scattered nodes that discretely represent

the continuous plate. Due to the nonpolynomial nature of the maxent basis functions, the

weak form integrals cannot be computed exactly. Thus, numerical quadrature is used to

evaluate them. For this purpose, we construct a finite element mesh whose elements are

used to define integration points and its nodes to discretize the field variables. The whole

procedure can be thought as a finite element method with basis functions having a radial

support. The support is controlled by the maxent parameters and its size is typically

larger than the support of a finite element basis function. The construction of maxent

basis functions depends only on the nodal coordinates (see Section 3) for which they are

regarded as “meshfree.” An advantage of using meshfree basis functions is that since the

element is not involved in the computation of them, the resulting method is less sensitive

to mesh distortion than the finite element method.

For the construction of the integration mesh, we follow the standard practice in finite

elements. That is, we consider a mesh of so-called mixed finite elements that would produce

convergent and stable finite element solutions for the three-field mixed weak form that

models the Reissner-Mindlin plate problem. Several mixed finite elements are available

in the finite element literature (see for instance Ref. [34]). In this paper, we construct

the integration mesh inspired by the recent work of Song and Niu [29], as follows: let the

domain be partitioned into disjoint nonoverlapping three-node triangular cells. We denote

an integration cell as E. The partition formed by these cells is denoted as T h, where

h is the maximum cell diameter among the cells in the partition. The standard set of

nodes, denoted by N s, is formed by the vertices of the triangular mesh. In addition to

the standard node set, we define a barycenter node set as N b with nodes located at the

barycenter of each cell. So, the enhanced node set is defined as N+ = N s ∪ N b. The

degrees of freedom associated with this partition is summarized as follows:
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� each node in the standard node set carries two rotations, one transverse displacement,

and two transverse shear stresses.

� each node in the barycenter node set carries two rotations.

Fig. 2 presents a schematic representation of the integration mesh.

T h
E

Fig. 2: Schematic representation of the domain partition into cells and nodes for the

discretization of the three-field mixed weak form. The shaded triangle is a typical cell of

the partition. The white circles represent the standard node set N s and the black ones the

barycenter node set N b.

The partition T h is constructed using a triangular mesh generator and the location

of quadrature points is computed based on this partition. The enhanced node set N+ is

constructed when needed by adding the barycenter node set N b to the standard node set

N s. This poses no problem or additional complexity in the method since the absence of
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the finite element structure in the computation of meshfree basis functions permits the

addition of nodes to the mesh very easily.

In the process of evaluating the discrete weak form, maxent basis functions need to be

computed at integration points. To make clear the implications of the numerical integration

procedure using meshfree basis functions, the concept of nodal contribution is introduced

as follows: the nodal contribution at a given integration point with coordinates x is defined

as the indices of the nodes whose basis functions have a nonzero value at x. It should be

noted that due to the radial support of the maxent basis functions, their evaluation at

an integration point is likely to have a nodal contribution stemming not only from the

nodes that define the integration cell, but also from nodes located outside the integration

cell. A graphical explanation of the nodal contribution at an integration point located in

the interior of the cell and an integration point located on an edge of the cell is provided

in Fig. 3, where the support of nodal basis functions are represented by circles centered

at nodes. The circles drawn with continuous line and centered at filled nodes represent

basis functions of nodes defining the integration cell and having a nonzero value at the

integration point. Hence, the indices of filled nodes are part of the nodal contribution. The

circles drawn with dashed line and centered at filled dashed nodes represent basis functions

of nodes lying outside the integration cell and having a nonzero value at the integration

point. Thus, the indices of filled dashed nodes are also part of the nodal contribution. The

circles drawn with dotted line and centered at empty nodes represent nodal basis functions

having a zero value at the integration point. The indices of empty nodes are then not part

of the nodal contribution.

The nodal contribution concept is not restricted to the numerical integration procedure

only, it is in general applicable to any evaluation of basis functions within Ω or on Γ .

On using the maxent basis functions, the discrete trial and virtual field variables are
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Fig. 3: Graphical explanation of the nodal contribution concept for the evaluation of nodal

basis functions at (a) an integration point (depicted as ×) located in the interior of the cell

and (b) an integration point (depicted as ∗) located on an edge of the cell. The support of

nodal basis functions are represented by circles centered at nodes. The indices of the nodes

whose basis functions have a nonzero value at the integration point (i.e., the indices of the

nodes whose associated circles contain the integration point) define the nodal contribution.

