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Abstract

A recently proposed node-based uniform strain virtual element method (NVEM)
is here extended to small strain elastoplastic solids. In the proposed method, the
strain is averaged at the nodes from the strain of surrounding linearly precise vir-
tual elements using a generalization to virtual elements of the node-based uniform
strain approach for finite elements. The averaged strain is then used to sample
the weak form at the nodes of the mesh leading to a method in which all the
field variables, including state and history-dependent variables, are related to the
nodes and thus they are tracked only at these locations during the nonlinear com-
putations. Through various elastoplastic benchmark problems, we demonstrate
that the NVEM is locking-free while enabling linearly precise virtual elements to
solve elastoplastic solids with accuracy.

Keywords: Virtual element method, Nodal integration, Strain averaging, Uniform
strain, Volumetric locking, Elastoplasticity
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1 Introduction

Elastoplastic solids demand advanced numerical techniques when using Galerkin-based
approaches such as the finite element method (FEM) and the virtual element method
(VEM). The need for advanced techniques has its roots in the presence of volumetric
locking in the numerical solution due to the volume preserving nature of the plastic
strain (plastic incompressibility condition) and in the volume preserving condition that
arises when the Poisson’s ratio approaches 1/2 (elastic incompressibility condition).
Whichever is the source of the locking behavior, the standard lowest order elements
in general perform poorly in problems that involve volume preserving conditions. In
FEM, several approaches to deal with locking effects are found in the literature. An
exhaustive review of these approaches is out of the scope of this paper, but we mention
the most relevant ones: reduced/selective integration [1], B-bar technique [2, 3], mixed
formulations [1], assumed strain methods [4], and nodal integration [5–14]. Of partic-
ular interest for the method proposed in this paper are nodal integration techniques.
In these approaches, the Galerkin weak form is sampled at the nodes of the mesh lead-
ing to methods in which all the field variables (including state and history-dependent
variables) are associated with the nodes.

The VEM is a generalization of the FEM to elements with arbitrary number
of edges/faces (convex or nonconvex polytopes) known as virtual elements [15]. In
its standard form, the method consists in the construction of an algebraic (exact)
representation of the stiffness matrix without computation of basis functions (basis
functions are virtual). In this process, a decomposition of the stiffness matrix into
a consistency part and a stability part that ensures convergence of the method [16]
is realized. The VEM has gained much interest in recent years and nowadays its
applications can be found, for instance, in elastic and inelastic solids [17–25], elas-
todynamics [26, 27], finite deformations [28–36], contact mechanics [28, 37, 38],
fracture mechanics [39–43], fluid mechanics [44–48], geomechanics [49, 50] and topology
optimization [34, 51, 52].

In the VEM literature, there are few methods already developed that are suitable
for modeling nearly incompressible elastic solids. These are generalizations of some of
the above mentioned approaches for FEM. For instance, B-bar formulation [21, 26],
mixed formulation [53], enhanced strain formulation [23], hybrid formulation [54], and
nonconforming formulations [55–57]. In small strain elastoplasticity, the VEM litera-
ture is very limited. For instance, in Refs. [20, 58] high-order VEM has been used to
improve the numerical performance when facing locking effects in elastoplastic solids.
A mixed formulation based on a Hu-Washizu functional was adopted in Ref. [25].
Recently, a stabilization-free hybrid virtual element method has been proposed for
elastoplastic solids that is locking-free [59].

In this paper, the recently proposed node-based uniform strain virtual element
method [60] (NVEM) is extended to small strain elastoplastic solids. In the proposed
approach, the strain is averaged at the nodes from the strain of surrounding linearly
precise virtual elements using a generalization to virtual elements of the node-based
uniform strain approach for finite elements [6]. The nodal strain that results from the
averaging process is interpreted as the nodal sample of the strain in the nodal integra-
tion of the weak form. Consequently, the nodal strain is also used at the constitutive
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evaluation level. As in any nodal integration method, the state and history-dependent
variables in the NVEM become associated with the nodes. In practice, this means that
in nonlinear computations these variables are tracked only at the nodes. This feature
can be exploited to avoid mesh remapping of these variables in Lagrangian large defor-
mation simulations with remeshing (see, for instance, Ref. [9]), which is not possible
when Gauss integration is used. We do not intend to explore the latter feature in this
paper as the focus here is on the small strain regime, which is a necessary intermediate
step towards developments in the finite strain regime.

The remainder of this paper is structured as follows. In Section 2, the NVEM for
small strain elastoplasticity is developed. The elastoplastic constitutive model used
and the stabilization proposed for the NVEM are presented in Section 3. In Section 4,
various elastoplastic benchmark problems are considered to assess the performance of
the NVEM. The paper ends with a summary and conclusions in Section 5.

