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Abstract

A displacement-based Galerkin meshfree method for large deformation analysis of nearly-

incompressible elastic solids is presented. Nodal discretization of the domain is defined by

a Delaunay tessellation (three-node triangles and four-node tetrahedra), which is used to

form the meshfree basis functions and to numerically integrate the weak form integrals.

In the proposed approach for nearly-incompressible solids, a volume-averaged nodal pro-

jection operator is constructed to average the dilatational constraint at a node from the

displacement field of surrounding nodes. The nodal dilatational constraint is then pro-

jected onto the linear approximation space. The displacement field is constructed on the

linear space and enriched with bubble-like meshfree basis functions for stability. The new

procedure leads to a displacement-based formulation that is similar to F -bar methodologies

in finite elements and isogeometric analysis. We adopt maximum-entropy meshfree basis

functions, and the performance of the meshfree method is demonstrated on benchmark

problems using structured and unstructured background meshes in two and three dimen-

sions. The nonlinear simulations reveal that the proposed methodology provides improved

robustness for nearly-incompressible large deformation analysis on Delaunay meshes.
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approximation, F -bar method, Delaunay meshes

1. Introduction

In nearly-incompressible analysis of solids that undergo large deformations, mesh dis-

tortion introduces a limitation for practical use of simplicial (Delaunay) tessellations within

the framework of standard finite elements. Three-node triangular and four-node tetrahedral

finite elements are not used for nearly-incompressible analysis of solids because they lead

to volumetric locking. However, they can be suitably modified for nearly-incompressible

settings through the displacement/pressure mixed formulation (u-p form). The realization

of these finite elements is the well-known MINI element [1], where the nodes located at

the vertices of the simplicial element are used to interpolate continuous linear displace-

ment and continuous linear pressure fields. In addition, the displacement field is enriched

with an interior node located at the barycenter of the simplicial element. This extra node

is related to a cubic (bubble) basis function that vanishes on the element boundary and

renders an inf-sup stable element [2–4]. Although the MINI element demonstrated better

stability properties than several finite element formulations in certain finite deformation

regimes [5], the shape functions dependence on the Delaunay tessellation makes it very

sensitive to mesh distortion. In this paper, a new methodology on Delaunay meshes is

proposed for the meshfree analysis of nearly-incompressible solids at finite strains that is

superior to the MINI element formulation.

In the literature, the poor performance of simplicial tessellations in large deforma-

tion analysis of nearly-incompressible solids has been improved through various techniques

such as mixed-enhanced elements [6–8], pressure stabilization [9–11], composite pressure

fields [12–14], and average nodal pressure/strains [15–20]. The last two approaches are

broadly based on the idea of reducing pressure (dilatational) constraints to alleviate volu-

metric locking. In meshfree methods, nodal integration techniques [21] can be considered

to be indirectly related to methods that use simplicial tessellations since their formulation
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is based on the dual of the Delaunay triangulation, that is, the Voronoi diagram. In this ap-

proach, the fewer constraints that are met by performing numerical integration only at the

nodes permits to alleviate volumetric locking. However, the drawback of nodal integration

techniques is their instability, which has motivated studies to stabilize them [22, 23].

In contrast to finite elements, meshfree methods are constructed using basis functions

that possess larger supports and do not rely on a mesh for their definition. This allows

meshfree methods some degree of insensitivity to mesh distortions, thus providing us with

the motivation to use meshfree basis functions in this paper. Nonetheless, a background

mesh is still required in Galerkin meshfree methods to perform the numerical integration

of the weak form integrals. In the meshfree method that is developed herein, background

meshes of three-node triangles in two dimensions and four-node tetrahedra in three dimen-

sions, are used.

Volumetric locking remains an issue in meshfree methods that use simplicial tessella-

tions for numerical integration in nearly-incompressible media problems. Thus, a special

procedure needs to be developed to alleviate volumetric locking. To this end the nonlinear

version of the volume-averaged nodal projection method (referred to as VANP in Ref. [24])

proposed for small strain elasticity in Ref. [25] is developed to average the dilatational con-

straint at a node from the displacement field of surrounding nodes. The nodal dilatational

constraint is then projected onto the linear approximation space. The displacement field

is constructed on the linear space and enriched with bubble-like meshfree basis functions

for stability. The formulation so devised leads to a displacement-based method that shares

some common features with the F -bar-Patch method of Ref. [26] and the isogeometric F -

bar projection method of Ref. [27], and as such, it can be regarded as an F -bar methodology

for meshfree methods. In the numerical implementation, maximum-entropy basis functions

are used as the meshfree basis functions. Another approach that uses bubble functions to

address volumetric locking for low-order simplicial tessellations is proposed in Ref. [28] for

compressible and nearly-incompressible linear elastic solids and in Refs. [29, 30] for large

3



deformations. Wu and Koishi [30] use the conforming nodal integration procedure of Chen

et al. [31] to suppress locking, whereas in our approach, the locking-free behavior stems

from a u-p mixed formulation in which a volume-averaged technique is used to eliminate

the pressure degrees of freedom from the analysis. Furthermore, the smoothing in Ref. [30]

is done over the covering that is formed by the bubble nodes that are neighbors to an ele-

ment face and the nodes that define that face, whereas in this work the volume-averaging

is done over the region of support of the vertex basis functions.

In a Galerkin-based meshfree method, the integration domain is a cell that typically

does not coincide with the region that is defined by the intersecting supports of two over-

lapping meshfree basis functions. In addition, meshfree basis functions are rational (non-

polynomial) functions. These are two central issues that introduce numerical errors when

using standard Gauss quadrature for numerical integration. The errors can be reduced

by using a large number of Gauss points per cell; however, this substantially increases

the computational costs in the numerical integration. There have been many attempts

to correct these integration errors. An early contribution was due to Dolbow and Be-

lytschko [32], who proposed to use integration cells that were aligned with the support

of the nodal basis functions. Since then, many other approaches have been pursued (for

instance, see Refs. [33, 34]). Babuška and coworkers have provided the theoretical basis

for the numerical integration issue in first-order meshfree methods [35] as well as higher-

order meshfree approximations [36]. Other approaches that are based on nodal integration

ideas [31] construct a strain correction that significantly reduces integration errors. Ortiz

et al. [25] proposed a strain correction based on a smoothing procedure for linear approx-

imations on triangular and quadrilateral background meshes and extended these ideas to

tetrahedral background meshes in Ref. [37]. Duan et al. [38] proposed a smoothing proce-

dure for second-order approximations on triangular background meshes. Chen et al. [39]

proposed a variationally consistent integration method for high-order meshfree approxima-

tions that generalizes the notion of nodal integration and is applicable for Gauss quadrature
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on triangles and squares. Recently, Duan et al. [40] used the Hu-Washizu three-field vari-

ational principle to demonstrate the variational consistency of the second-order accurate

integration scheme previously presented in Ref. [38] for meshfree methods on triangular

meshes and an extension of this scheme to third-order accuracy was also provided. The

corresponding second-order accurate integration scheme for four-node tetrahedral meshes

is presented in Duan et al. [41].

The nonlinear weak form integrals in the VANP method are more involved and therefore

more accurate integration schemes are required. One of the findings in the development

of the work herein was that the strain correction procedure proposed earlier by the au-

thors [25, 37] was not effective for integration of the nonlinear weak VANP form. Although

this correction exactly satisfied linear patch tests and was second-order accurate, it was

found to be insufficiently robust for large strains. The integration by Duan et al. [38, 41]

on the other hand is second-order accurate and satisfies the quadratic patch test and thus

offers more regularity, which provides better robustness in two- and three-dimensional

computations.

The main contributions in this paper for the analysis of nearly-incompressible solids at

finite strains are as follows:

• A robust displacement-based formulation is developed for Delaunay tessellations via

modifications to the standard u-p mixed weak form. To the best of our knowledge,

this approach has not previously appeared in the literature.

• The use of bubble-like meshfree basis functions in our formulation provides the nec-

essary stability of the pressure field. As a consequence, it delivers smooth pressure

fields on Delaunay tessellations. This feature is not present in other formulations for

low-order tessellations.