In this example, the nodal contribution contains the indices of the nodes that define the

integration cell (filled nodes) and some nodes that lie outside the integration cell (filled

dashed nodes).

obtained as follows:

rh(x) =

nenh∑
a=1

φa(x)ra, δrh(x) =

nenh∑
b=1

φb(x)δrb, (8a)

wh(x) =
nstd∑
a=1

φa(x)wa, δwh(x) =

nstd∑
b=1

φb(x)δwb, (8b)

sh(x) =
nstd∑
a=1

φa(x)sa, δsh(x) =
nstd∑
b=1

φb(x)δsb, (8c)
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where nenh and nstd are the number of nodes that define the nodal contributions at x in

the enhanced node set (N+) and the standard node set (N s), respectively, and ra = r(xa),

wa = w(xa) and sa = s(xa) are the unknown nodal coefficients.

Thus, the discrete three-field mixed weak form at the integration cell level reads:

Problem 5. Find (rh, wh, sh) ∈ (Rh ⊂ R)× (W h ⊂W )× (Sh ⊂ S) such that∫
E

(εh(δrh))TC εh(rh) dx−
∫
E
sh · δrh dx = 0 ∀δrh ∈ Rh0 ⊂ R0,∫

E
sh ·∇δwh dx−

∫
E
q δwh dx = 0 ∀δwh ∈W h

0 ⊂W0,∫
E

((
∇wh − rh

)
− sh

λt−2

)
· δsh dx = 0 ∀δsh ∈ Sh0 ⊂ S0.

5. The volume-averaged nodal projection method

In analogy to the VANP method for nearly-incompressible elasticity [21], this method

when applied to the Reissner-Mindlin plate model allows the elimination of the scaled

shear stresses from the analysis, which leads to a method written in terms of the primitive

variables r and w. In this section, the VANP method for the Reissner-Mindlin plate model

is formulated.

5.1. Projection operator

Consider the discrete two-field scaled variational formulation for the Reissner-Mindlin

plate model [32, 35]:

Problem 6. The field variables (rh, wh) ∈ (Rh ⊂ R) × (W h ⊂ W ) can be found as the

unique minimum point of the following potential energy functional:

Ψ(rh, wh) = inf
rh,wh

1

2

∫
E

(εh(rh))TCεh(rh) dx+
λt−2

2

∫
E

(
∇wh − rh

)T (
∇wh − rh

)
dx−

∫
E
qwh dx.

Problem 6 requires the minimizing pair rh, wh to satisfy the Kirchhoff constraint

∇wh − rh = 0 as the thickness of the plate becomes very small, which at the element
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level is a severe condition that leads to shear-locking. This issue is purely numerical and

manifests itself as the impossibility for a displacement-based formulation (i.e., a formula-

tion in primitive variables r and w) to undergo deformations as the thickness of the plate

becomes too small.

As a remedy for shear-locking, the following modified version of Problem 6 is considered:

Problem 7. The field variables (rh, wh) ∈ (Rh ⊂ R) × (W h ⊂ W ) can be found as the

unique minimum point of the following modified potential energy functional:

Ψ(rh, wh) = inf
rh,wh

1

2

∫
E

(εh(rh))TCεh(rh) dx+
λt−2

2

∫
E

(∇wh − rh)T(∇wh − rh) dx−
∫
E
qwh dx.

The “bar” symbol in Problem 7 is intended to define a modified shear strain that alleviates

shear-locking.

On taking the first variation of the modified potential energy functional in Problem 7,

leads to the following discrete modified two-field weak form for the Reissner-Mindlin model:

Problem 8. Find (rh, wh) ∈ (Rh ⊂ R)× (W h ⊂W ) such that

λt−2
∫
E

(∇δwh)T∇wh dx− λt−2
∫
E

(∇δwh)T rh dx−
∫
E
δwh q dx = 0

∀δwh ∈W h
0 ⊂W0,

− λt−2
∫
E

(δrh)T∇wh dx+

∫
E

(εh(δrh))TC εh(rh) dx+ λt−2
∫
E

(δrh)T rh dx = 0

∀δrh ∈ Rh0 ⊂ R0.

In contrast to the system that gives form to the local patch projection method [18],

Problem 8 is a symmetric system. This is a consequence of the modified shear strain being

applied to the potential energy functional.

In order to develop the stiffness matrix from Problem 8, an appropriate construction

for the “barred” quantities that appear therein is needed — here “appropriate” means

that shear-locking is precluded. An effective procedure to achieve this aim is offered by

the Kirchhoff constraint given in the last equality of Problem 5. The procedure consists in
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rearranging the Kirchhoff constraint such that sh can be computed in terms of the primitive

variables, as follows:

sh = λt−2πh
[
∇wh − rh

]
= λt−2

(
πh
[
∇wh

]
− πh

[
rh
])
, (9)

where πh is a projection operator that adopts the form of an L2 projection. By comparing

the second equation in Problem 8 with (9), the following equalities are proposed:

∇wh = πh
[
∇wh

]
, rh = πh

[
rh
]
, (10)

which give the definition of the “bar” operator as ( · ) := πh[ · ].
We are left with the explicit expression for the projection operator. It is derived as

follows: the discrete scaled transverse shear stresses given in (8c) are replaced in the last

equation in Problem 5 (the Kirchhoff constraint), which after relying on the arbitrariness

of nodal variations yields in nodal form∫
E
φc(x)

[
∇wh − rh

]
dx− 1

λt−2

∫
E
φc(x)φb(x)sb dx = 0. (11)

The integral that accompanies the nodal transverse shear stress on the left-hand side of (11)

defines a matrix H whose entries are given by

Hcb =

∫
E
φc(x)φb(x) dx. (12)

Eq. (11) can be solved for the nodal scaled transverse shear stress as follows:

sb = λt−2H−1cb

∫
E
φc(x)

[
∇wh − rh

]
dx, (13)

where H−1cb is read as the nodal component of the inverse of the matrix H. Since the maxent

basis functions are positive functions, all the entries in the matrix H are nonnegative.

Hence, Eq. (13) can be safely simplified by performing row-sum on H (i.e., by lumping)

leading to the following volume-averaged nodal scaled transverse shear stress vector:

sc = λt−2
∫
Ec
φc(x)

[
∇wh − rh

]
dx∫

Ec
φc(x) dx

, (14)
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which is used to project the scaled transverse shear stress field, as follows:

sh =
nstd∑
c=1

φc(x)sc = λt−2
nstd∑
c=1

φc(x)

{∫
Ec
φc(x)

[
∇wh − rh

]
dx∫

Ec
φc(x) dx

}
. (15)

The projection operator that defines the “bar” operator is realized by comparing (9)

with (15) and is given by

( · ) = πh[ · ] =
nstd∑
c=1

φc(x)πc[ · ], (16)

where πc[ · ] is the volume-averaged nodal projection (VANP) operator given by

πc[ · ] =

∫
Ec
φc(x)[ · ] dx∫

Ec
φc(x) dx

. (17)

In (17), Ec is a representative nodal volume defined as the union of all the elements

attached to node c. Fig. 4(a) depicts the nodal volume Ec when the standard node set N s

is used, and Fig. 4(b) when the enhanced node set N+ is used.

The following precautions must be taken into account when computing the VANP oper-

ator:

� It should be noted that since φc(x) in (17) stems from the nodal shear stresses

variations its evaluation must always be performed in N s, which requires Ec to be

defined as in Fig. 4(a).

� Observing the “barred” terms in Problem 8, it must be realized that between the

square brackets in the VANP operator we will have either rh or ∇wh. The compu-

tation of the former requires the enhanced node set and thus Ec must be defined as

in Fig. 4(b), and the computation of the latter requires the standard node set and

thus Ec must be defined as in Fig. 4(a).

� The evaluation of the VANP operator requires numerical integration at quadrature

points and thus the nodal contribution concept (see Fig. 3 to recall this concept)

must also be considered.
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Ec

c

(a)

Ec

c

(b)

Fig. 4: Definition of the representative nodal volume Ec (shaded area) for the evaluation

of the integrals that appear in the volume-averaged nodal projection operator. (a) nodal

volume based on the standard node set N s, and (b) nodal volume based on the enhanced

node set N+.
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5.2. Stiffness matrix and nodal force vector

The stiffness matrix and nodal force vector are developed by discretizing Problem 8

with the rotation and transverse displacement fields approximations given in (8a) and (8b),

respectively. On using these approximations, we write

εh(rh) =

nenh∑
a=1

Ba(x)ra, εh(δrh) =

nenh∑
b=1

Bb(x)δrb, Ba(x) =


φa,x 0

0 φa,y

φa,y φa,x

 , (18)

and

∇wh =

nstd∑
a=1

Ga(x)wa, ∇δwh =

nstd∑
b=1

Gb(x)δwb, Ga(x) =

 φa,x

φa,y

 . (19)

In addition, the discrete rotation field is conveniently rewritten as

rh =

nenh∑
a=1

Na(x)ra, δrh =

nenh∑
b=1

Nb(x)δrb, Na(x) =

 φa 0

0 φa

 . (20)

And on using (16), (19) and (20), the following projected terms are obtained:

∇wh =
nstd∑
a=1

{
nstd∑
c=1

φc(x)πc [Ga(x)]

}
wa, ∇δwh =

nstd∑
b=1

{
nstd∑
c=1

φc(x)πc [Gb(x)]

}
δwb, (21)

and

rh =
nenh∑
a=1

{
nstd∑
c=1

φc(x)πc [Na(x)]

}
ra, δrh =

nenh∑
b=1

{
nstd∑
c=1

φc(x)πc [Nb(x)]

}
δrb. (22)