2 Node-based uniform strain virtual element method

In this section, the basics of the node-based uniform strain virtual element method
(NVEM), which was developed in Ref. [60], is summarized. The method belongs to
the Galerkin weak formulation family of methods. In this sense, we consider an elastic
body that occupies the open domain Ω ⊂ IR2 and is bounded by the one-dimensional
surface Γ whose unit outward normal is nΓ . The boundary is assumed to admit
decompositions Γ = ΓD ∪ ΓN and ∅ = ΓD ∩ ΓN , where ΓD is the Dirichlet boundary
and ΓN is the Neumann boundary. The closure of the domain is Ω = Ω ∪ Γ . Let
u(x) : Ω → IR2 be the displacement field at a point of the elastic body with position
vector x when the body is subjected to external tractions tN (x) : ΓN → IR2 and body
forces b(x) : Ω → IR2. The imposed Dirichlet (essential) boundary conditions are
uD(x) : ΓD → IR2. The displacement field u(x) ∈ V is found such that (weak form)

a(u,v) = ℓ(v) ∀v(x) ∈ W,

a(u,v) =

∫
Ω

σ(u) : ε(v) dx, ℓ(v) =

∫
Ω

b · v dx+

∫
ΓN

tN · v ds,
(1)

where V denotes the space of admissible displacements and W the space of its vari-
ations; σ is the Cauchy stress tensor and ε is the small strain tensor that is given
by

ε(u) =
1

2
(u⊗∇+∇⊗ u) . (2)

2.1 Virtual element method

The weak form (1) is the continuous problem. The discrete problem is formulated on
a partition of the domain Ω into nonoverlapping elements with arbitrary number of
edges (convex or non-convex polygons). This partition is denoted by Th, where h is
the maximum diameter of any element in the partition. An element in the partition
is denoted by E and its boundary by ∂E. |E| is the area of the element and NV

E its
number of edges/nodes. The unit outward normal to the element boundary in the
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Cartesian coordinate system is denoted by n = [n1 n2]
T. Fig. 1 depicts an element

with seven edges (NV
E = 7), where the edge ea of length |ea| and the edge ea−1 of

length |ea−1| are the element edges incident to node a, and na and na−1 are the unit
outward normals to these edges, respectively.

ea−1
a

a + 1

E

na−1

ea

a− 1

na

Fig. 1: Schematic representation of a polygonal element of NV
E = 7 edges

Following a standard Galerkin approach, we assume approximations of u and v on
the element, as follows:

uh =

{
u1h

u2h

}
=

NV
E∑

a=1

ϕa(x)ua, ua =

{
u1a

u2a

}
,

vh =

{
v1h

v2h

}
=

NV
E∑

a=1

ϕa(x)va, va =

{
v1a

v2a

}
.

(3)

where {ϕa(x)}N
V
E

a=1 are basis functions that form a partition of unity. A peculiarity
of the VEM is that the basis functions are never computed, which is why they are
considered virtual. For the method to work, we only need to assume their behavior on
the element boundary. For linearly precise VEM approximations, the basis functions
on the element boundary are assumed to be

• piecewise linear (edge by edge),
• continuous on the element edges,

which means that the basis functions possess the Kronecker-delta property on the
element edges, and hence they behave like the one-dimensional hat function.

4



At the element level, the following discrete local spaces are defined:

Vh|E := {uh(x) : uh ∈ V(E)} , Wh|E := Vh|E .

The discrete local spaces are assembled to form the following discrete global spaces:

Vh := {u(x) ∈ V : u|E ∈ Vh|E ∀E ∈ Th} ,
Wh := {v(x) ∈ W : v|E ∈ Vh|E ∀E ∈ Th} .

Using the preceding definitions, the discrete version of the weak form (1) reads: find
uh ∈ Vh such that ∑

E∈Th

aE(uh,vh) =
∑
E∈Th

ℓE(vh) ∀vh ∈ Wh. (4)

To obtain the discrete weak form for the VEM, we follow the standard VEM
literature (see for instance, Ref. [61]). We first define a projection operator Π onto
the space of polynomials of degree 1. To this end, let [P(E)]2 represent the space of
polynomials of degree 1 over the element E. The projection operator Π is defined as:

Π : Vh|E → [P(E)]2, Πp = p ∀p ∈ [P(E)]2. (5)

Π is then used to split the displacement approximation on the element, as follows:

uh = Πuh + (uh −Πuh), (6)

where Πuh is the polynomial part of uh (of degree 1) and uh − Πuh contains its
remainder terms. The remainder terms can contain polynomials of order greater than
1 or even nonpolynomial terms. The actual form of the projection Πuh is obtained
from the orthogonality condition: ∀p ∈ [P(E)]2,

aE(uh −Πuh,p) = aE(p,vh −Πvh) = 0, (7)

which, at the element level, gives [22, 62–64]

Πuh =

[
(x1 − x̄1) 0 (x2−x̄2)

2 1 0 (x2−x̄2)
2

0 (x2 − x̄2)
(x1−x̄1)

2 0 1 (x̄1−x1)
2

]


ε̂11

ε̂22

2 ε̂12

ū1

ū2

2 ω̂12


, (8)
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where x̄1 and x̄2 are the components of the mean of the values that the position vector
x = [x1 x2]

T
takes over the vertices of the element; i.e.,

x̄ =

{
x̄1

x̄2

}
=

1

NV
E

NV
E∑

a=1

x(xa), (9)

where xa = [x1a x2a]
T
are the coordinates of node a; ū1 and ū2 are the components

of the mean of the values that the displacement approximation uh = [u1h u2h]
T
takes

over the vertices of the element; i.e.,

ū =

{
ū1

ū2

}
=

1

NV
E

NV
E∑

a=1

uh(xa), (10)