• The integration method of Duan et al. [41], which proved better than the integration

method developed in our earlier papers [25, 37], is implemented for the first time in
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3D large deformations.

• In comparing the proposed formulation with its closest finite element counterpart,

the MINI element, it allows larger deformations and delivers more accurate solutions

with smoother pressure fields.

The remainder of the paper is organized as follows. Section 2 presents a summary

of maximum-entropy basis functions. The formulation proposed for nearly-incompressible

elastic solids at finite strains is developed in Section 3. Here, the volume-averaged nodal

projection (VANP) method is developed via modifications to the standard u-p mixed weak

form. The discrete equations are provided in Section 4, and the numerical integration

scheme used in the meshfree method is outlined in Section 5. Numerical examples are

presented in Section 6 to demonstrate the performance of the meshfree method in large

deformation analysis of nearly-incompressible elastic solids. Some concluding remarks are

given in Section 7.

2. Maximum-entropy basis functions

Meshfree basis functions typically do not vanish on the domain boundary, which pre-

cludes direct imposition of essential boundary conditions; hence procedures such as La-

grange multipliers, penalty methods or Nitsche’s method among others must be used to

enforce essential boundary conditions (for details, see Ref. [42]). However, maximum-

entropy (max-ent) basis functions [43–45] vanish on the boundary of a convex domain [44],

which allows direct imposition of essential boundary conditions at the nodes. Because of

this feature, max-ent basis functions are selected in the VANP formulation.

Consider a convex domain represented by a set of n scattered nodes and a prior (weight)

function wa(X) associated with node a. On using the Shannon-Jaynes entropy func-

tional [45], the set of max-ent basis functions {φa(X) ≥ 0}na=1 that define the approx-

imation function uh(X) =
∑

a φa(X)ua (ua are nodal coefficients), is obtained via the
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solution of the following concave optimization problem:

max
φ∈IRn

+

−
n
∑

a=1

φa(X) ln

(

φa(X)

wa(X)

)

(1a)

subject to the linear reproducing conditions:

n
∑

a=1

φa(X) = 1
n
∑

a=1

φa(X)ca = 0, (1b)

where ca = Xa − X are shifted nodal coordinates and IRn
+ is the non-negative orthant.

Typical priors that can be used include kernel or window functions that are well-known in

the meshfree literature. In this paper, we use a C2 quartic polynomial given by

wa(q) =







1− 6q2 + 8q3 − 3q4 0 ≤ q ≤ 1

0 q > 1
, (2)

where q = ‖Xa − X‖/ρa and ρa = γha is the support radius of the basis function of

node a; γ is a parameter that controls the support-width of the basis function, and ha is a

characteristic nodal spacing associated with node a.

On using Lagrange multipliers, the solution of the variational problem (1) is [45]:

φa(X) =
Za(X;λ∗)

Z(X;λ∗)
, Za(X;λ∗) = wa(X) exp(−λ

∗ · ca), (3)

where Z(X;λ∗) =
∑

b Zb(X;λ∗) and λ
∗ = [λ∗

1 λ∗

2 λ∗

3]
T in three dimensions. In (3), the

Lagrange multiplier vector λ∗ is the minimizer of the dual optimization problem:

λ
∗ = arg min

λ∈IRd

lnZ(X;λ), (4)

which leads to a system of d nonlinear equations:

F (λ) = ∇λ lnZ(λ) = −
n
∑

a

φa(X)ca = 0, (5)

where d is the spatial dimension and ∇λ refers to the gradient with respect to λ. Once

the converged λ
∗ is found, the basis functions are computed from (3) and the gradient of
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the basis functions is [46]:

∇φa = φa

{

ca ·
[

(H)−1 − (H)−1 · A
]

−
n
∑

b=1

∇wb exp(−λ
∗ · cb)

Z

}

+
∇wa exp(−λ

∗ · ca)

Z
,

(6a)

where

A =

n
∑

b=1

cb ⊗
∇wb exp(−λ

∗ · cb)

Z
(6b)

and H is the Hessian matrix defined by

H = ∇λF = ∇λ∇λ lnZ =
n
∑

b=1

φb cb ⊗ cb (6c)

with ⊗ denoting the dyadic product.

3. Variational formulation

Consider an elastic body with open domain Ω ⊂ IRd (d = 2, 3) in the initial (reference)

configuration. The domain is bounded by the (d − 1)-dimensional surface ∂Ω whose unit

outward normal is N . A mapping, denoted as χ, defines the displacement u of a particle

from its initial position X to its current position x, that is, u = χ(X)−X = x−X. The

boundary is assumed to admit the decompositions ∂Ω = ∂Ωχ ∪ ∂Ωt and ∅ = ∂Ωχ ∩ ∂Ωt,

where ∂Ωχ is the portion of the boundary where the deformation χ = χ̂ is prescribed and

∂Ωt is the portion of the boundary where the external surface forces t̂0 (assumed to be

independent of the motion) are applied. The deformations are required to be admissible,

which means they belong to the space:

D = {χ : Ω → IRd | detF > 0, χ = χ̂ on ∂Ωχ}, (7)

where

F = ∇0χ = ∇0X = I +∇0u (8)
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is the deformation gradient tensor1; I is the identity tensor.

The kinematic relation between the Green-Lagrange strain tensor E(χ) and the defor-

mation gradient tensor F (χ) is:

E =
1

2

(

F
T
F − I

)

, (9)

which can be expressed in terms of the right Cauchy-Green deformation tensor C = F
T
F .

The elastic body is assumed to be homogeneous and isotropic. The second Piola-

Kirchhoff stress S(χ) is related nonlinearly to the strain E(χ) by

S =
∂Ψ(E(χ))

∂E
, (10)

where Ψ is a strain energy function, which in addition to E, depends on Lamé’s first (λ)

and second (µ) material parameters.

3.1. Displacement-based weak form

The potential energy functional for an elastic body that is subjected to external surface

forces and is free of body forces is given as

Π(χ) =

∫

Ω
Ψ(E(χ)) dV −

∫

∂Ωt

t̂0 · χdS. (11)

The stationarity of (11) in the arbitrary direction v ∈ V = {v : Ω → IRd | v = 0 on ∂Ωχ}

is given by the directional derivative

DΠ(χ)[v] ≡
dΠ(χ+ ǫv)

dǫ

∣

∣

∣

∣

ǫ=0

= 0 (12)

and yields the displacement-based weak form as follows:

DΠ(χ)[v] =

∫

Ω
S : DE(χ)[v] dV −

∫

∂Ωt

t̂0 · v dS = 0, (13)

1Subscript 0 is used to refer to operations in the initial configuration.
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where DE(χ)[v] can be proved (for instance, see Ref. [47]) to be

DE(χ)[v] = (F T
∇0v)sym. (14)

On substituting (14) into (13) leads to the final displacement-based weak form expression

as

DΠ(χ)[v] =

∫

Ω
S : (F T

∇0v)sym dV −

∫

∂Ωt

t̂0 · v dS = 0. (15)

A nearly-incompressible material must satisfy the limit J = detF → 1, which is

achieved by setting the Lamé parameters such that the Poisson’s ratio approaches 1/2.

However, imposing this severe constraint on the kinematic behavior leads to volumetric

locking when using the displacement-based weak form (15) [48]. This indicates that the

weak form (15) cannot be used to describe movement while simultaneously satisfying J ≈ 1.

Volumetric locking manifests itself in numerical formulations and can be suppressed using

the u-p mixed formulation.

3.2. u-p mixed weak form

The u-p mixed formulation is a two-field variational problem in which, in addition to

the displacement field, a second independent variable is chosen to represent the hydrostatic

pressure field. In order to identify the hydrostatic pressure variable in the formulation, the

strain energy function is decomposed into its deviatoric and volumetric parts:

Ψ(J,E) = Ψdev(J,E) + Ψdil(J), (16)

which redefines the potential energy functional as follows:

Π(χ) =

∫

Ω
Ψdev(J,E(χ)) dV +

∫

Ω
Ψdil(J) dV −

∫

∂Ωt

t̂0 · χdS. (17)

As in (11), the stationarity of (17) is obtained by applying the directional derivative, which

leads to the weak form

DΠ(χ)[v] =

∫

Ω
(Sdev + S

dil) : (F T
∇0v)sym dV −

∫

∂Ωt

t̂0 · v dS = 0, (18)
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where

S
dev =

∂Ψdev

∂E
(19)

and

S
dil =

dΨdil

dJ

∂J

∂E
= pJC−1. (20)

In (20), the hydrostatic pressure p = dΨdil

dJ and the identity ∂J
∂E = JC−1 have been used (for

instance, see Ref. [47]).