Finally, by collecting all the discrete quantities and replacing them into the modified

two-field weak form (Problem 8), and appealing to the arbitrariness of nodal variations, the

following global system of equations is obtained after assembling the local contributions: Kww −Kwr
−KT

wr Kee + Krr

 w

r

 =

 fw

0

 , (23a)

where w and r are the global column vectors of nodal coefficients for the transverse dis-

placement and rotations, respectively; Kww, Kwr, Kee and Krr are the assembled stiffness

matrices, and fw is the assembled nodal force vector.
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On defining the assembly operator as A, the assembled stiffness matrices for the parti-

tion of the domain into nel integration cells are obtained as

Kww =
nel
A
E=1

KEww, Kwr =
nel
A
E=1

KEwr, Kee =
nel
A
E=1

KEee, Krr =
nel
A
E=1

KErr, fw =
nel
A
E=1

fEw ,

(23b)

where the local stiffness matrices evaluated on the integration cell E are

KEww =

nstd∑
a=1

nstd∑
b=1

λt−2 ∫
E

(
nstd∑
c=1

φc(x)πc [Ga(x)]

)T nstd∑
c=1

φc(x)πc [Gb(x)] dx

 , (23c)

KEwr =
nstd∑
a=1

nenh∑
b=1

λt−2 ∫
E

(
nstd∑
c=1

φc(x)πc [Ga(x)]

)T nstd∑
c=1

φc(x)πc [Nb(x)] dx

 , (23d)

KEee =

nenh∑
a=1

nenh∑
b=1

(∫
E
BT
a (x)CBb(x) dx

)
, (23e)

KErr =

nenh∑
a=1

nenh∑
b=1

λt−2 ∫
E

(
nstd∑
c=1

φc(x)πc [Na(x)]

)T nstd∑
c=1

φc(x)πc [Nb(x)] dx

 , (23f)

and the nodal force vector is

fEw =

nstd∑
a=1

(∫
E
φa(x)q(x) dx

)
. (23g)

It is recalled that in the implementation of these stiffness matrices and nodal force

vector, nstd and nenh are the number of nodes that define the nodal contributions in the

standard node set (N s) and the enhanced node set (N+), respectively, that result from

the numerical integration process. The numerical integration of the nodal force vector is

done using standard Gauss integration on triangles, but the numerical integration of the

stiffness matrices requires a special treatment which is elaborated in the next subsection.

5.3. Numerical integration

The cell-based integration of the stiffness matrices that depend on basis functions

derivatives (i.e., Eqs. (23c)-(23e)) introduces integration errors when standard Gauss in-

tegration is used, which results in convergence issues and the patch test is not satisfied.
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To alleviate these integration errors in the VANP method, a smoothing procedure known as

quadratically consistent 3-point integration scheme [28] is performed to correct the values of

the basis functions derivatives at the integration points. This smoothing procedure was al-

ready used in the linear [21] and nonlinear [36] VANP formulations for nearly-incompressible

solids. In this paper, we follow the same approach.

A representative integration cell E along with its integration points is depicted in Fig. 5(a)

when the standard node set (N s) is used and in Fig. 5(b) when the enhanced node set

(N+) is used. Basically, the situation shown in Fig. 5(a) is used to evaluate the deriva-

tives appearing in (23c) and (23d) through the nodal matrix Ga and the situation depicted

in Fig. 5(b) to evaluate the derivatives appearing in (23e) through the nodal matrix Ba.

A summary of the basis functions derivatives correction procedure follows. The Carte-

sian coordinate system is chosen, where for convenience x ≡ x1 and y ≡ x2. In addition,

nj (j = 1, 2) is the j-th component of the unit outward normal to a cell edge in the

Cartesian coordinate system. The integration accuracy of the smoothing procedure is of

second-order, which is obtained by requiring the basis functions derivatives to satisfy the

divergence constraint∫
E
φa,jf(x) dx =

∫
∂E
φaf(x)nj ds−

∫
E
φaf,j(x) dx, (24)

where f(x) is the first-order polynomial base

f(x) = [1 x1 x2]
T, (25)

whose derivative (δij is the Kronecker delta symbol) is

f,j(x) = [0 δ1j δ2j ]
T. (26)
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Fig. 5: Schematic representation of integration cells and their integration points for cor-

rection of basis functions derivatives in the VANP approach. The shaded region is the

integration cell E. The symbol × represents integration points located in the interior

of the integration cell and the symbol ∗ represents integration points located on the cell

boundary. (a) Integration cell when the standard node set (N s) is used and (b) integration

cell when the enhanced node set (N+) is used.
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The expanded version of (24) is:∫
E
φa,1 dx =

∫
∂E
φan1 ds, (27a)∫

E
φa,1x1 dx =

∫
∂E
φax1n1 ds−

∫
E
φa dx, (27b)∫

E
φa,1x2 dx =

∫
∂E
φax2n1 ds, (27c)

for φa,1, and ∫
E
φa,2 dx =

∫
∂E
φan2 ds, (27d)∫

E
φa,2x1 dx =

∫
∂E
φax1n2 ds, (27e)∫

E
φa,2x2 dx =

∫
∂E
φax2n2 ds−

∫
E
φa dx (27f)

for φa,2.