In other words, x̄ and ū represent the geometric center of the element and its associated
displacement vector, respectively; the terms ε̂ij are components of the element average

ε̂(uh) =
1

|E|

∫
E

ε(uh) dx =
1

2|E|

∫
∂E

(uh ⊗ n+ n⊗ uh) ds, (11)

and ω̂12 is the component of the element average

ω̂(uh) =
1

|E|

∫
E

ω(uh) dx =
1

2|E|

∫
∂E

(uh ⊗ n− n⊗ uh) ds, (12)

where ω(uh) is the skew-symmetric tensor that represents rotations.
On substituting (6) into (4), and using the orthogonality condition (7) and noting

that uh and vh ∈ [P(E)]2, leads to the following VEM representation of the discrete
weak form: find uh ∈ Vh such that∑
E∈Th

[
aE(Πuh, Πvh)+sE(uh−Πuh,vh−Πvh)

]
=
∑
E∈Th

ℓE(Πvh) ∀vh ∈ Wh, (13)

where sE(uh−Πuh,vh−Πvh) is a computable approximation to aE(uh−Πuh,vh−
Πvh) and is meant to provide stability.

2.2 Nodal averaging operator

The VEM as described above is prone to volumetric locking in the limit ν → 1/2.
Using the virtual element mesh and considering a typical nodal vertex I, the NVEM
that was proposed in Ref. [60] applies a nodal averaging operator πI to (13) that
precludes volumetric locking without introducing additional degrees of freedom1. This

1The nodal averaging operator permits to integrate the weak form integrals directly at the nodes. This
results in a total number of incompressiblity constraints equal to the number of nodes in the mesh. If this
number divides the total number of displacement equations, two degrees of freedom every one constraint
is obtained in two dimensions, which is the optimal ratio to perform well in incompressible and nearly
incompressible settings [65].
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leads to a nodal version of (13), as follows: find uh ∈ Vh such that

∑
I∈Th

[
aI
(
πI [Πuh], πI [Πvh]

)
+ sI

(
πI [uh −Πuh], πI [vh −Πvh]

)]
=
∑
I∈Th

ℓI
(
πI [Πvh]

)
∀vh ∈ Wh,

(14)

where the notations aI , sI and ℓI are introduced as the nodal counterparts of aE , sE
and ℓE , respectively. The construction of the nodal averaging operator is described
next.

Each node of the mesh is associated with their own patch of virtual elements. The
patch for node I is denoted by TI and is defined as the set of virtual elements connected
to node I (see Fig. 2). Each node of a virtual element E in the patch is assigned the
area 1

NV
E

|E|; that is, the area of an element is uniformly distributed among its nodes.

The representative area of node I is denoted by |I| and is computed by addition of all
the areas that are assigned to node I from the elements in TI ; that is,

|I| =
∑
E∈TI

1

NV
E

|E|. (15)

Similarly, each node of a virtual element E is uniformly assigned the strain 1
NV

E

ε̂(uh).

On considering each strain assigned to node I from the elements in TI , the node-based
uniform strain is defined as follows:

ε̂I(uh) =
1

|I|
∑
E∈TI

|E| 1

NV
E

ε̂(uh). (16)

Since ε̂(uh) is by definition given at the element level, then from (16) the following
nodal averaging operator is proposed:

πI [ · ] =
1

|I|
∑
E∈TI

|E| 1

NV
E

[ · ]
E
, (17)

where [ · ]
E
denotes evaluation over the element E.

2.3 NVEM nodal stiffness matrix and nodal force vector

The NVEM nodal stiffness matrix is developed by substituting the discretizations (3),
the projection operator (8) and the nodal averaging operator (17) into the left-hand
side of (14) for a node I. This gives

aI
(
πI [Πuh], πI [Πvh]

)
+ sI

(
πI [uh −Πuh], πI [vh −Πvh]

)
= qTKId, (18)

where d and q are column vectors of element nodal displacements and element nodal
values associated with vh, respectively; KI is the NVEM nodal stiffness matrix given
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I

Fig. 2: Nodal patch TI (shaded elements) formed by the virtual elements that are
connected to node I

by
KI = Kc

I +Ks
I , Kc

I = |I|BT
I DBI , Ks

I = (I − P )TI S (I − P )I , (19)

where D is the constitutive matrix and S is the stability matrix both defined in
Section 3;BI = πI [B ] and (I−P )I = πI [ I−P ], where I is the identity (2NV

E ×2NV
E )

matrix, and B and P are defined as

B =
[
B1 · · · Ba · · · BNV

E

]
, Ba =

 q1a 0

0 q2a

q2a q1a

 , (20)

where qia = 1
|E|
∫
∂E

ϕa(x)ni ds and can be exactly computed on the element boundary

using a trapezoidal rule giving the following algebraic expression:

qia =
1

2|E|
(
|ea−1|ni(a−1) + |ea|nia

)
, i = 1, 2, (21)

where nia is the i-th component of na and |ea| is the length of the edge incident to
node a as defined in Fig. 1;