On defining the pressure space as P :=
{

p : p ∈ L2(Ω),
∫

Ω p dΩ = 0
}

and introducing

p ∈ P as an independent pressure trial function with q ∈ P an arbitrary pressure test

function, yields the following u-p mixed variational form:

∫

Ω
(Sdev + pJC−1) : (F T

∇0v)sym dV −

∫

∂Ωt

t̂0 · v dS = 0, (21a)

∫

Ω
q

(

p−
dΨdil

dJ

)

dV = 0. (21b)

3.3. Volume-averaged nodal projection method

An alternative locking-free approach, where the only variable is the displacement field,

can be developed starting from the multiplicative decomposition of the deformation gradi-

ent tensor into its deviatoric and dilatational parts: F = F
dil
F

dev [49], and using this to

define a modified deformation gradient tensor as follows [50]:

F̄ = F̄
dil
F

dev, (22)

where F̄
dil = J̄1/3

I and F
dev = J−1/3

F , which leads to

det F̄ = J̄ , (23)

since detF dev = 1. In (22), F̄ dil is a modified tensor that suppresses volumetric locking [27].

For convenience in further derivations, (22) is rewritten as

F̄ = αF , (24)
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where α =
(

J̄/J
)1/3

. An identity akin to (24) is the basis for the F -bar methodology used

in finite elements [12, 50] and isogeometric analysis [27].

From (24) it is clear that the key ingredient in the modified displacement-based weak

form for meshfree methods proposed herein is to find an appropriate definition for J̄ such

that volumetric locking is suppressed. In other words, an explicit definition for the ‘bar’

operator needs to be developed. In brief, the idea is to find such an operator from the pres-

sure constraint (21b) of the u-p mixed weak form. Before proceeding, special tessellations

will be defined for constructing J̄ and for numerical integration in the meshfree method.

Let the domain tessellation with simplices be denoted by T (Ω). The tessellation con-

sists of three-node triangular or four-node tetrahedral cells denoted by C. The vertices of

the tessellation are used to define the standard node set N s. In addition to the standard

node set, we define a barycenter node set as N b with nodes located at the barycenter of

each cell C in the tessellation T (Ω). So, an enhanced node set is defined as N+ = N s∪N b.

Fig. 1 depicts a schematic representation of a two-dimensional simplicial tessellation with

its corresponding cells and node set definitions. In our approach, the simplicial tessellation

T (Ω) that connects the standard node set N s is generated using a meshing software and

the Gauss points locations for the numerical integration procedure are computed based

on this mesh. The enhanced node set N+ is constructed when needed by including the

additional nodes that are required in the standard node set.

The starting step for developing the bar operator is the discretization of the pressure

constraint (21b) using

ph(X) =
n
∑

b=1

φb(X)pb, (25a)

qh(X) =

n
∑

c=1

φc(X)qc, (25b)

where n is the number of nodes in the node set N s, whose associated meshfree basis

functions φi (i = b, c) have a nonzero discrete value at the sampling point X. On sub-

stituting (25) into the pressure constraint (21b) and relying on the arbitrariness of nodal
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C T (Ω)

N s

N b

Fig. 1: Schematic representation of a two-dimensional simplicial tessellation T (Ω) for the

enhanced node set N+ = N s ∪N b. The shaded area is a representative cell denoted by C.

pressure test functions yields

nb
∑

b=1

∫

Ω
φc(X)φb(X)pb dV −

∫

Ω
φc(X)

dΨdil

dJ
dV = 0, (26)

and performing row-sum on the discrete pressure term leads to

{
∫

Ω
φc(X) dV

}

pc −

∫

Ω
φc(X)

dΨdil

dJ
dV = 0. (27)

Finally, solving for pc in (27) gives the following volume-averaged nodal pressure:

pc =

∫

Ωc
φc(X)dΨ

dil

dJ dV
∫

Ωc
φc(X) dV

, (28)

where the integration volume Ω has been replaced with Ωc, the union of cells that are

attached to node c (see Fig. 2). Equation (28) is the nonlinear version of the volume-

averaged nodal pressure used in Refs. [24, 25] for linear elasticity.

To realize the bar operator, as an example we consider the following dilatational strain

energy:

Ψdil =
1

2
κ(J − 1)2, (29)

where κ = λ + 2
3µ is the bulk modulus of the material. Thus, dΨdil

dJ = κ(J − 1) and (28)
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yields

pc = κ

∫

Ωc
φc(X)J dV

∫

Ωc
φc(X) dV

− κ = κ(Jc − 1) = κ(πc[J ]− 1), (30)

where the volume-averaged nodal projection (VANP) operator πc is:

πc[·] =

∫

Ωc
φc(X)[·] dV

∫

Ωc
φc(X) dV

. (31)

The adoption of the name ‘projection’ reflects the fact that (28) stems from the pressure

constraint (21b), which is like an L2 projection. Note the similarity of the operator (31)

with the assumed gradient operator of Ref. [20] (see (16) therein) and the assumed strain

nodal matrix of Ref. [51] (see (18) therein).

As can be inferred from (30), the nodal operator applied to J gives its nodal represen-

tation as

Jc = πc[J ] =

∫

Ωc
φc(X)[J ] dV

∫

Ωc
φc(X) dV

. (32)

Finally, by the linear combination ph =
∑

c φcpc, the bar operator is given by the projection

operator as

π[·] =
nc
∑

c=1

φc(X)πc[·] =
nc
∑

c=1

φc(X)

{
∫

Ωc
φc(X)[·] dV

∫

Ωc
φc(X) dV

}

. (33)

Thus, J̄ is computed as follows:

J̄ = π[J ] =

nc
∑

c=1

φc(X)πc[J ] =

nc
∑

c=1

φc(X)

{
∫

Ωc
φc(X)J dV

∫

Ωc
φc(X) dV

}

=

nc
∑

c=1

φc(X)Jc. (34)

As shown above, the VANP approach is based on modifications to the standard u-pmixed

formulation. Consequently, some consideration to the inf-sup condition [2–4] should follow.

In lieu of an analytical treatment, the proposed formulation here is designed to be very

close in form to the inf-sup stable MINI element, i.e., the displacement field is enhanced

with additional nodes located at the barycenter of the simplices and these nodes carry

displacement degrees of freedom. In the VANP formulation, max-ent basis functions are

used to approximate the displacement and pressure fields. However, no pressure degrees

of freedom are associated with the barycentric nodes, and the constraint ratio for the
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c
Ωc

Fig. 2: Schematic representation of the standard node set N s. The shaded region illustrates

an integration volume for the computation of the VANP operator associated with node c.

VANP approach is the same as the MINI element. We point out that the max-ent basis

function that is associated with the barycentric node does not vanish on the boundary

of the corresponding simplex. However, as the support gets tighter for the max-ent basis

function that is associated with the barycentric node, the basis function tends to a bubble

function on the simplex. Hence, we refer to these barycenter nodes as bubble-like nodes.

So, following the preceding considerations, first-order max-ent basis functions are used to

construct the space Ph(Uh) with the standard node set N s and the space Uh with the

enhanced node set N+. For implementation purposes of the VANP operator, this means

the basis functions that appear in the operator (33) are computed using the standard node

set N s, but J = detF in (34) is computed using the enhanced node set N+ since F is

computed from the displacement field.