The integration constraints (27) are solved using Gauss integration on the integration

cell E shown in Fig. 5. Consider the following notations:

�
hp = (hp1,

hp2) as the Cartesian coordinates of the h-th interior integration point

with an associated Gauss weight hw.

�

g
ke = (gke1,

g
ke2) as the Cartesian coordinates of the g-th integration point that is

located on the k-th edge of the cell with an associated Gauss weight g
kv.

� kn = (kn1, kn2) as the unit outward normal to the k-th edge of the cell.

On using the preceding notations, the discrete version of the integration constraints (27)

is:

Wdj = fj , j = 1, 2 (28a)

where

W =


1w 2w 3w

1w 1p1
2w 2p1

3w 3p1

1w 1p2
2w 2p2

3w 3p2

 , (28b)
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f1 =



3∑
k=1

2∑
g=1

φa(
g
ke) kn1

g
kv

3∑
k=1

2∑
g=1

φa(
g
ke) gke1 kn1

g
kv −

3∑
h=1

φa(
hp) hw

3∑
k=1

2∑
g=1

φa(
g
ke) gke2 kn1

g
kv


, (28c)

f2 =



3∑
k=1

2∑
g=1

φa(
g
ke) kn2

g
kv

3∑
k=1

2∑
g=1

φa(
g
ke) gke1 kn2

g
kv

3∑
k=1

2∑
g=1

φa(
g
ke) gke2 kn2

g
kv −

3∑
h=1

φa(
hp) hw


, (28d)

and the solution vector of the j-th basis function derivative evaluated at the three interior

integration points is

dj =
[
φa,j(

1p) φa,j(
2p) φa,j(

3p)
]T
. (28e)

In the foregoing equations, index a runs through the nodes that define the nodal con-

tribution either in N s or N+.

Finally, the numerical integration of the stiffness matrices is performed using 3-point

Gauss rule on the triangular cells, but the basis functions derivatives at these three inte-

gration points are replaced by the corrected derivatives given in (28e).

6. Numerical experiments

In this section, several numerical experiments are performed to assess the accuracy

of the proposed VANP formulation for the Reissner-Mindlin plate model. Unless stated

otherwise, the default numerical integration procedure for the VANP formulation is the

quadratically consistent 3-point integration scheme (QC3). For assessing Reissner-Mindlin

plate problems with known global solution, we use the relative L2-norm of error and the
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relative H1-seminorm of the error, which are defined, respectively, as follows:

‖u− uh‖L2(Ω)

‖u‖L2(Ω)
=

√∑
E

∫
E (u− uh)

T
(u− uh) dx∑

E

∫
E uTudx

,

‖u− uh‖H1(Ω)

‖u‖H1(Ω)
=

√√√√∑E

∫
E

(
u′ − u′h

)T (
u′ − u′h

)
dx∑

E

∫
E u′Tu′ dx

,

where u = [w rx ry]
T and u′ = [w,x w,y rx,x rx,y ry,x ry,y]

T are the exact solutions, and uh

and u′h are their corresponding approximations.

In addition, on using the exact nodal scaled transverse shear stress solution sa and its

approximation sha, the following relative L2-norm of the nodal error is defined to assess the

convergence of the VANP method in the scaled transverse shear stress variable:

‖s− sh‖L2(Ω)

‖s‖L2(Ω)
=

√∑
a (sa − sha)

T
(sa − sha)∑

a s
T
a sa

,

since in the VANP approach the scaled transverse shear stress is a nodal quantity that can

be computed a posteriori from the primitive variables using (14).

6.1. Zero shear deformation patch test

We start by performing a patch test to evaluate whether our VANP formulation, which

uses linear approximations, can reproduce a linear solution within machine precision. We

also want to check that our method is devoid of the shear-locking phenomenon when

the transverse shear deformation approaches zero. For the Reissner-Mindlin problem, the

condition of zero shear deformation requires that the transverse displacement w is one

order higher than the order of the rotations r. To obtain an exact linear solution for

w and be able to test our method, we use the zero shear deformation patch test that is

provided in Ref. [37]. The lowest order solution given therein is quadratic in w and linear

in r. To obtain a linear solution in w, the exact solution provided in Ref. [37] is managed

by appropriately choosing the arbitrary constants so that the following particular exact

solution is obtained:

w = 1 + x+ y, rx = 1, ry = 1.
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The linear patch test is built by imposing the above exact solution along the entire

boundary of a unit square domain. Three integration meshes are used as shown in Fig. 6.