P = HB +GR, (22)

where

H =
[
H1 · · · Ha · · · HNV

E

]T
, Ha =

 (x1a − x̄1) 0

0 (x2a − x̄2)
1
2 (x2a − x̄2)

1
2 (x1a − x̄1)


T

; (23)
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G =
[
G1 · · · Ga · · · GNV

E

]T
, Ga =

 1 0

0 1
1
2 (x2a − x̄2)

1
2 (x̄1 − x1a)


T

; (24)

and

R =
[
R1 · · · Ra · · · RNV

E

]
, Ra =


1

NV
E

0

0 1
NV

E

q2a −q1a

 . (25)

Similarly, the NVEM nodal force vector is developed using the right-hand side
of (14) for a node I, which leads to

ℓI
(
πI [Πvh]

)
= qTfI , (26)

where q is the column vector of element nodal values associated with vh, and fI is
the NVEM nodal force vector associated with the body force and external tractions
defined as

fI = f b
I + f t

I , f b
I = |I| N̄T

I b̂I , f t
I = |IΓ | N̄T

Γ,I t̂N,I . (27)

For computing the nodal body force vector f b
I in (27), N̄I = πI [ N̄ ] and b̂I =

πI [ b̂ ], where

N̄ =
[
N̄1 · · · N̄a · · · N̄NV

E

]
, N̄a =

[
1

NV
E

0

0 1
NV

E

]
; (28)

and

b̂ =
1

|E|

∫
E

b dx. (29)

Regarding the nodal traction force vector f t
I in (27), the nodal components are

now computed with respect to the one-dimensional domain on the Neumann bound-
ary; that is, the representative nodal area reduces to a representative nodal length
|IΓ | =

∑
e∈TI

1
2 |e|, where e is an element’s edge located on the Neumann boundary

and |e| its length; TI now represents the set of edges connected to node I on the Neu-
mann boundary. Using the preceding definitions, the nodal averaging operator on the
Neumann boundary is defined as

πI,Γ [ · ] =
1

|IΓ |
∑
e∈TI

|e|1
2
[ · ]e, (30)

where [ · ]e denotes evaluation over the edge e. The remainder nodal matrices are then
obtained as N̄Γ,I = πI,Γ

[
N̄Γ

]
and t̂N,I = πI,Γ

[
t̂N
]
, where

N̄Γ =

[
1
2 0 1

2 0

0 1
2 0 1

2

]
, (31)
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and

t̂N =
1

|e|

∫
e

tN ds. (32)

2.4 NVEM equilibrium equations for elastoplasticity

For linear elastostatics as developed in Ref. [60], the discrete equilibrium equation is
obtained by the discretization of (14). This is accomplished by summing (18) and (26)
through all the nodes in the domain and invoking the arbitrariness of q. This results
in the following system of equations:

∑
I∈Th

[
|I|BT

I DBI + (I − P )TI S (I − P )I

]
d =

∑
I∈Th

fI . (33)

Eq. (33) is also the discrete equilibrium equation for elastoplasticity when D and
S are nonlinear functions obtained from the elastoplastic constitutive law. As usual,
the solution for this problem requires the linearization of (33). Doing this gives

∑
I∈Th

[
|I|BT

I D̆ep BI + (I − P )TI S̆ (I − P )I

]
∆d

= −
∑
I∈Th

[
|I|BT

I σ̆ + (I − P )TI S̆ (I − P )I d− fI

]
,

(34)

where D̆ep, S̆, and σ̆, which are given in Section 3, are the elastoplastic consistent
tangent operator, the stability matrix, and the nonlinear stress, respectively, evaluated
at node I (by means of the elastoplastic constitutive law) using the node-based uniform
strain ε̂I .

The linearized equilibrium equation (34) is used to solve the equilibrium state

d
(k)
n+1 = d

(k−1)
n+1 + ∆d(k) at time tn+1 with a time increment ∆t = tn+1 − tn via

Newton-Raphson iterations, as follows:

∑
I∈Th

[
Kc

I,T +Ks
I,T

](k−1)

n+1

∆d(k) = −
∑
I∈Th,

[
f c
I + f s

I − fI

](k−1)

n+1

, (35)

where

Kc
I,T = |I|BT

I D̆ep BI , Ks
I,T = (I − P )TI S̆ (I − P )I ,

f c
I = |I|BT

I σ̆, f s
I = (I − P )TI S̆ (I − P )I d.

(36)

3 Elastoplastic constitutive model and stabilization

Within the standard VEM framework, stabilization is one of the key ingredients for
convergence of the method. However, in nodal integration, stabilization can make the
formulation somewhat stiff in incompressible settings [8]. Therefore, the stabilization
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in any nodal integration scheme, which includes the NVEM, must be cautiously chosen
to not jeopardize its locking-free essence. To deal with this issue, we propose a D-
recipe stabilization [66, 67] that uses only a deviatoric term. Firstly, a summary of
the constitutive model considered for the elastoplastic solid is given and, secondly, the
stabilization for the NVEM is detailed.