To achieve a symmetric tangent stiffness matrix, F̄ is introduced in the energy function,

which leads to the following modified potential energy functional:

Π̄(χ) =

∫

Ω
Ψ(Ē(χ)) dV −

∫

∂Ωt

t̂0 · χdS, (35)

where Ψ(Ē(χ)) is the modified strain energy function, which depends on F̄ through the
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modified Green-Lagrange strain tensor:

Ē =
1

2

(

F̄
T
F̄ − I

)

. (36)

The locking-free modified displacement-based weak form is obtained by taking the

directional derivative in (35), which gives

DΠ̄(χ)[v] =

∫

Ω
S̄ : DĒ(χ)[v] dV −

∫

∂Ωt

t̂0 · v dS = 0. (37)

In (37), the modified second Piola-Kirchhoff stress tensor S̄(χ) is defined as

S̄ = S(Ē(χ)) =
∂Ψ(E)

∂E
(Ē(χ)) (38)

and DĒ(χ)[v] needs to be developed. To this end, the following operator is defined:

θ[·] =
π[·]

π[J ]
−

1

J
{·}. (39)

The complete derivation of DĒ(χ)[v] is presented in Appendix A. The final expression is

DĒ(χ)[v] =
1

3
θ
[

Jtr
(

∇0vF
−1

)]

F̄
T
F̄ + α(F̄ T

∇0v)sym. (40)

On substituting (40) into (37) leads to the final modified displacement-based weak form

expression:

DΠ̄(χ)[v] =
1

3

∫

Ω
θ
[

Jtr(∇0vF
−1)

]

S̄ : (F̄ T
F̄ ) dV +

∫

Ω
αS̄ : (F̄ T

∇0v)sym dV

−

∫

∂Ωt

t̂0 · v dS = 0. (41)

3.4. Linearization

The implicit numerical solution relies on the linearization of the weak form (41). The

linearized weak form in the direction of the increment ∆u is given by

DΠ̄(χ)[v] + D2Π̄(χ)[v,∆u] = 0, (42)

where D2Π̄(χ)[v,∆u] ≡ D
{

DΠ̄(χ)[v]
}

[∆u] is the second variation of Π̄(χ) along ∆u.

The complete derivation of the second variation is given in Appendix B. Only the final
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result is presented here. The external forces are assumed to be independent of the motion,

and for the sake of clarity, the second variation is split into material and geometric parts:

D2Π̄(χ)[v,∆u] =
(

D2Π̄(χ)[v,∆u]
)

mat
+

(

D2Π̄(χ)[v,∆u]
)

geo
, (43a)

where

(

D2Π̄(χ)[v,∆u]
)

mat
=+

1

9

∫

Ω
θ
[

Jtr(∇0vF
−1)

]

θ
[

Jtr(∇0∆uF
−1)

]

(F̄ T
F̄ ) : D̄ : (F̄ T

F̄ ) dV

+
1

3

∫

Ω
αθ

[

Jtr(∇0vF
−1)

]

(F̄ T
F̄ ) : D̄ : (F̄ T

∇0∆u)sym dV

+
1

3

∫

Ω
α(F̄ T

∇0v)sym : D̄ : (F̄ T
F̄ ) θ

[

Jtr(∇0∆uF
−1)

]

dV

+

∫

Ω
α2(F̄ T

∇0v)sym : D̄ : (F̄ T
∇0∆u)sym dV, (43b)

and

(

D2Π̄(χ)[v,∆u]
)

geo
=−

1

3

∫

Ω

1

J̄2
π
[

Jtr(∇0vF
−1)

]

π
[

Jtr(∇0∆uF
−1)

]

S̄ : (F̄ T
F̄ ) dV

+
1

3

∫

Ω

1

J̄
π
[

Jtr(∇0vF
−1)tr(∇0∆uF

−1)
]

S̄ : (F̄ T
F̄ ) dV

−
1

3

∫

Ω

1

J̄
π
[

Jtr(∇0vF
−1

∇0∆uF
−1)

]

S̄ : (F̄ T
F̄ ) dV

+
1

3

∫

Ω
tr(∇0vF

−1
∇0∆uF

−1)S̄ : (F̄ T
F̄ ) dV

+
2

9

∫

Ω
θ
[

Jtr(∇0vF
−1)

]

θ
[

Jtr(∇0∆uF
−1)

]

S̄ : (F̄ T
F̄ ) dV

+
2

3

∫

Ω
αθ

[

Jtr(∇0vF
−1)

]

S̄ : (F̄ T
∇0∆u)sym dV

+
2

3

∫

Ω
α(F̄ T

∇0v)sym : S̄ θ
[

Jtr(∇0∆uF
−1)

]

dV

+

∫

Ω
α2

S̄ : [(∇0v)
T
∇0∆u]sym dV. (43c)

In (43b), the modified Lagrangian elasticity tensor D̄ is computed as follows:

D̄ = D(Ē(χ)) =
∂S(E)

∂E
(Ē(χ)). (44)

Finally, upon substituting (41) and (43) into (42) yields the final expression for the lin-

earized weak form.
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4. Discrete equations

The discretization of the linearized weak form (42) leads to the following Newton-

Raphson scheme:

t+∆t (Kmat + Kgeo)
(i−1)∆u

(i) = t+∆t
F− t+∆t

T
(i−1) = t+∆t

R
(i−1), (45)

where Kmat and Kgeo are the material and geometric global tangent stiffness matrices,

respectively; F and T are the external and internal global nodal force column vectors,

respectively; R is the residual global nodal force column vector; and ∆u is the column

vector that collects all the displacement degrees of freedom of the mesh. On the other

hand, t + ∆t denotes the incremental approach where a solution is known at a discrete

time t and the solution at a discrete time t+∆t is sought; the increment ∆t corresponds to

the load step or load increment. Finally, i stands for the equilibrium iterations within an

increment. The global tangent stiffness matrices as well as the global nodal force column

vectors are obtained by assembling the nodal contributions.

The discrete material and geometric tangent stiffness matrices, as well as the nodal

force column vectors, are derived using the maximum-entropy approximation for both the

test and trial functions in the reference configuration, as follows:

∆uh(X) =

n
∑

p=1

φp(X)∆up, (46a)

vh(X) =
n
∑

q=1

φq(X)vq. (46b)

The basis functions φi (i = p, q) are computed using the nodal information of the node

set N+ of the background mesh. The same mesh is used to locate the Gauss points for

numerical integration of the linearized weak form integrals. Thus, the integration domain

becomes the elements of the background mesh and is denoted as Ωe. However, we recall

that the projection operator (or equivalently, the bar operator) is computed using the

standard node set N s (see Section 3.3 for details).
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To simplify the exposition, the explicit expressions for the tangent stiffness matrices

and residual nodal force vector are provided only in three-dimensions. To this end, the

following matrix notations, which result from symmetry conditions, are used:

C̄ = {F̄ T
F̄ } =

[

C̄11 C̄22 C̄33 2C̄12 2C̄13 2C̄23

]T
, (47)

S̄ = {S̄} =
[

S̄11 S̄22 S̄33 S̄12 S̄13 S̄23

]T
, (48)

D̄ = {D̄} =





























D̄1111 D̄1122 D̄1133 D̄1112 D̄1113 D̄1123

D̄2222 D̄2233 D̄2212 D̄2213 D̄2223

D̄3333 D̄3312 D̄3313 D̄3323

D̄1212 D̄1213 D̄1223

sym. D̄1313 D̄1323

D̄2323





























, (49)

where {·} denotes Voigt notation. The following matrix forms, which result from the

discretization procedure, are also used:

Bq =





























(F11)
−1φq,X 0 0

0 (F22)
−1φq,Y 0

0 0 (F33)
−1φq,Z

(F21)
−1φq,Y (F12)

−1φq,X 0

(F31)
−1φq,Z 0 (F13)

−1φq,X

0 (F32)
−1φq,Z (F23)

−1φq,Y





























, (50)

B̄
0
q =





























F̄11φq,X F̄21φq,X F̄31φq,X

F̄12φq,Y F̄22φq,Y F̄32φq,Y

F̄13φq,Z F̄23φq,Z F̄33φq,Z

F̄12φq,X + F̄11φq,Y F̄22φq,X + F̄21φq,Y F̄32φq,X + F̄31φq,Y

F̄13φq,X + F̄11φq,Z F̄23φq,X + F̄21φq,Z F̄33φq,X + F̄31φq,Z

F̄13φq,Y + F̄12φq,Z F̄23φq,Y + F̄22φq,Z F̄33φq,Y + F̄32φq,Z





























, (51)
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B̄
kk
q =





























θ
[

JmTBq

]