The elastic parameters for the material of the plate are set to EY = 10.92 × 106 psi and

(a) (b) (c)

Fig. 6: Integration meshes for the zero shear deformation patch test.

ν = 0.3. The side of the plate L, which in this case is the unit, is taken as the characteristic

length for defining the normalized thickness of the plate as t/L. The relative L2-norm and

H1-seminorm of the error are shown in Table 1 and Table 2, respectively, for the three

integration meshes and various normalized thicknesses. These results reveal that for the

plates with normalized thicknesses t/L = 0.1, t/L = 0.01 and t/L = 0.001, the errors are

extremely small and approaching machine precision; thus, it can be said that they pass

the zero shear deformation patch test in the numerical sense. Even though the errors for

the plate with normalized thickness t/L = 0.0001 are not within machine precision, they

are sufficiently small to nearly pass the zero shear deformation patch test in the numerical

sense. Also, the absence of the shear-locking phenomenon in the VANP formulation is made

evident by these small errors.

26



Table 1: Relative L2-norm of the error for the zero shear deformation patch test.

Mesh t/L = 0.1 t/L = 0.01 t/L = 0.001 t/L = 0.0001

(a) 2.3× 10−14 2.6× 10−12 1.5× 10−10 2.0× 10−8

(b) 1.5× 10−14 6.3× 10−13 6.0× 10−11 6.2× 10−9

(c) 1.7× 10−14 7.5× 10−13 4.2× 10−11 5.7× 10−9

Table 2: Relative H1-seminorm of the error for the zero shear deformation patch test.

Mesh t/L = 0.1 t/L = 0.01 t/L = 0.001 t/L = 0.0001

(a) 4.7× 10−14 9.7× 10−13 5.3× 10−11 7.5× 10−9

(b) 3.4× 10−13 7.0× 10−13 5.0× 10−11 6.0× 10−9

(c) 2.1× 10−13 3.9× 10−13 2.5× 10−11 5.6× 10−9

6.2. Circular plate subjected to a uniform load

Fig. 7 depicts a circular plate of radius r that is subjected to a uniform load q and is

clamped along its entire boundary. The normalized thickness of the plate is t/L, where t

is the thickness of the plate and L is a characteristic length of the physical domain, which

in this case is taken as the radius of the plate. The radius of the plate is set to r = 1 in so

that L = 1 in, and the uniform load is set to q = 1 psi. The following elastic parameters

are considered for the material of the plate: EY = 10.92× 106 psi and ν = 0.3. The exact

solution for this problem is given by [33]

rx =
x(x2 + y2 − 1)

16D
, ry =

y(x2 + y2 − 1)

16D
,

w =
(x2 + y2)2

64D
− (x2 + y2)

(
λ−1t2

4
+

1

32D

)
+

1

4
λ−1t2 +

1

64D
,

where D = EY/(12(1− ν2)).
The integration meshes that are considered for this problem are shown in Fig. 8.

We start by studying the convergence of the proposed VANP formulation as the inte-

gration mesh is refined. For comparison purposes, we also include the convergence re-
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r

q(x,y)

Fig. 7: Circular plate subjected to a uniform load.

(a) (b) (c) (d)

Fig. 8: Integration meshes for the circular plate subjected to a uniform load problem.
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sults for the mixed triangular finite element of Durán and Liberman [7], which we de-

note by DL, and the three-node triangular element with cell-based smoothing for bend-

ing strain and discrete shear gap method for shear-locking (CS-DSG3) of Nguyen-Thoi

et al. [38]. The following normalized thicknesses are considered for the VANP approach:

t/L = {0.1, 0.01, 0.001, 0.0001}. For the DL element, we only show the convergence curve

for t/L = 0.0001 since the curves for the other normalized thicknesses do not change sig-

nificantly. For the CS-DSG3 element only the curve for t/L = 0.01 is shown because this

element did not perform well for thinner plates. The convergence rates are shown in Fig. 9,

where it is observed that the optimal rates of convergence, 2 and 1, are delivered by the

VANP, DL and CS-DSG3 approaches in both the L2-norm and the H1-seminorn of the error,

respectively. However, the accuracy of the VANP formulation is superior to the accuracy of

the DL and CS-DSG3 elements.