3.1 Constitutive model

The strain tensor ε is split into elastic (εe) and plastic (εp) parts; that is,

ε = εe + εp. (37)

The elastic part is governed by the standard linear elastic law, and the plastic part by
the von Mises model with mixed linear hardening (for details on this model, see for
instance Ref. [68]). The yield function for this model is

Φ(σ,β, σy) =
√

3 J2(s(σ)− β)− σy(ε̄
p) =

√
3

2
∥η∥ − σy(ε̄

p), (38)

where β is the backstress tensor, σy is a function of the accumulated plastic strain ε̄p

and defines the radius of the yield surface, and η is the relative stress given by

η = s− β, (39)

where s is the deviatoric stress. The plastic flow is described by the following
associative law:

ε̇p = γ̇

√
3

2

η

∥η∥ , (40)

where ε̇p is the rate of the plastic strain tensor and γ̇ is the plastic multiplier.
The mixed linear hardening combines linear isotropic and linear kinematic hard-

ening models. The linear isotropic hardening model is defined by the linear function

σy(ε̄
p) = σy0 +Hi ε̄

p, (41)

where σy0 is the initial yield stress and Hi is the linear isotropic hardening modulus.
The linear kinematic hardening model describes the evolution law for the backstress
as the following linear function:

β̇ =
2

3
Hk ε̇

p, (42)

where Hk is the linear kinematic hardening modulus.
Let n and n + 1 be the subindices that denote the previous and current states,

respectively. These subindices are used for labeling the time at which the variables
that are involved in the constitutive law are evaluated. Using the preceding notation,
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the elastoplastic consistent tangent operator (in Voigt notation) for the above model is

Dep
n+1 = 2G

(
1− ∆γ3G

q̄trialn+1

)
Id + 6G2

(
∆γ

q̄trialn+1

− 1

3G+Hk +Hi

)
N̄n+1N̄

T
n+1

+KmmT,

(43)

where G and K are the shear modulus and bulk modulus of the material, respectively.
Here, we use the three-dimensional constitutive law from where the plain strain state
components are extracted. The remainder quantities that appear in (43) are defined
as follows:

Id =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0.5 0 0

0 0 0 0 0.5 0

0 0 0 0 0 0.5


− 1

3
mmT, m =

[
1 1 1 0 0 0

]T
; (44)

q̄trialn+1 =

√
3

2
∥ηtrial

n+1∥, ηtrial
n+1 = strialn+1 − βn,

strialn+1 = 2G
(
εe trial
n+1 − 1

3
trace

(
εe trial
n+1

)
m
)
, εe trial

n+1 = εn+1 − εpn;

(45)

∆γ =
Φtrial

3G+Hk +Hi
, Φtrial = q̄trialn+1 − σy(ε̄

p trial
n+1 ), ε̄p trial

n+1 = ε̄pn; (46)

N̄n+1 =
ηtrial
n+1

∥ηtrial
n+1∥

. (47)

The strain/stress update is performed as follows:

ε̄pn+1 = ε̄pn +∆γ, εpn+1 = εpn +∆γ

√
3

2
N̄n+1,

βn+1 = βn +∆γ

√
2

3
HkN̄n+1,

sn+1 = strialn+1 − 2G∆γ

√
3

2
N̄n+1,

σn+1 = sn+1 +K trace
(
εe trial
n+1

)
m.

(48)

As previously mentioned in Section 2.4, in the NVEM the constitutive law is
evaluated using the nodal strain ε̂I ; that is, in (36), D̆ep = Dep(ε = ε̂I) and
σ̆ = σ(ε = ε̂I).

The above computations of the elastoplastic consistent tangent operator and
strain/stress update are part of the implicit elastic predictor/return mapping
algorithm for numerical integration of the von Mises model with mixed linear
hardening [68]. This algorithm is summarized in Algorithm 1.
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Algorithm 1 Implicit elastic predictor/return mapping algorithm for the von Mises
model with mixed linear hardening

Input:
(
ε̂I
)
n+1

, ε̄pn, ε
p
n, βn

Output: ε̄pn+1, ε
p
n+1, βn+1, σ̆n+1, D̆

ep
n+1

(Elastic predictor)

Set εn+1 =
(
ε̂I
)
n+1

εe trial
n+1 = εn+1 − εpn

strialn+1 = 2G
(
εe trial
n+1 − 1

3 trace
(
εe trial
n+1

)
m
)

ηtrial
n+1 = strialn+1 − βn, q̄trialn+1 =

√
3
2∥ηtrial

n+1∥
ε̄p trial
n+1 = ε̄pn, βtrial

n+1 = βn

(Elastic/plastic check and update state)

Φtrial = q̄trialn+1 − σy(ε̄
p trial
n+1 )

if Φtrial ≤ 0 then (elastic state)

ε̄pn+1 = ε̄p trial
n+1 , εpn+1 = εpn

βn+1 = βtrial
n+1

σn+1 = strialn+1 +K trace
(
εe trial
n+1

)
m

Dep
n+1 = 2GId +KmmT

else (plastic corrector)