C̄11

θ
[

JmTBq

]

C̄22

θ
[

JmTBq

]

C̄33

2θ
[

JmTBq

]

C̄12

2θ
[

JmTBq

]

C̄13

2θ
[

JmTBq

]

C̄23





























, (52)

B̄q =
1

3
B̄
kk
q + αB̄0

q . (53)

Additionally, the following vector, which arises from some trace operations, is defined:

m =
[

1 1 1 1 1 1
]T

. (54)

4.1. Residual nodal force vector

The residual nodal force vector is obtained upon discretization of (41). This gives

Rq =

∫

∂Ωe
t

φq t̂0 dS −
1

3

∫

Ωe

θ
[

JBT
q m

]

C̄
T
S̄ dV −

∫

Ωe

α
(

B̄
0
q

)T
S̄ dV. (55)

4.2. Material tangent stiffness matrix

The material tangent stiffness matrix is obtained upon discretization of (43b). Before

proceeding, the terms in (43b) are rearranged such that the following expression is obtained:

(

D2Π̄(χ)[v,∆u]
)

mat
=

∫

Ω
∇0v : D̄ : ∇0∆u dV, (56)

where

∇0(·) =
1

3
θ
[

Jtr(∇0(·)F
−1)

]

C̄ + α
(

F̄
T
∇0(·)

)

sym
. (57)

Due to the symmetry of (56), further simplifications can be done using Voigt notation to

obtain
(

D2Π̄(χ)[v,∆u]
)

mat
=

∫

Ω
{∇0v}

T{D̄}{∇0∆u} dV. (58)

Finally, on substituting (46) into (58) leads to the following discrete material tangent

stiffness matrix:

(Kmat)pq =

∫

Ωe

B̄
T
p D̄B̄q dV. (59)
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4.3. Geometric tangent stiffness matrix

On substituting (46) into (43c) yields the following discrete geometric tangent stiffness

matrix:

(Kgeo)pq = −
1

3

∫

Ωe

1

J̄2
π
[

JBT
pm

]

π
[

JmT
Bq

]

C̄
T
S̄ dV

+
1

3

∫

Ωe

1

J̄
π
[

JBT
pmm

T
Bq

]

C̄
T
S̄ dV

−
1

3

∫

Ωe

1

J̄
π
[

JF−T(∇0φp)(∇0φq)
T
F

−1
]

C̄
T
S̄ dV

+
1

3

∫

Ωe

F
−T(∇0φp)(∇0φq)

T
F

−1
C̄
T
S̄ dV

+
2

9

∫

Ωe

θ
[

JBT
pm

]

θ
[

JmT
Bq

]

C̄
T
S̄ dV

+
2

3

∫

Ωe

α θ
[

JBT
pm

]

S̄
T
B̄
0
q dV

+
2

3

∫

Ωe

α(B̄0
p)

T
S̄ θ

[

JmT
Bq

]

dV

+ I

∫

Ωe

α2(∇0φp)
T
S̄(∇0φq) dV. (60)

5. Numerical integration

The cell-based integration of discrete quantities that depend on meshfree basis func-

tions derivatives introduces integration errors when standard Gauss integration is used.

To alleviate these integration errors in the VANP method, the second-order integration cor-

rection presented in Duan et al. [40, 41] is adopted. This approach satisfies the quadratic

patch test and thus provides the regularity and resolution that is needed, and leads to a

robust method in the large deformation regime.

The numerical integration procedure needs an integration cell that is obtained from a

simplicial tessellation. Fig. 3 depicts a typical tessellation and a representative integration

cell in two dimensions for this scheme; the enhanced node set N+ is also shown to remark

that the nodal basis functions derivatives are to be computed using the enhanced node set

since they stem from the displacement field.
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Fig. 3: Geometric entities for the second-order accurate integration scheme. (a) Simplicial

tessellation, where the shaded region represents an integration cell whose domain is denoted

by Ωe and its boundary by ∂Ωe = ∂Ωe
1

⋃

∂Ωe
2

⋃

∂Ωe
3; and (b) the integration cell and

nodes, where the interior Gauss points are depicted as + and the boundary Gauss points

as ∗. Note that depending on the support size of the nodal basis functions, nodes that

are beyond the cell can contribute at a Gauss point if their basis functions take a nonzero

value at that point.

The standard second-order accurate Gauss integration scheme has three interior Gauss

points on a triangular cell and four interior Gauss points on a tetrahedral cell. Essentially,

the integration method to be used herein provides a correction to the values of the basis

functions derivatives at these interior Gauss points.

The Cartesian coordinate system is chosen, where for convenience X ≡ X1, Y ≡ X2

and Z ≡ X3. In addition, nj (j = 1, 2, 3) is the j-th component of the unit outward normal

to a cell edge in the Cartesian coordinate system. The second-order integration accuracy
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is obtained by requiring the basis functions derivatives to satisfy the divergence constraint

∫

Ωe

φa,jf(X) dV =

∫

∂Ωe

φaf(X)nj dS −

∫

Ωe

φaf,j(X) dV, (61)

where f(X) consists of zeroth- and first-order monomials in R
d:

f(X) = [1 X1 . . . Xd]
T. (62)

The derivative f,j(X) (δij is the Kronecker delta symbol) is

f,j(X) = [0 δ1j . . . δdj ]
T. (63)

On substituting (62) and (63) into (61) and using Gauss integration to numerically inte-

grate the volume and surface integrals of the divergence constraint (see Fig. 3 for a two-

dimensional representation of an integration cell) leads to the following system of linear

equations:

Wdj = fj, j = 1, 2, 3 (64)

where W and fj are given in Ref. [38] (see (32) therein) for two-dimensions and in Ref. [41]

(see (43) therein) for three-dimensions; the solution vector of the j-th basis function deriva-

tive evaluated at the interior Gauss points of the integration cell is:

dj =
[

φa,j(X1) φa,j(X2) φa,j(X3)
]T

(65a)

in two dimensions, and

dj =
[

φa,j(X1) φa,j(X2) φa,j(X3) φa,j(X4)
]T

(65b)

in three-dimensions, where Xi is the i-th interior Gauss point of the integration cell. In

the preceding equations, the index a runs through the combined nodal contribution2 that

2The nodal contribution at a given Gauss point with coordinate X is defined as the indices of the nodes

whose basis functions have a nonzero value at X .
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results from the union of nodal contributions corresponding to each of the interior and

surface Gauss points in the cell.

The corrected derivatives given in (65) are used as the basis functions derivatives that

appear in the stiffness matrices and residual nodal force vector of the VANP method.

6. Numerical examples

In this section, the performance of the two- and three-dimensional VANP formulation

in the nearly-incompressible finite strain elastic regime is studied. To this end, the VANP

method is compared to its closest finite element counterpart, the MINI element [1], which

is inf-sup stable and is known to be the most stable finite element for the analysis of

incompressible elastic solids at finite strains [5]. For some of the tests, the numerical

solution of the standard displacement-based three-node triangular finite elements (FEM-T3)

is also reported.

The base triangular or tetrahedral background mesh, which only contains the node set

N s, is generated using GiD [52]. The enhanced node set N+ is constructed when needed

by adding the extra required nodes to the standard node set N s.

The numerical integration is performed using the approach presented in Section 5 that

is based on the second-order accurate integration scheme of Duan et al. [40, 41]. Later

in this section, a study is presented where the need to use this higher-order integration

scheme is justified.