(a) (b)

Fig. 9: Rates of convergence for the circular plate subjected to a uniform load. (a) L2-norm

of the error and (b) H1-seminorm of the error for several values of t/L. The VANP, DL

and CS-DSG3 approaches deliver the optimal rates of convergence, but the accuracy of the

VANP approach is superior to the accuracy of the DL and CS-DSG3 elements.
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We also study the sensitivity of the convergence rates to the support parameter (γ)

of the maxent basis functions. Three values are considered: γ = {1.5, 2.0, 3.0}, where

the largest one results in the smaller support. For this test, the normalized thickness

t/L = 0.0001 is considered. The convergence rates are presented in Fig. 10, where it is

observed that the optimal rates of 2 and 1 are delivered by the VANP formulation in both

the L2-norm and the H1-seminorn of the error, respectively, independently of the basis

function support parameter. It is also observed that the VANP accuracy decreases as the

support gets smaller, which is a reasonable behavior since as the support gets smaller the

maxent basis function approaches the “hat” finite element basis function [31].

(a) (b)

Fig. 10: Influence of the maxent basis function support parameter (γ) on the VANP conver-

gence rates. Three values for γ are considered. Optimal convergence rates in the (a) L2

norm and (b) the H1 seminorm of the error are obtained for all these cases.

6.3. Square plate subjected to a nonuniform load

In this example, we study the convergence properties of the VANP formulation in a more

complicated setting, which includes nonuniform integration meshes and a nonuniform load.

As shown in Fig. 11, the problem domain is a square plate that is clamped along its entire
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boundary. The side of the plate is taken as the characteristic length for defining the

normalized thickness of the plate as t/L. In this problem, we set the side of the plate

to a = 1 in so that the characteristic length becomes L = 1 in. The following elastic

parameters are considered for the material of the plate: EY = 10.92× 106 psi and ν = 0.3.

The nonuniform load is given by

q =
EY

12(1− ν2)
[
12y(y − 1)(5x2 − 5x+ 1)(2y2(y − 1)2 + x(x− 1)(5y2 − 5y + 1))

+ 12x(x− 1)(5y2 − 5y + 1)(2x2(x− 1)2 + y(y − 1)(5x2 − 5x+ 1))
]
,

and the exact solution is [35]:

rx = −y3(y − 1)3x2(x− 1)2(2x− 1), ry = −x3(x− 1)3y2(y − 1)2(2y − 1),

w =
1

3
x3(x− 1)3y3(y − 1)3 − 2t2

5(1− ν)

[
y3(y − 1)3x(x− 1)(5x2 − 5x+ 1)

+ x3(x− 1)3y(y − 1)(5y2 − 5y + 1)
]
.

a

a

q(x,y)

Fig. 11: Square plate subjected to a nonuniform load.

The integration meshes that are considered for this problem are shown in Fig. 12.

The convergence of the VANP approach as the integration mesh is refined is studied for

the following normalized thicknesses: t/L = {0.1, 0.01, 0.001, 0.0001}. The convergence

rates are shown in Fig. 13, where it is observed that the optimal rates of convergence, 2
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 12: Integration meshes for the square plate subjected to a nonuniform load problem.

and 1, are delivered by the VANP method in both the L2-norm and the H1-seminorn of

the error, respectively, for the normalized thicknesses t/L = {0.01, 0.001, 0.0001}. On the

other hand, the convergence rates for t/L = 0.1 (the thicker plate case) are above the

optimal.

To illustrate the influence of the numerical integration in the accuracy of the VANP

formulation, we compare the numerical solutions using three integration rules on the trian-

gular cell: the 3-point standard Gauss rule (ST3), the 6-point standard Gauss rule (ST6)

and the default VANP’s integration scheme (QC3) that was developed in Section 5.3. For

this test, the normalized thickness t/L = 0.0001 is considered. Fig. 14 depicts the conver-

gence curves for each of these integration schemes. As can be seen, the ST3 scheme fails

to converge in both the L2-norm and the H1-seminorn of the error. Even though the ST6

scheme exhibits much better convergence properties than the ST3 scheme, the optimal

performance is observed for the QC3 scheme.
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(a) (b)

Fig. 13: Rates of convergence for the square plate subjected to a nonuniform load. (a)

L2-norm of the error and (b) H1-seminorm of the error for several values of t/L. The

VANP method delivers the optimal rates of convergence for t/L = {0.01, 0.001, 0.0001} and

above the optimal for t/L = 0.1.
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(a) (b)

Fig. 14: Influence of the numerical integration on the VANP convergence rates. (a) L2-norm

of the error and (b) H1-seminorm of the error for the ST3, ST6 and QC3 integration

schemes. The ST3 scheme fails to converge, the ST6 improves the convergence and the

QC3 provides the optimal convergence.
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Table 3: Transverse displacement for the parallelogram plate problem.

Integration mesh

16(a) 16(b) 16(c) 16(d) 16(e) Ref. solution

6.51227 6.52950 6.53558 6.53697 6.52780 6.52000

6.4. Parallelogram plate subjected to a uniform load

This example is tailored to show the performance of the VANP formulation when dis-

torted integration meshes are used. The problem consists in a parallelogram plate of unit

thickness that is clamped along the entire boundary and subjected to a uniform load, as

shown in Fig. 15. The problem parameters are set as follows: a = 200 in, b = 100 in,

q = 100 psi. The plates’ material parameters are EY = 10.92 × 106 psi and ν = 0.3.