∆γ = Φtrial

3G+Hk+Hi
, N̄n+1 =

ηtrial
n+1

∥ηtrial
n+1∥

ε̄pn+1 = ε̄pn +∆γ, εpn+1 = εpn +∆γ
√

3
2 N̄n+1

βn+1 = βn +∆γ
√

2
3Hk N̄n+1

sn+1 = strialn+1 − 2G∆γ
√

3
2 N̄n+1

σn+1 = sn+1 +K trace
(
εe trial
n+1

)
m

Dep
n+1 = 2G

(
1− ∆γ3G

q̄trialn+1

)
Id + 6G2

(
∆γ
q̄trialn+1

− 1
3G+Hk+Hi

)
N̄n+1N̄

T
n+1 +KmmT

end if

σ̆n+1 = σn+1, D̆
ep
n+1 = Dep

n+1

3.2 Stabilization

As mentioned before, some precautions must be taken to stabilize the NVEM so that
the locking-free behavior of the nodal integration scheme is preserved. Thus, drawing
inspiration from one of the possibilities already explored in Ref. [60], the stabilization
issue in the NVEM for elastoplastic solids is dealt with a diagonal stability matrix
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that uses only a deviatoric term, as follows:

(
S̆
)
i,i

= max

(
1,
[
|I|BT

I De
d BI

]
i,i

)
, (49)

where De
d is the deviatoric part of the elastic moduli and is given by

De
d = 2GId. (50)

This choice performs very well in a variety of two-dimensional numerical tests and
does not introduce any tuning parameter.

4 Numerical examples

In this section, some benchmark tests are conducted to demonstrate the performance
of the NVEM in elastoplastic solids simulations. The method is compared with the
well-known locking-free 9-node B-bar quadrilateral finite element [3] (FEM Q9 B-
bar) as well as with the standard linearly precise virtual element (VEM) and in some
cases with the standard 4-node quadrilateral finite element (FEM Q4). All the tests
are conducted using the constitutive model described in Section 3.1. Throughout this
section, DOF stands for degree(s) of freedom, EY is the Young’s modulus, ν is the
Poisson’s ratio, σy0 is the initial yield stress, and Hi and Hk are the linear isotropic
hardening modulus and the linear kinematic hardening modulus, respectively.

4.1 Thick-walled cylinder

In this test, the ability of the NVEM for solving compressible and nearly incompressible
elastoplastic problems is demonstrated. The problem consists of a plane strain (unit
thickness) representation of a thick-walled cylinder under internal pressure. The geom-
etry, boundary conditions, and mesh used in this numerical test are shown in Fig. 3,
where the internal pressure is p = 180 MPa, and the internal and external radii are
ri = 100 mm and ro = 200 mm, respectively. The material parameters used are the
following: EY = 210000 MPa, ν = 0.3 for the compressible case and ν = 0.4999 for the
nearly incompressible case, σy0 = 240 MPa, Hi = Hk = 0 MPa (perfect plasticity).

The radial displacement at points A and B for the compressible and nearly incom-
pressible cases is summarized in Fig. 4 for all the methods. For the compressible case,
all the methods match very well (Fig. 4(a)). On the other hand, for the nearly incom-
pressible case (Fig. 4(b)), the NVEM and FEM Q9 B-bar methods still match very
well, whereas the VEM and FEM Q4 clearly exhibit a locking behavior since radial
displacements are smaller than expected. The same behaviors are observed in the total
displacement (Fig. 5), pressure (Fig. 6), and von Mises stress (Fig. 7) field solutions
at the last load step for the nearly incompressible case.
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(a) (b)

Fig. 3: Thick-walled cylinder problem. (a) Geometry and boundary conditions, and
(b) mesh used for benchmarking the VEM, NVEM, FEM Q4 and FEM Q9 B-bar
approaches

(a) (b)

Fig. 4: Radial displacement at points A (uA) and B (uB) due to the applied internal
pressure in steps for the thick-walled cylinder problem. (a) Compressible case
(ν = 0.3), and (b) nearly incompressible case (ν = 0.4999)

4.2 Cook’s membrane

The next example consists of a tapered beam fixed along one end and loaded with a
shear force at the other end. It is designed to study the performance of numerical for-
mulations under combined bending and shear when the solid material behaves nearly
incompressible. The geometry and boundary conditions are depicted in Fig. 8, where
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(a) (b)

(c) (d)

Fig. 5: Plots of the total displacement field solution in mm at the last load step for
the nearly incompressible thick-walled cylinder problem (ν = 0.4999). (a) FEM Q4,
(b) FEM Q9 B-bar, (c) VEM, and (d) NVEM

the shear load is F = 3.6 N/mm (total shear load of 57.6 N). The beam has a unit
thickness and plane strain condition is assumed. The following material parameters
are used: EY = 1500 MPa, ν = 0.4999, σy0 = 7.5 MPa, Hi = 3.25 MPa, and Hk = 0
MPa. In this test, the performance of the NVEM is compared with the VEM and the
FEM Q9 B-bar. Sample meshes used in this test are shown in Fig. 9.

The convergence of the vertical displacement at the tip of the beam (point A
in Fig. 8) upon mesh refinement is depicted in Fig. 10. As expected, the VEM solution
exhibits a severe locking behavior, whereas the NVEM and FEM Q9 B-bar are locking-
free and their solutions are in good agreement upon mesh refinement.