6.1. Nonlinear Cook’s membrane

This benchmark problem is used to study the behavior of nearly-incompressible formu-

lations under combined bending and shear in distorted meshes [26, 27, 53]. The geometry

and boundary conditions are shown in Figure 4(a). The left edge of the membrane is

clamped and its right end is subjected to a deformation-independent shear load P = 6.25

N/mm (total shear load of 100 N). A regular background mesh of 3-node triangles with a
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mesh pattern of n × n subdivisions is chosen for the node set N s. A reference mesh for

n = 20 is shown in Fig. 4(b). The unstructured background mesh depicted in Fig. 4(c)

is also considered for some tests. The strain energy function used for the hyperelastic

material is:

Ψ =
1

2
µ(J−2/3trC − 3) +

1

2
κ

(

1

2
(J2 − 1)− ln J

)

, (66)

where the first term on the right hand side is the isochoric part and the second term the

volumetric part. The material parameters are chosen as κ = 400942 MPa and µ = 80.1938

MPa, which represents a nearly-incompressible setting with Poisson’s ratio of ν = 0.4999.

A

48 mm

44
 m

m
16

 m
m

P

(a) (b) (c)

Fig. 4: Nonlinear Cook’s membrane. (a) Geometry and boundary conditions; (b) sample

regular background mesh; and (c) unstructured background mesh.

First, the convergence of the vertical tip displacement at point A with mesh refinement

is studied. The results are summarized in Fig. 5. The numerical results reveal that the

VANP approach is in good agreement with the reference value given in Ref. [27] and delivers

better convergence than the MINI element. The convergence plot also presents the standard

FEM-T3 solution, where its expected locking behavior is evident.

Lastly, the smoothness of the nodal pressure obtained by the VANP formulation is as-
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Fig. 5: Nonlinear Cook’s membrane. Convergence of the vertical tip displacement at point

A.

sessed. Here, the unstructured mesh depicted in Fig. 4(c) is used. The result is provided in

Fig. 6, where it is observed that the MINI element solution behaves somewhat oscillatory,

whereas the VANP solution is smooth.

6.2. Plane strain compression

The following example is a standard test to demonstrate the ability of formulations

for nearly-incompressible hyperelastic materials to withstand very large deformations in

two dimensions [54] (plane strain condition is assumed) under the action of a deformation-

independent compressive load P . The geometry and boundary conditions are shown in

Fig. 7(a). The essential boundary conditions must be read as follows: the movement of the

top surface is constrained along the horizontal direction and the movement of the bottom

surface is constrained along the vertical direction. Due to the symmetry of the problem,
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(a) (b)

Fig. 6: Nonlinear Cook’s membrane. Nodal pressure variable on the unstructured back-

ground mesh for (a) MINI element and (b) VANP formulation.

only one-half of the model is discretized with a background mesh like the one depicted in

Fig. 7(b). The hyperelastic material is defined using the following strain energy function:

Ψ =
1

2
µ(J−2/3trC − 3)− µ ln J +

1

4
κ
(

J2 − 1− 2 ln J
)

. (67)

The material parameters are set as κ = 400889.806 MPa and µ = 80.194 MPa, which

represents a nearly-incompressible setting with Poisson’s ratio of ν = 0.4999.

First, a convergence study is conducted. For this, the compression level is defined as

|uA|/h × 100 with uA being the vertical displacement at point A and h the height of the

block (see Fig. 7(a)). Fig. 8 presents the convergence of the compression level upon mesh

refinement for different values of P in MPa. The results are available for the MINI element

and VANP formulation. It is observed that the converged values of the compression level
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Fig. 7: Plane strain compression. (a) Model geometry and boundary conditions; and (b)

reference background mesh for one half of the model.

delivered by the VANP formulation are in good agreement with those provided in Ref. [54],

whereas those for the MINI element are higher than the reference value in all the cases.

Finally, the smoothness of the VANP method is once again evident in Fig. 9, where it is

observed that the distortion of the elements does not affect the smoothness of the nodal

pressure field. The same is not true for the MINI element.

6.3. Three-dimensional cantilever beam

This example considers a three-dimensional bending-dominated problem, where a beam

is clamped at one end and subjected to a deformation-independent transverse uniformly

distributed load on the other end. Fig. 10 illustrates the problem setup. The node set N s

is obtained from a mesh of pattern n×n/2× (n/2− 1) divisions, where n is the number of

divisions along the length of the beam and n/2 the number of divisions along its height. The

following strain energy function is used to represent the nearly-incompressible hyperelastic

material with bulk modulus κ = 166666666.67 Pa and shear modulus µ = 333555.704 Pa

(ν = 0.499):

Ψ =
1

2
µ(J−2/3trC − 3) +

1

2
κ(J − 1)2, (68)
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Fig. 8: Plane strain compression. Compression level for different values of the pressure on

the top surface.

where the first term on the right hand side is the isochoric part and the second term is the

volumetric part.

(a) (b)

Fig. 9: Plane strain compression. Nodal pressure variable for (a) MINI element and (b)

VANP formulation.
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P

A

0.5 m

0.1 m

B
0.1 m

Fig. 10: Three-dimensional cantilever beam. Model geometry and boundary conditions.

We start by studying the convergence of the downward tip displacement on edge AB

upon mesh refinement. In this study, three values for the transverse load are considered:

P = 5000 N/m, P = 10000 N/m and P = 15000 N/m. The convergence study is presented

in Fig. 11 for both the MINI element and the VANP methods. Reference solutions are

obtained from a converged mesh of 27-node u-p brick finite elements. It is observed that

the VANP solutions converge to the reference values, whereas the MINI element behaves

quite ‘stiff’ in this bending-dominated problem and convergence is difficult to attain to

reach the total number of Newton load steps as the mesh is refined—the missing data for

the MINI element in the convergence plot represent this issue.

Lastly, the vertical displacement and nodal pressure fields that are delivered by the

MINI element and the VANP methods are presented in the pictorial shown in Fig. 12. The

plots are obtained for n = 8 and P = 10000 N/m. In comparing the nodal pressure fields,

these plots reveal that the VANP method delivers smoother pressure fields than the MINI

element method. The ‘stiff’ behavior of the MINI element is also evident in these plots.

6.4. Three-dimensional compression

A three-dimensional analysis of a hyperelastic rubber block under the action of a

deformation-independent compressive load P is considered. The geometry, boundary con-

ditions and a reference regular background mesh are shown in Fig. 13. The strain energy
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Fig. 11: Three-dimensional cantilever beam. Convergence of the downward tip displace-

ment on edge AB.
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(a) (b)

(c) (d)

Fig. 12: Nodal field variables for the three-dimensional cantilever beam problem. (a)

Vertical displacement delivered by the MINI element method, (b) nodal pressure delivered

by the MINI element method, (c) vertical displacement delivered by the VANP method, and

(d) nodal pressure delivered by the VANP method.
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function of the hyperelastic material used is:

Ψ =
1

2
µ(J−2/3trC − 3)− µ ln J +

1

2
κ(ln J)2. (69)

The material parameters are chosen as κ = 400889.806 MPa and µ = 80.194 MPa, which

represents a nearly-incompressible setting with Poisson’s ratio of ν = 0.4999.

(a) (b)

Fig. 13: Three-dimensional compression. (a) Model geometry and boundary conditions

and (b) reference regular background mesh.

The starting study consists in a convergence test. To this end, we define the compression

level as |uA|/h× 100, where uA is the vertical displacement at point A and h the height of

the block (see Fig. 13(a)). The convergence of the compression level upon mesh refinement

for different values of P in MPa is presented in Fig. 14 for the MINI element and VANP

formulation. It is observed that the converged values of the compression level that are

delivered by the VANP formulation are in good agreement with those provided in Refs. [27,

55]. On the other hand, the MINI element only performs well for the lowest compressive

load, whereas for the higher compressive loads convergence is difficult to reach the total

number of Newton load steps as the mesh is refined.
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Fig. 14: Three-dimensional compression. Compression level for different values of the

pressure on the top surface.
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To demonstrate the need for a modified higher-order integration scheme, we solve the

three-dimensional compression problem using the following integration schemes: first-order

standard Gauss integration, second-order standard Gauss integration, fifth-order standard

Gauss integration, integration scheme of Duan et al. [40] that is based on Ref. [31], second-

order modified integration of Ref. [25], and finally the second-order modified integration

of Duan et al. [41]. For each scheme, the effect of the numerical integration on the nodal

pressure field is presented in Fig. 15. Figs. 15(a)-(e) reveal severe pressure oscillations,

and Figs. 15(a)-(b) and 15(d) also depict nonsmooth deformations on the top surface.