The analytical reference value for the maximum transverse displacement can be found in

Ref. [39].

a

b q(x,y)

45°

Fig. 15: Parallelogram plate subjected to a uniform load.

The integration meshes that are considered for this problem are depicted in Fig. 16.

The transverse displacement field solution for the integration meshes shown in Figs. 16(d)

and 16(e) are presented in Fig. 17. Table 3 summarizes the maximum transverse displace-

ment (located at the center of the plate) that is obtained for each of the integration meshes

considered. The table also provides the analytical reference solution. It is observed that

the numerical solutions are close to the analytical reference solution for all the integration

meshes considered.

Finally, once again we show the importance of the QC3 integration scheme that was
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(a) (b)

(c) (d)

(e)

Fig. 16: Integration meshes for the parallelogram plate problem.

(a) (b)

Fig. 17: Transverse displacement solution for the parallelogram plate problem when the

integration meshes (a) 16(d) and (b) 16(e) are used.
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developed for the VANP formulation. Fig. 18 provides the transverse displacement field

solution for the integration mesh shown in Fig. 16(d) when the 3-point standard Gauss

rule (ST3) is used. A comparison between the results shown in Fig. 17(a) and Fig. 18

reveals that the ST3 integration scheme leads to an erroneous transverse deflection field.

Fig. 18: Parallelogram plate subjected to a uniform load. The use of the 3-point standard

Gauss rule (ST3) on the integration mesh 16(d) leads to an erroneous transverse deflection

field solution.

6.5. Performance of the scaled transverse shear stress solution

The performance of the recovered scaled transverse shear stress predictions is now

assessed. The problem already presented in Section 6.3 is used to this aim. In addition

to the unstructured integration meshes shown in Fig. 12, we consider the set of structured

integration meshes depicted in Fig. 19. It is recalled that the scaled transverse shear

stress variable is directly recovered at the nodes using (14) after the primitive variables are

computed.

Fig. 20 presents the L2-norm of the nodal error of the scaled transverse shear stress so-

lution. The optimal convergence rate is delivered by the VANP formulation irrespectively of

the plate thickness when the structured integration meshes are used (Fig. 20(a)), whereas

(with the exception of the thicker plate considered) the convergence rate deteriorates to

a rate of about half of its optimal value when the unstructured integration meshes are

used (Fig. 20(b)) resulting in degraded accuracy. Notwithstanding this deteriorated per-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 19: Structured integration meshes to assess the performance of the transverse shear

stress predictions in the VANP formulation.
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formance, the predicted solutions for the primitive variables is excellent and optimally

convergent as it was shown in Section 6.3. We also stress that this poor convergence be-

havior of the scaled transverse shear stress variable should not be a concern as its uniform

convergence in the L2-norm is in general very difficult to achieve [40].

(a) (b)

Fig. 20: L2-norm of the nodal error of the scaled transverse shear stress solution using

(a) structured and (b) unstructured integration meshes in the VANP formulation. For the

structured integration meshes, optimal rates of convergence are delivered irrespectively

of the plate thickness. The unstructured integration meshes deliver the optimal rate of

convergence only for the plate with normalized thickness t/L = 0.1, whereas the reminder

plates converge at about half of the optimal rate.

7. Concluding Remarks

In this paper, a volume-averaged nodal projection (VANP) method for the solution of

Reissner-Mindlin plate problems using primitive variables (i.e., rotations and transverse

displacement) was presented. The proposed approach relies on the construction of a pro-

jection operator that permits the computation of the shear strain in terms of the primitive
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variables without presenting shear-locking issues in the limit of the thin-plate theory. The

VANP method uses linear maximum-entropy approximations and bubble-like enrichment

of the rotation degrees of freedom is added for stability purposes. A special integration

scheme on triangular meshes was developed to fix integration errors in the computation

of the meshfree stiffness matrices. The assessing of the VANP formulation through several

benchmark problems, which included a zero shear deformation patch test, a circular plate

subjected to a uniform load, a square plate subjected to a nonuniform load and a parallelo-

gram plate subjected to a uniform load, confirmed the accuracy and optimal convergence of

the VANP approach for a wide range of plate thicknesses without experiencing shear-locking

issues.

Further improvement of the numerical integration of the stiffness matrix and force vec-

tor is being explored by developing a nodal integration technique. From a mathematical

standpoint, the construction of error estimates for the VANP approach would help in under-

standing its optimal performance. The extension of the VANP approach to the von Kármán

theory for nonlinear plates is worth being developed and explored. These topics will be

addressed in subsequent works.
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