Fig. 11 depicts the pressure field and the von Mises stress field solutions on the
most refined mesh for the NVEM and FEM Q9 B-bar approaches. The NVEM plots do
not look as smooth as the FEM plots because of the particular shape of the polygonal
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(a) (b)

(c) (d)

Fig. 6: Plots of the pressure field solution in MPa for the nearly incompressible
thick-walled cylinder problem (ν = 0.4999). (a) FEM Q4, (b) FEM Q9 B-bar, (c)
VEM, and (d) NVEM

element used to construct the mesh for the NVEM case (see Fig. 9(a)). Despite this,
the solutions are in good agreement.

4.3 Tension problem

In this example, the performance of the NVEM is studied on a pure tension problem.
The domain consists of a square of dimensions 100 × 100 mm2 and unit thickness.
Plane strain condition is specified and the following material parameters are used:
EY = 200000 MPa, ν = 0.4999, σy0 = 150 MPa, Hi = Hk = 0 MPa (perfect plas-
ticity). On the top edge of the domain, a vertical displacement of 0.5 mm is imposed
while its lateral movement is restrained. The bottom surface of the domain is fixed.
Fig. 12 summarizes the problem definition and presents the mesh used in the analysis.
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(a) (b)

(c) (d)

Fig. 7: Plots of the von Mises stress field solution in MPa for the nearly
incompressible thick-walled cylinder problem (ν = 0.4999). (a) FEM Q4, (b) FEM
Q9 B-bar, (c) VEM, and (d) NVEM

Fig. 13 presents the load-displacement curve, where a coincident limit load is
observed for the NVEM and FEM Q9 B-bar approaches. On the other hand, the load-
displacement curve for the VEM shows a locking effect both in the elastic and plastic
regimes.

The solutions for the accumulated plastic strain and the von Mises stress are
presented in Fig. 14, where once again good agreement is observed between the NVEM
and FEM Q9 B-bar methods.

4.4 Perforated plate

In this benchmark problem, a quarter of a perforated plate is considered. The geom-
etry, boundary conditions, and sample mesh are depicted in Fig. 15. The plate has
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Fig. 8: Geometry and boundary conditions for the Cook’s membrane problem with
dimensions in mm

(a) (b)

Fig. 9: Sample meshes for the Cook’s membrane problem that are used in the (a)
VEM and NVEM, and (b) FEM Q9 B-bar approaches
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Fig. 10: Convergence of the vertical displacement at the tip of the Cook’s
membrane (point A) upon mesh refinement

unit thickness and plane strain condition is assumed. The material parameters are set
to EY = 68646.55 MPa, ν = 0.3, σy0 = 238.301595 MPa, Hi = Hk = 0 MPa (perfect
plasticity). A vertical displacement u2D = 2 mm is applied on the top edge of the
plate. On the left, right, and bottom edges of the plate, the translation is restrained
in the normal direction to these edges. Therefore, the plate is highly constrained and
thus a locking effect is expected for the standard linearly precise VEM. In fact, this
is confirmed in the response curve shown in Fig. 16, where the expected limit load is
achieved only by the NVEM and the FEM Q9 B-bar in the plastic regime. A pictorial
of the accumulated plastic strain and the von Mises stress for the most refined mesh is
shown in Fig. 17, where it is observed that the NVEM and FEM Q9 B-bar solutions
look very similar.

A comparison of the horizontal displacement at point A and the vertical displace-
ment at point B among the different methods is presented in Table 1, where a perfect
match to three decimal places is obtained for the NVEM and FEM Q9 B-bar methods.

Table 1: Displacement comparison for
the perforated plate problem

Method u1A [mm] u2B [mm]

VEM 2.716 1.850
NVEM 2.745 1.855
FEM Q4 2.714 1.849
FEM Q9 B-bar 2.745 1.855
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(a) (b)

(c) (d)

Fig. 11: Cook’s membrane problem. Pressure field solution in MPa ((a) NVEM, (b)
FEM Q9 B-bar), and von Mises stress field solution in MPa ((c) NVEM, (d) FEM
Q9 B-bar)

4.5 Prandtl’s punch test

The last benchmark problem is devoted to demonstrate the performance of the NVEM
in a highly constrained compression problem. The Prandtl’s punch test [69] is selected
for this purpose. The geometry and boundary conditions are shown in Fig. 18, where
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u2D

100

(a) (b)

Fig. 12: Tension problem. (a) Geometry and boundary conditions, and (b) mesh
used for benchmarking the VEM, NVEM, and FEM Q9 B-bar approaches

Fig. 13: Load-displacement curve for the tension problem

the punch surface located on the top is horizontally restrained (rough punch) while
a downward vertical displacement u2D = −50 mm is imposed on it. The dimensions
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(a) (b)

(c) (d)