Fig. 15(f) reveals that the second-order accurate modified integration scheme of Duan et

al. [41] provides a robust solution, with smooth deformation and pressure fields.

In closing this section, the performance of the VANP method using an unstructured

background mesh is demonstrated. Fig. 16 shows the mesh used in the test. The VANP

solution is compared to the solution delivered by the MINI element for P = 240 MPa.

The solution of the vertical displacement is depicted in Fig. 17 for both methods. The

MINI element cannot undergo the total number of Newton load steps, thus only its last

converged solution is presented in Fig. 17(a). On the contrary, the VANP formulation

exhibits no difficulty in running through the total number of Newton load steps as inferred

from Fig. 17(b), where a compression level of around 59% is achieved. This value is in

complete agreement with the one expected from Fig. 14. The nodal pressure field is shown

in Fig. 18, where pressure oscillations are observed for the MINI element. On the contrary,

the nodal pressure solution delivered by the VANP formulation is smooth.

7. Concluding Remarks

A projection scheme for meshfree methods, which we refer to as the volume-averaged

nodal projection (VANP) method, has been proposed for the analysis of nearly-incompressible

elastic solids at finite strains. In this approach, a volume-averaged nodal projection oper-

ator is constructed to average the dilatational constraint at a node from the displacement
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(a) (b) (c)

(d) (e) (f)

Fig. 15: Effect of numerical integration on the nodal pressure field for the three-dimensional

compression test problem. (a) first-order standard Gauss integration, (b) second-order

standard Gauss integration, (c) fifth-order standard Gauss integration, (d) integration

scheme of Duan et al. [40] that is based on Ref. [31], (e) second-order modified integration

of Ref. [25] and (f) second-order modified integration of Duan et al. [41]. The plots show

that the inaccuracies are alleviated by the integration scheme of Duan et al. [41].

field of surrounding nodes. The nodal dilatational constraint is then projected onto the

linear approximation space. The displacement field is constructed on the linear space and

enriched with bubble-like meshfree basis functions for stability, which mimics the inf-sup

stable MINI [1] finite element. The projection operator permits to formulate the prob-

lem as a function of only the displacement field, which makes the VANP formulation a
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(a) (b)

Fig. 16: Three-dimensional compression. Unstructured background mesh: (a) exterior

view and (b) internal view.

(a) (b)

Fig. 17: Three-dimensional compression. Vertical displacement solution for (a) MINI ele-

ment and (b) VANP formulation. In contrast to the VANP method, the MINI element cannot

go through the total number of Newton’s load steps.

displacement-based approach. The nodal information for the computation of the meshfree

basis functions is obtained from a background mesh of three-node triangles or four-node
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(a) (b)

Fig. 18: Three-dimensional compression. Nodal pressure solution for (a) MINI element and

(b) VANP formulation. The MINI element exhibits pressure oscillations, whereas the VANP

solution is smooth.

tetrahedra, which also serves for the numerical integration of the weak form integrals. Nu-

merical integration inaccuracies to which meshfree methods are prone are tackled using a

modified Gauss integration scheme based on the second-order accurate integration rule of

Duan et al. [40, 41].

Four benchmark problems which included the nonlinear Cook’s membrane, a plane

strain and a three-dimensional compression of a rubber block, and a three-dimensional

cantilever beam were studied to demonstrate the performance of the VANP method in

nearly-incompressible analysis of nonlinear elastic solids using low-order triangular and

tetrahedral background meshes. The numerical solutions delivered by the VANP method

were compared to those of the MINI element, which is its closest finite element counter-

part for low-order tessellations. The numerical examples in two-dimensions showed that

the VANP formulation provides faster convergence and smoother pressure fields than the

MINI element formulation. Furthermore, the superiority of the VANP formulation over the

MINI element formulation is also established in three-dimensions, where the former al-
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lows tetrahedral background meshes to achieve larger deformations with smooth pressure

fields. In conclusion, the proposed methodology provides improved robustness for nearly-

incompressible nonlinear large deformation analysis on simplicial (Delaunay) tessellations.

Appendix A. Directional derivative of the modified Green-Lagrange strain ten-

sor

The detailed derivation of (40) is developed. The following equations are obtained from

the standard literature (for instance, see Ref. [47]):

DF (χ)[v] = ∇0v, (A.1)

DJ(χ)[v] = Jtr
(

∇0vF
−1

)

. (A.2)

We now consider (A.2) and proceed to take the directional derivative of (32), which yields

DJc(χ)[v] =

∫

Ωc
φcJtr

(

∇0vF
−1

)

dV
∫

Ωc
φc dV

. (A.3)

On taking the directional derivative of (34) and using (A.3) leads to

DJ̄(χ)[v] = π
[

Jtr
(

∇0vF
−1

)]

. (A.4)

The directional derivative of α =
(

J̄/J
)1/3

is developed with the aid of (A.4) and the

operator defined in (39) as follows:

Dα(χ)[v] =
1

3α2

[

1

J
DJ̄(χ)[v]−

J̄

J2
DJ(χ)[v]

]

=
1

3α2J

[

π
[

Jtr
(

∇0vF
−1

)]

− J̄tr
(

∇0vF
−1

)]

=
1

3
α θ

[

Jtr
(

∇0vF
−1

)]

. (A.5)

In addition, the directional derivative of (36) is:

DĒ(χ)[v] =
1

2

[

(

DF̄ (χ)[v]
)T

F̄ + F̄
TDF̄ (χ)[v]

]

. (A.6)
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We now make use of (24) in conjunction with (A.1) and (A.5) to write

DF̄ (χ)[v] = Dα(χ)[v]F + αDF (χ)[v]

=
1

3
α θ

[

Jtr
(

∇0vF
−1

)]

F + α∇0v, (A.7)

whose substitution, together with (24), into (A.6) leads to the final expression for the

modified Green-Lagrange strain tensor:

DĒ(χ)[v] =
1

3
θ
[

Jtr
(

∇0vF
−1

)]

F̄
T
F̄ + α(F̄ T

∇0v)sym. (A.8)

Appendix B. Second variation of the modified energy functional

The detailed derivation of (43) is developed. The directional derivative of the modi-

fied second Piola-Kirchhoff stress tensor is first derived. In this process, we use (44) in

conjunction with (A.8) and proceed as follows:

DS̄(χ)[∆u] =
∂S(E)

∂E

(

Ē(χ)
)

: DĒ(χ)[∆u]

= D̄ : DĒ(χ)[∆u]

=
1

3
θ
[

Jtr
(

∇0∆uF
−1

)]

D̄ :
(

F̄
T
F̄
)

+ αD̄ : (F̄ T
∇0∆u)sym. (B.1)

Next, the definition of the directional derivative of the inverse of a tensor [47] is used to

write

DF
−1(χ)[∆u] = −F

−1
∇0∆uF

−1, (B.2)

which is employed along with (A.2) in the derivation of the following directional derivative:

D
(

Jtr
(

∇0vF
−1

))

[∆u] = DJ(χ)[∆u]tr
(

∇0vF
−1

)

+ Jtr
(

∇0vDF
−1(χ)[∆u]

)

= J
[

tr
(

∇0vF
−1

)

tr
(

∇0∆uF
−1

)

− tr
(

∇0vF
−1

∇0∆uF
−1

)]

.

(B.3)
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The directional derivatives of the operators that were defined in (31) and (39) follows.

With the aid of (B.3) the following expression is obtained for the operator (31):

Dπ
(

Jtr
(

∇0vF
−1

))

[∆u] = π
[

Jtr
(

∇0vF
−1

)

tr
(

∇0∆uF
−1

)]

− π
[

Jtr
(

∇0vF
−1

∇0∆uF
−1

)]

, (B.4)

whereas (B.4) along with (A.2), (A.4) and (B.3) are used for the operator (39) to arrive at

the following expression:

Dθ
[

Jtr
(

∇0vF
−1

)]

[∆u] = −
1

J̄2
π
[

Jtr(∇0vF
−1)

]

π
[

Jtr(∇0∆uF
−1)

]

+
1

J̄
π
[

Jtr(∇0vF
−1)tr(∇0∆uF

−1)
]

−
1

J̄
π
[

Jtr(∇0vF
−1

∇0∆uF
−1)

]

+ tr(∇0vF
−1

∇0∆uF
−1). (B.5)

Noting that D
(

F̄
T
F̄
)

[v] = 2DĒ[v] and using (B.5), yields the following directional deriva-

tive:

D
(

θ
[

Jtr
(

∇0vF
−1

)]

F̄
T
F̄
)

[∆u] = −
1

J̄2
π
[

Jtr(∇0vF
−1)

]

π
[

Jtr(∇0∆uF
−1)

]

F̄
T
F̄

+
1

J̄
π
[

Jtr(∇0vF
−1)tr(∇0∆uF

−1)
]

F̄
T
F̄

−
1

J̄
π
[

Jtr(∇0vF
−1

∇0∆uF
−1)

]

F̄
T
F̄

+ tr(∇0vF
−1

∇0∆uF
−1)F̄ T

F̄

+
2

3
θ
[

Jtr(∇0vF
−1)

]

θ
[

Jtr(∇0∆uF
−1)

]

F̄
T
F̄

+ 2α θ
[

Jtr(∇0vF
−1)

]

(F̄ T
∇0∆u)sym. (B.6)
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One more directional derivative is needed to complete the derivation. To this end, (A.5)

and (A.7) are considered in the derivation of

D
(

α(F̄ T
∇0v)sym

)

[∆u] = +
1

3α2J
(F̄ T

∇0v)symπ
[

Jtr(∇0∆uF
−1)

]

−
1

3
α(F̄ T

∇0v)symtr(∇0∆uF
−1)

+
1

3
α(F̄ T

∇0v)symθ
[

Jtr(∇0∆uF
−1)

]

+ α2
(

(∇0∆u)T∇0v
)

sym
. (B.7)

The last step is to take the second variation of (35), or equivalently, the directional deriva-

tive of (41). The derivation is split into a material and a geometric part and motion-

independent external forces are assumed. This leads to

(

D2Π̄(χ)[v,∆u]
)

mat
= +

1

3

∫

Ω
θ
[

Jtr(∇0vF
−1)

]

(F̄ T
F̄ ) : DS̄(χ)[∆u] dV

+

∫

Ω
α(F̄ T

∇0v)sym : DS̄(χ)[∆u] dV, (B.8)

(

D2Π̄(χ)[v,∆u]
)

geo
= +

1

3

∫

Ω
S̄ : D

(

θ
[

Jtr
(

∇0vF
−1

)]

F̄
T
F̄
)

[∆u] dV

+

∫

Ω
S̄ : D

(

α(F̄ T
∇0v)sym

)

[∆u] dV. (B.9)

Finally, on substituting (B.1) into (B.8) yields the material part of the second variation

that was presented in (43b):

(

D2Π̄(χ)[v,∆u]
)

mat
= +

1

9

∫

Ω
θ
[

Jtr(∇0vF
−1)

]

θ
[

Jtr(∇0∆uF
−1)

]

(F̄ T
F̄ ) : D̄ : (F̄ T

F̄ ) dV

+
1

3

∫

Ω
αθ

[

Jtr(∇0vF
−1)

]

(F̄ T
F̄ ) : D̄ : (F̄ T

∇0∆u)sym dV

+
1

3

∫

Ω
α(F̄ T

∇0v)sym : D̄ : (F̄ T
F̄ ) θ

[

Jtr(∇0∆uF
−1)

]

dV

+

∫

Ω
α2(F̄ T

∇0v)sym : D̄ : (F̄ T
∇0∆u)sym dV, (B.10)
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and on substituting (B.6) and (B.7) into (B.9) leads to the corresponding geometric part

that was presented in (43c):

(

D2Π̄(χ)[v,∆u]
)

geo
= −

1

3

∫

Ω

1

J̄2
π
[

Jtr(∇0vF
−1)

]

π
[

Jtr(∇0∆uF
−1)

]

S̄ : (F̄ T
F̄ ) dV

+
1

3

∫

Ω

1

J̄
π
[

Jtr(∇0vF
−1)tr(∇0∆uF

−1)
]

S̄ : (F̄ T
F̄ ) dV

−
1

3

∫

Ω

1

J̄
π
[

Jtr(∇0vF
−1

∇0∆uF
−1)

]

S̄ : (F̄ T
F̄ ) dV

+
1

3

∫

Ω
tr(∇0vF

−1
∇0∆uF

−1)S̄ : (F̄ T
F̄ ) dV

+
2

9

∫

Ω
θ
[

Jtr(∇0vF
−1)

]

θ
[

Jtr(∇0∆uF
−1)

]

S̄ : (F̄ T
F̄ ) dV

+
2

3

∫

Ω
α θ

[

Jtr(∇0vF
−1)

]

S̄ : (F̄ T
∇0∆u)sym dV

+
2

3

∫

Ω
α(F̄ T

∇0v)sym : S̄ θ
[

Jtr(∇0∆uF
−1)

]

dV

+

∫

Ω
α2

S̄ : [(∇0v)
T
∇0∆u]sym dV. (B.11)
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[2] I. Babuška, The finite element method with Lagrangian multipliers, Numerische Math-

ematik 20 (3) (1973) 179–192.

43



[3] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems

arising from Lagrangian multipliers, RAIRO, Analyse Numérique 8 (1974) 129–151.

[4] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flows,

Gordon and Breach, London, 1969.

[5] F. Auricchio, L. Beirao da Veiga, C. Lovadina, A. Reali, The importance of the exact

satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs

versus NURBS-based approximations, Computer Methods in Applied Mechanics and

Engineering 199 (5–8) (2010) 314–323.

[6] F. Auricchio, L. Beirao da Veiga, C. Lovadina, A. Reali, An analysis of some mixed-

enhanced finite element for plane linear elasticity, Computer Methods in Applied Me-

chanics and Engineering 194 (27–29) (2005) 2947–2968.

[7] C. Lovadina, F. Auricchio, On the enhanced strain technique for elasticity problems,

Computers and Structures 81 (8–11) (2003) 777–787.

[8] R. L. Taylor, A mixed-enhanced formulation for tetrahedral finite elements, Interna-

tional Journal for Numerical Methods in Engineering 47 (1–3) (2000) 205–227.
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[50] E. A. de Souza Neto, D. Perić, M. Dutko, D. R. J. Owen, Design of simple low order

finite elements for large strain analysis of nearly incompressible solids, International

Journal of Solids and Structures 33 (20–22) (1996) 3277–3296.

[51] E. Artioli, G. Castellazzi, P. Krysl, Assumed strain nodally integrated hexahedral finite

element formulation for elastoplastic applications, International Journal for Numerical

Methods in Engineering 99 (11) (2014) 844–866.

[52] GiD v10.0.9, GiD: the personal pre and post processor, http://www.gidhome.com/

(2011).

49

http://www.gidhome.com/


[53] P. Hauret, E. Kuhl, M. Ortiz, Diamond elements: a finite element/discrete-mechanics

approximation scheme with guaranteed optimal convergence in incompressible elastic-

ity, International Journal for Numerical Methods in Engineering 72 (3) (2007) 253–294.

[54] S. Reese, P. Wriggers, A stabilization technique to avoid hourglassing in finite elastic-

ity, International Journal for Numerical Methods in Engineering 48 (1) (2000) 79–109.

[55] S. Reese, P. Wriggers, B. Reddy, A new locking-free brick element technique for large

deformation problems in elasticity, Computers and Structures 75 (3) (2000) 291 – 304.

50


	Introduction
	Maximum-entropy basis functions
	Variational formulation
	Displacement-based weak form
	u-p mixed weak form
	Volume-averaged nodal projection method
	Linearization

	Discrete equations
	Residual nodal force vector
	Material tangent stiffness matrix
	Geometric tangent stiffness matrix

	Numerical integration
	Numerical examples
	Nonlinear Cook's membrane
	Plane strain compression
	Three-dimensional cantilever beam
	Three-dimensional compression

	Concluding Remarks
	Directional derivative of the modified Green-Lagrange strain tensor
	Second variation of the modified energy functional