Fig. 14: Tension problem. Accumulated plastic strain field solution ((a) NVEM, (b)
FEM Q9 B-bar), and von Mises stress field solution in MPa ((c) NVEM, (d) FEM
Q9 B-bar)

are defined using a = 500 mm. Because of the symmetry, only half of the domain is
considered for discretization. Three polygonal meshes with increasing refinements are
considered for the VEM and NVEM (Fig. 19(a)–(c)). The most refined VEM/NVEM
mesh (Fig. 19(c)) and the mesh for the FEM Q9 B-bar (Fig. 19(d)) have similar
number of DOF. Unit thickness is considered and plane strain condition is assumed
with material parameters set to EY = 105 MPa, ν = 0.499, σy0 = EY/1000 MPa,
Hi = Hk = 0MPa (perfect plasticity). As observed in Fig. 20, a severe locking behavior
is obtained for the standard linearly precise VEM in this highly constrained problem.
On the other hand, the same figure reports the nearly coincident limit load that is
obtained for the NVEM and FEM Q9 B-bar approaches. The accumulated plastic
strain is reported on Fig. 21, where similar results are obtained for the NVEM and
FEM Q9 B-bar on the meshes with similar number of DOF (Fig. 21(c) and Fig. 21(d),
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Fig. 15: Perforated plate problem. (a) Geometry (with dimensions in mm) and
boundary conditions, and (b) a sample mesh used for benchmarking the VEM,
NVEM, FEM Q4, and FEM Q9 B-bar approaches

respectively). The pressure field is depicted in Fig. 22, where the NVEM and FEM Q9
B-bar solutions look very similar and smooth on the meshes with similar number of
DOF (Fig. 22(c) and Fig. 22(d), respectively). Just for completeness, the accumulated
plastic strain and the pressure field solutions for the linearly precise VEM are shown
in Fig. 23, where the severe locking behavior is clearly observed in the oscillations of
the pressure field.

5 Summary and conclusions

The node-based uniform strain virtual element method (NVEM) that was recently
proposed for compressible and nearly incompressible elasticity [60] has been extended
to elastoplastic solids at small strains. In the proposed method, the strain is averaged
at the nodes from the strain of surrounding linearly precise virtual elements using a
generalization to virtual elements of the node-based uniform strain approach for finite
elements [6]. The averaged strain is then used to sample the weak form at the nodes
of the mesh leading to a method in which all the field variables, including state and
history-dependent variables, are related to the nodes. Consequently, in the nonlinear
computations these variables are tracked only at the nodal locations.

Various elastoplastic benchmark problems were conducted to assess the perfor-
mance of the NVEM. These included a thick-walled cylinder under internal pressure,
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Fig. 16: Response curve for the perforated plate problem. Reaction force due to the
applied vertical displacement in steps

a combined bending and shear problem (Cook’s membrane), a pure tension problem,
a perforated plate subjected to a displacement producing tension, and a highly con-
strained problem in compression (Prandtl’s punch test). The comparisons with the
well-known locking-free 9-node B-bar quadrilateral finite element [3] revealed that the
NVEM effectively enables linearly precise virtual elements to solve elastoplastic solids
with accuracy and is locking-free. For perfect plasticity, these comparisons also demon-
strated that the NVEM is able to capture the expected limit load. Finally, we mention
that the present work completes our short term scope for the NVEM development and
that its extension to large deformations with remeshing is an undergoing work.

Acknowledgements. This work was performed under the auspices of the Chilean
National Fund for Scientific and Technological Development (FONDECYT) through
grant ANID FONDECYT No. 1221325 (R.S-V and A.O-B).
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(a) (b)

(c) (d)

Fig. 17: Perforated plate problem. Accumulated plastic strain field solution ((a)
NVEM, (b) FEM Q9 B-bar), and von Mises stress field solution in MPa ((c) NVEM,
(d) FEM Q9 B-bar)
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Fig. 18: Geometry and boundary conditions for the Prandtl’s punch test
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Fig. 19: Meshes for the Prandtl’s punch test. (a) 4004 DOF polygonal mesh, (b)
12004 DOF polygonal mesh, (c) 32004 DOF polygonal mesh, and (d) 33282 DOF
9-node quadrilateral mesh. Meshes (a)-(c) are used for the VEM and NVEM
approaches, whereas mesh (d) is used for the FEM Q9 B-bar approach
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Fig. 20: Load-displacement curve for the Prandtl’s punch test
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(a) (b)

(c) (d)

Fig. 21: Accumulated plastic strain field solution for the Prandtl’s punch test. (a)
NVEM (4004 DOF polygonal mesh), (b) NVEM (12004 DOF polygonal mesh), (c)
NVEM (32004 DOF polygonal mesh), and (d) FEM Q9 B-bar (33282 DOF 9-node
quadrilateral mesh)
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(a) (b)

(c) (d)

Fig. 22: Pressure field solution in MPa for the Prandtl’s punch test. (a) NVEM
(4004 DOF polygonal mesh), (b) NVEM (12004 DOF polygonal mesh), (c) NVEM
(32004 DOF polygonal mesh), and (d) FEM Q9 B-bar (33282 DOF 9-node
quadrilateral mesh)
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(a) (b)

Fig. 23: Prandtl’s punch test. VEM solution (32004 DOF polygonal mesh) for the
(a) accumulated plastic strain, and (b) pressure field in MPa
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